TETware professional

Realtime and Embedded Systems Extension

I nstallation, User, Demonstration and Programmers Guide
for TETware professional 1.4

Released: 10 January 2002

tHE ()pen Group

The information contained within this document is subject to change without notice.

Copyright 2002 The Open Group

All rights reserved. No part of this documentation may be reproduced, stored in retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user license agreement, without the prior permission of the
copyright owners. The text of the end-user license agreement appears in Appendix A of this
document. A copy of the end-user license agreement is contained in the file License, which
accompanies the TETware professional distribution.

Motif, OSF/1, UNIX and the ‘ X’ device are registered trademarks and TETware, IT Dial Tone and
The Open Group are trademarks of The Open Group in the US and other countries.

X/Open is atrademark of The Open Group Company Limited in the UK and other countries.

Win 32™, Windows NT™ and Windows 95™, 98™ and 2000™ are registered trademarks of
Microsoft Corporation.

This document is produced by

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire

RG1 1AX
England.

CONTENTS

1 oo [T 1 o] o TR 1
11 (= = o= T 1
12 AUAIENCE ...ttt st e et e b e et e e s be e s ae e s abe et e ebeeabeesbeesaeesateenbeeabeesreesans 1
13 Conventions Used inthisS GUIdE............cecceiiieeie s 1
14 ReElAted DOCUMENLS ...ttt sttt eseeeae e eeseeeneesneeneeseeeneeneeeen 2
15 ProblemM REPOIMINGoviieieieiiriesese ettt b ettt n e 2
TETware professional Realtime OVEIN VIEW.........cccciriiirerine e 3
21 LH g1 0o [Tox A o] o S 3
2.2 Y £S = AN 0 0= ox (0= TS 3
221 TETwareprofessonal Testing MOGE ... 3
222 TETware professional RT Testing Modelccoocevviieiniieeese e 4

2.3 The TETware professional RT TeSt MANagErc.cceeeeecveeieiieieeiie et sresneans 5
24 The TETware professional RT TCM and APloooiiiiiiienenese e 6
(IS = = A o o I U o L= 7
3.1 L F ST ol LS = =0 o 7
(UL U Lo [OOSR 11
4.1 gL [N o1 o] o TS SRSSR 11
4.2 Configuration VariablES........cc.ouiieieeeee s 11
Running the Embedded DemONSIr @liONccoviiieririenieieesesiesie e 15
51 Lo [N o1 o] o TSRS 15
5.2 SAectioN the TESt RUN FIlEccvieeee et 15
53 USING @ DIffErent LOCAION.cviiiiriieiesiesie sttt 15
54 SAECtiNg the IP AAArESSoceiece et s 16
55 RUNNING The TESE RUN.....ceiiieieeee e 16
ProgrammMEr S GUITE........ceieiiiiieiiitere ettt bbbt nee e 17
6.1 L@ AT T SRS 17
6.1.1 TheTest MaNfESt.. ... e 17
6.1.2 Manufacturer-specific SUDSYSIEMS........ccccoiiiiie e 17
6.1.3 Support For Tests That Modify The Process Environmentccoceveveeieeeenene. 18
6.1.4 Conditional Test PUrPOSE PrOCESSINGcccevruerieriiniiriesierieseesee e 18
6.1.5 Test Reporting and JOUMNEING.......cecueeirierieriesesieeseseeeeesieseesee e esee e seeseesseeneens 19
6.1.5.1 Test Case INformation LiNES........cccceeeivreeiieiinie e sce et 19

6.1.5.2 Context, Block And Sequence NUMDESS.........ccccovieecevieeiese e 20

6.1.6 TIMEOUL PrOCESSING ...eueeeeieeeierieeeesie et eseesteeeeseesaeeseeseeeeesteeseensesneeneesseenseseeeneensens 20
6.1.7 Reatime SYStEM RESELS. ..o ettt e 21
6.1.8 USEr ADOIt PrOCESSING ...cveiveeieiieceesie ettt eee et sttt sttt s e snesreenne s 21
6.2 TESEMANITESE FlE....ceiiiieeee et 22
6.2.1 L1000 Tox i o] o 1SS SRS 22
6.2.2 FileName and LOCAION.........ccccvieeiiriieese et se ettt ae e nne s 22
L e T 1o o 1 7= | RS 23
6.24 Test Manifest KEYWOIDS..........coiiiriniinieieieeeseeeses ettt 23
L0220 R 11 0o [o i o o 1P 23
6.24.2 Thet est - pur poSe KeYWOrd.........cocoviririiieieinenenese e 24
6.24.3 Thetest-case-instance Keyword..........ccccoomirienininenensiesiesenenne 24
6.2.4.4 Thetc-inNstance KEYWOrd........cccovierceiie et 25
6.245 Theconfig-var KeyWord.........eeseseseeeesese s 25
6.24.6 Thei nfoline KeyWOrd.......ccoooiiiiiiiicie e 27
6.24.7 Ther esul t KeYWOI. ... s 28
6.24.8 Theti MEOUt KEYWOIdcooo it e 28
6.24.9 Theti MeSl i CeS KEYWOId.......cccooiriririiiiieierese s 29
6.2.4.10 Theti meout - fact or Keyword........ccccoeeeiiiieieseccie e 30
B.2.5 EXAMPIES ..ottt et b e st be et b ere et 30
6.3 USING thE TESE MANAMETcveiteeiiitieie ettt ettt e ee st ste e aesre e e s besaeesresreeeesreennens 33
6.3.1 L1000 Tox i o] o 1SS SRSRS 33
6.3.2 Test Manager Name and LOCELION...........coerieieieerinisesese e 34
6.3.3 Configuring TETware professional to usethe Test Manager..........ccovevvverereeennnns 34
6.4 The TETware professional RT C AP ... e 34
L2 1 11 0o (1 o o OSSR 34
6.4.2 CLaNQUAgE BINGINGccecieeiieiecieci ettt et st sreere e 35
6.4.3 Supported APl fUNCLIONS..........cciiieiecieiecece ettt 36
L2 0 I 11 0 [N 1 o OSSR 36
6.4.3.2 Test Case Structure and Management..........cccveveieeieeseceese e 36
6.4.3.3 Insulating from the Test ENVIFONMENLccooererinerereeeeeeeeeeees e 36
6.4.3.4 Error Handling and REPOITINGccververierieiieieieieenesese s 36
6.4.3.5 Making JourNal ENLIES.......ccceeiiieeie ettt 36
6.4.3.6 Canceling TSt PUINPOSES.........ccoiriiririirierienienieieeiee sttt snes 36
6.4.3.7 Accessing Configuration Variablesccccceveririienineneneseeeeeeeeeees 37
6.4.3.8 Generating and EXeCUtiNg PrOCESSEScccovvvieiiiiieee et 37
6.4.3.9 Executed Process FUNCLIONS..........cccuiiierinenenieieceeeese s 37
6.4.3.10 Test Case SYNChroNiZation...........ccoereeieieiiinesese e 37
6.4.3.11 Remote System INfFOrmMationccoereeieeiieinenine s 37
6.4.3.12 RemMOte ProCeSS CONLIOL........cceirieririeriesiesiesiesee e e ens 37

6.4.3.13 Thread FUNCHIONSvveeiiieeeee et eeetre e s e ee s s sar e e s sssree s sessbeeesesbeeesssrreessennres 37

Appendix A - TETware professional LiCENSE.cocviiiierieeeese e 38
Appendix B - Manufacturer-specific SUDSYSIEMS.........cocooiiiieii e 41
B.1 100 U Tox 1 o] o PSSR 41
B.2 SUDSYSIEM DESCIIPIIONSeeeieerieeiesie sttt e e s e neeneeseesneeeeas 41
B.21 CommuNiCation SUDSYSIEMccuriririiriiriesieieeeeeeeesie et 41
B.2.2 EXEC SUDSYSIEM ...ttt nne s 42
B.2.3 RESEL SUDSYSIEIM ...ttt 42
B.3 SOUICE Fil@DINECIOMES. ... ittt et st eseeenee e 42
2 N I 011161 o P 43
2 T 012 = o 1 0 1= SRS 43
B.6 REIUM VEIUES......cceeeiieieeeee ettt st st e e e enes 43
B.7 IMPIEMENLELION NOLEScoiiieieciecece ettt re e e e eesreenns 44
2 TR R 1 0¥ [o) S 44
B.7.2 Conditional ComMpPil@ion..........cceoueieiriiinisesie e 44
B.7.3 EITOr REPOMING.....cceeitiiuieie ettt sttt sttt s e et saa e be s reenbesreennesre e 45
B.7.4 Useof Configuration Variabls..........ccovveeiiiieie et 45
B.75 Signal HandliNgccccooieoiieeiece ettt ettt sttt 46
ST N = o D= 10 o (o 1 oo SRR 47
B.8 Communication SUDSYSIEM APcco i 47
[SES T I T 0\ 1 0o L8 (o o] FEU SO 47
B.8.2 tet3rt_mMSOIM_OPEN(). . e irerririiriereeieieeieieee sttt 47
B.8.3 tet3rt_mSOIM_ClOSE() ...eoverveeiieieieeeesies sttt 49
B.8.4 tet3rt_MSOIM_TECV() .eoververeeiiierieieieeieies sttt 49
B.8.5 tet3rt MSOtM_SENA() .oveiveeieiieeie ettt st re e 51
B.8.6 tet3rt_ MSOIT _OPEN() .eeoveireeie ettt ettt be et st sr e reeaee s 52
(SIS AVAR (= T A 101 o £ o [0S =) SRS 53
B.8.8 tet3rt_ MSOrt_SENA() ...ccviivieieieciece et s 53
B.8.9 tet3rt MSOIM FECV() cueeeeiriiieeie ettt ettt st st be et s re e s re et e 54
B.O EXEC SUBSYSIEM AP ..o eeessse s ssss s sn s ss s ssnnsnseas 56
23 IS A 1 04 e [o) 56
B.9.2 TEL3IT_IT EXEC() wouvereereriertirierie ettt 56
B.9.3 TEESIT_IT @XIT().eeeeeeeereetesiesierie e 57
B.10 RESEt SUBSYSIEM AP ...ttt aenre e 58
2 300 50 N 1 014 o [o U 58
B.10.2 TEE3IT_IT FESEI() .ouveueeeereerrereerierterie ettt 58

B.11 TETware professional RT FUNCLONS.........ccccooiiiieieieiie e ettt 59

2 00 0 T 1 04 0o [o S 59

2 I B BT 1 0 [0] = 59
B.11.3 EITOr REPOMINGo eerieiieeieeieeiesie et eee et see st e e st saeseeseesneeseeseeeeeseeeneenneens 60
B.11.3.1 tet3rt_mMSS _PrintF() .ooeeeeeeeeeieeeese e 60
B.11.3.2 tet3rt_MSS GENEITON().eververeerreriirieriesieseese ettt 60

B.11.4 TraCe DEDUGUINGcveeeuerieriertiriesiesie ettt sttt sse s ettt ss e nee e ene s 62
B.11.4.1 tet3rt_MSS traCe() .ooeeoereeerierieeesieeiese e e et e et e e seesreeee e 62
B.11.4.2 tet3rt_mSS traCeflag........cooiriririiieeeeee e 62
B.11.4.3 tet3rt_mSS tAUMP() ...eeoeeeeeeeerieeeeere et ee et e e e neesreeneens 63
B.11.4.4 tet3rT_PrMSSEI() ..eeoveeeereereeereerieeiesieeeesteseeeneeste s e seeeneeseesreeeeseeeneeseesneeseesseeneens 64

B.11.5 Signal HandliNgcccoveveieieeiese ettt enee e 64
B.11.5.1 tet3rt_block _SIgNalS() ...coeooeeiiieee e 64

B.12 Example MSS Implementations..........c.coireririirieieicseeese s 65
B.13 Example Socket-based Implementation...........ccccocveeeeiiie s seese e 65
27001 75 R 1 0o [FTox £ o o SRS 65
B.13.2 Communication SUBSYSIEMcc.coiiiiiiciececeeee ettt e e 66
B.13.2.1 SUbSYSIEM DESCIiIPLION......cviiiieieciectiete ettt st ee e s sresreenee 66
B.13.2.2 Subsystem-specific Configuration Variables............cccceeviiieeviiieieiiece e 66

B.13.3 EXEC SUDSYSIEM ...ttt sttt nne s 67
B.13.3.1 TSt Manager SIOEcouiiieie ettt 67
B.13.3.2 Realtime SyStem SIdE......cccooiiiieieieeeee e 67

B.13.4 RESEL SUDSYSIEIM ...ttt 67
B.14 Example Seria Line Implementation...........cocooeeireririenesenese e see e eeseenes 68
2 300t N 1 0 4 (0o [o) 68
B.14.2 CommuNiCation SUDSYSIEMccuririiriiriirieriisieseeee ettt nee s 68
B.14.3 EXEC SUDSYSIEM ...ttt sttt sn s nne s 68
B.14.3.1 TESEMANAZEr SITEceiiririirieriese et 68
B.14.3.2 Realtime SyStemM SIde.......ccciiiieecece et st 68

B.14.4 RESEL SUDSYSIEIMoiiiiiiiiieiecie ettt ettt s nne s 69

-iv -

LIST OF FIGURES

Figure 1: Simple TETware professional Testing MOooco oo 4

Figure 2: Simple TETware professional RT Testing Modelcoooeeieieeeneeeeee e 5

Figure 3: Local: EMDeddetd MOE..........oouiiiiiiresesies e 12
LIST OF TABLES

Table 1. Test Case Information Line Prefix Strings

TETware professional Real Time Guide

1 Introduction

1.1 Preface

This document is the Realtime and Embedded Systems Extension to the TETware professional User
Guide.

TETware professional is a Test Execution Management System that takes care of the
administration, reporting, and sequencing of the tests providing a single common user interface for
all of the tests that you devel op.

TETware professional has been tested and used on UNIX, Linux and Windows host operating
systems.

Throughout this document, the Windows NT, 2000 and 9x operating systems are referred to
collectively as Win32 systems. The individual names are only used when it is necessary to
distinguish between them.

1.2 Audience

This document is intended to be read by systems administrators who will install TETware
professional on their computer systems, and by software testing engineers who will use TETware
professional to run test suites.

1.3 ConventionsUsed in this Guide

The following typographic conventions are used throughout this guide:

e« Courier font isusedfor function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

10 January 2002 Page 1
The Open Group

TETware professional Real Time Guide

e The names of variables are presented in italic font. You should substitute the variable's
value when typing a command that contains aword in this font.

e Bold font isused for headings and for emphasis.

1.4 Related Documents

Refer to the following documents for additional information about TETware professional:

TETware professional Installation Guide
TETware professional Demonstration Guide
TETware professional Release Notes
TETware professional Help Pages
TETware Programmers Guide

TETware Installation Guide

The TETware professional Installation Guide contains important information about how to install
and use TETware professional. You should read the Installation Guide thoroughly before
attempting to install and use each new release of TETware professional.

1.5 Problem Reporting

If you have subscribed to TETware professional support and you encounter a problem while
installing and using TETware professional, you can send a support request by electronic mail using
the dedicated email address that is provided. Evaluators should email to
tetware_manager @opengroup.org

All Problem Reports are welcome and actively encouraged. The more problems that are found and
fixed the better the product will be. Please submit all bugs and queries found. Also, please submit
requests for features and upgrades.

Page 2 10 January 2002
The Open Group

TETware professional Real Time Guide

2 TETware professional Realtime Overview

2.1 Introduction

TETware professional is atest execution management system that is designed to operate on systems
that support at least the functionality described in POSIX 1003.1 (1990). The POSIX standard for
Embedded Realtime Systems (POSIX 1003.13) defines four profiles for realtime systems, three of
which do not include all the functionality described in P1003.1. Therefore, TETware professional
cannot be used to execute test cases directly on these systems.

TETware professional Reatime (TETware professional RT) is an extension to TETware
professional, which enables TETware professional to control the execution of tests on Embedded
POSIX Realtime Systems that cannot support TETware professional directly.

Test cases that execute on the realtime system are linked with the TETware professional RT version
of the C Test Case Manager (TCM) module and API library. The TETware professional RT C API
supports a substantial subset of the functions available in the Lite version of the TETware
professional C API.

2.2 System Architecture

2.2.1 TETware professional Testing M odel

Ina‘‘normal’’ non-distributed testing setup, both TETware professional, and the test cases that it
processes, run on the same system. The whole process is driven by alist of test cases contained in
the scenario file. A Test Case Manager module is linked into each test case executable. The TCM
calls each Test Purpose (TP) function in turn. Each TP completes whatever processing is necessary
to perform the test, and then calls an API function to record aresult. When al the TP functions have
been called, the Test Case Manager exits. Finally, TETware professional gathersthe results of each
TP, writes them to the journal and moves on to the next test case.

Figure 1 provides a simple illustration of the relationship between the main TETware professional
componentsin the ‘‘normal’’ non-distributed testing model.

10 January 2002 Page 3
The Open Group

TETware professional Real Time Guide

scenario
file
TCM
:;)I??)rr?al TP functions
protes API library
journal

Figure 1: Simple TETware professional Testing Model

2.2.2 TETwareprofessional RT Testing M odel

When testing embedded realtime systems, this model needs to be modified. This is mainly for the
following reasons:

e TETware professional cannot run on the realtime system. All the control operations must
be performed on a host system.

» Operating system facilities on the realtime system may be limited. If a test case
malfunctions on the realtime system, it may be necessary to reset the system in order to
regain control.

The required modification is accomplished by using TETware professional’s exec tool facility to
run the TETware professional RT Test Manager on the host system (that is: the system on which
TETware professional runs). The Test Manager acts as an agent for the test case that is running on
the realtime system.

Figure 2 provides a simple illustration of the relationship between the main components in the
TETware professional RT testing model.

Page 4 10 January 2002
The Open Group

TETware professional Real Time Guide

[}
host system ! realtime system
[}
[}
|
scenario i
file |
|
[}
[}
[}
[}
i
TCM i RT TCM
;E.. grr?a| RT Test Manager I TP functions
" API library i RT AP library
[}
[}
[}
[}
[}
[}
[}
[}
i
journal !
|
[}

Figure 2: Simple TETware professional RT Testing Model

2.3 The TETware professional RT Test Manager

TETware professional executes a new instance of the Test Manager each time it executes a test
case. The Test Manager performs the following operations:

1. Read information from the test manifest, including information about the arrangement of
ICsand TP functions in the test case.

2. Usethe dynamic test case interface to adapt itself to the IC/TP arrangement described in the
test manifest.

3. Load thetest case onto to realtime system and execute it.
Open a communication channel to the test case on the realtime system.

Instruct the TCM on the realtime system to invoke the test case’s startup function, TP
functions and cleanup function.

6. For each of these functions, enter a service loop, responding to requests from the TCM/API
on the realtime system. The loop is terminated when the function returns to the realtime
system’'s TCM, or when atimeout expires.

10 January 2002 Page 5
The Open Group

TETware professional Real Time Guide

7. Deliver aTP function’s result to the journal.
8. If the TPtimed out: Reset the realtime system.

Thus the Test Manager provides the interface between TETware professional running on the host
system, and the test case running on the realtime system. From TETware professional’s point of
view the Test Manager |ooks like an API-conforming test case.

2.4 The TETware professional RT TCM and API

Each test case that is to run on the realtime system is linked with the TETware professional RT
versions of the C TCM and API library. As in TETware professional, both single-threaded and
thread-safe versions of these components are supplied. A substantial subset of the API functions
implemented in TETware professional-Lite is available in the TETware professional RT version of
the API library. Further details are presented in Section 6.4 ‘‘The TETware professional RT C
API'".

Although the supported API functions are the same, in many cases the implementations are quite
different. For example, functions that write information to the execution results file in TETware
professional instead send the information to the Test Manager in TETware professional RT. When
the Test Manager receives this information, it writes the information to the execution results file on
the host system.

Page 6 10 January 2002
The Open Group

TETware professional Real Time Guide

3 Installation Guide

3.1 Basic Installation

This chapter describes how to build and install the Embedded Module on TETware professional.

The Embedded Module is designed to be built and installed on top of an existing TETware
professional application.

See the TETware professional Installation Guide for instructions on how to extract and install a
copy of TETware professional.

The Embedded Module should be loaded into the same directory that you have extracted TETware
professional, and in which the TETwar e_pr of essi onal . j ar exists.

tar xvf enbedded.tar
Change the directory to the source directory
cd src

Create a native “def i nes. nk” file in this directory. Examples of different def i nes. nk files
from a variety of different operating systems are available in the directory “src/defines’. Choose
the one most like your operating system from the def i nes directory, copy it into the src
directory and renameit “def i nes. nk”. For example

cp defines/solaris7.nk defines. nk

If an example does not exist for your operating system, instructions for creating a new defines.mk
are contained in the TETware Installation Guide.

Change the directory to the embedded system source directory.
cd tet3rt

Run the script to prepare the installation

10 January 2002 Page 7
The Open Group

TETware professional Real Time Guide

sh install.sh

Create a remote system “def i nes_rt sys. nk” filein this directory. Examples of this file are
given in this directory.

Thisfileis similar to the defines.mk file mentioned above but relates to the compilation instructions
of the realtime embedded system. Copy the example you wish to use to “defines_rtsys.mk”. For
example:

cp defines_rtsys_solaris7.nk defines_rtsys. nk

If none of the examples are suitable then edit the template version
“defines_rtsys tenpl ate. nk” with the suitable information, again using the TETware
Installation Guide for instructions as to how to do this.

Change directory to the source directory for the embedded system interface code
cd neslib_rtsys

This directory nmssl i b_rt sys contains Manufacture-specific functions for use by TETware
professional RT on the embedded system.

The distribution contains two example implementations of these functions in the subdirectories
socket s_exanpl e andseri al _exanpl e. You should copy the source files from one of
these examplesintothenssl i b_rt sys directory. If necessary these examples can be modified.

If they are not suitable you will need to implement versions of these functions for each Realtime
System that is to be used in conjunction with the TETware professional RT Test Manager.

The following functions must be provided on the RT-system:

tet3rt_msgrt_open()
tet3rt_msgrt_close()
tet3rt_msgrt_send()

tet3rt_msgrt_recv()

tet3rt_rt_exit()

Details of how to write other interfaces are contained in Appendix C “Manufacturer-specific
subsystems”.

Page 8 10 January 2002
The Open Group

TETware professional Real Time Guide

Change directory to the source directory for the native system interface code

cd ../nsslib_native

The directory nmssl i b_nati ve contains Manufacture-specific functions for use by the native
system.

The distribution contains two example implementations of these functions in the subdirectories
socket s_exanpl e and seri al _exanpl e. You should copy the source files from one of
these examples into the nssl i b_nat i ve directory. If necessary who may edit this source code
for your implementation.

Y ou may need to implement your own versions of these functions for each Realtime System that is
to be used in conjunction with the Embedded Module.

The following functions must be provided on the host system (that is: the system on which the Test
Manager runs):

tet3rt._msgtm_open()
tet3rt_msgtm_close()
tet3rt_msgtm_send()
tet3rt_msgtm_recv()
tet3rt_rt_exec()
tet3rt_rt_reset()

Details of how to write other interfaces are contained in Appendix C “Manufacturer-specific
subsystems”.

Return to the Embedded Source directory

cd ..

10 January 2002 Page 9
The Open Group

TETware professional Real Time Guide

Compile the Source

make i nstall

Embedded TETware professional is now ready to use.

Page 10 10 January 2002
The Open Group

TETware professional Real Time Guide

4 User Guide

4.1 Introduction

The Local: Embedded tab in the TETware professional GUI (see Figure 3) alows users to specify
variables that TETware professional uses in execute mode to determine how to process a test case
on an Embedded Realtime System.

4.2 Configuration Variables

The configuration variables are used in this mode are:

TET3RT_RTSYS | D Specifiesthe string that the Test Manager passes to Manufacturer-specific
functionsthat takeanrt sys_i d argument. Whether or not the MSS actually uses it depends on
the implementation. This variable must be specified.

TET3RT_TRACE_MSS Control the generation of trace messages by M SS functionsin the Test
Manager. Whether or not trace messages are actually generated depends on the MSS
implementation. Typically thisvariableis set to a value between 0 and 10. The use of thisvariable
isoptional; if it is not specified, its value defaults to zero (no trace messages generated).

TET3RT_MSS_RTSYS_TRACE Controls the generation of trace messages by Manufacturer-
specific subsystems (M SS) functions on the realtime system. Whether or not trace messages are
actually generated depends on the MSS implementation. Typically thisvariableis set to avalue
between 0 and 10. The use of thisvariableis optional; if it is not specified, its value defaultsto zero
(no trace messages generated).

TET3RT_MSS _TRACE2JNL Specifies whether or not M SS trace message generated by the Test
Manager should be printed in the journal aswell as appearing on the standard error stream.
Whether or not trace message are actually generated depends on the MSS implementation. The
possible valuesare Tr ue and Fal se. The use of thisvariable is optional; if not specified; itsvalue
defaultsto Fal se.

TET3RT_TP_TI MEQUT Specifies the number of seconds to be used as the default test purpose
timeout. The actual timeout that the Test Manager applies to a test purpose depends on information
in the test manifest as well as on the value of this variable; see Section 6.1.8 "Timeout Processing”
for further details. Thisvariable must be specified.

10 January 2002 Page 11
The Open Group

TETware professional Real Time Guide

MTETware professional

j Test Runs
® % RT Demo
@ & Configuration

Reporting

(] .

Execution Output
:
Journal e
;JE Mo scenario

Figure 3: Local: Embedded Mode

TET3RT_MSG_TI MEQUT Specifies the number of seconds that TETware professional should
wait for the TCM to respond to arequest when in server mode (that is: when the TCM iswaiting for
the next instruction from the Test Manager). If specified, the value of this variable should be
greater than 1 and less than or equal to the value of TET3RT_TP_TI MEOUT. The use of this
variableis optional; if it is not specified, its value defaults to that specified by

TET3RT_TP_TI MEQUT.

Page 12 10 January 2002
The Open Group

TETware professional Real Time Guide

TET3RT_TP_TI MESLI CE Specifies the number of secondsin atimeslice that is used by the

Test Manager when cal culating the timeout to be applied to atest purpose. The number of timeslice
to be applied to a test purpose may be specified in the test manifest. See Section 6.1.8 "Timeout

Processing" for further details. This variable must be specified.

10 January 2002 Page 13
The Open Group

TETware professional Real Time Guide

Page 14 10 January 2002
The Open Group

TETware professional Real Time Guide

5 Running the Embedded Demonstration

5.1 Introduction

This chapter describes how to run the Embedded Demonstration that is supplied with TETware
professional RT.

The demonstration is designed to be used on the sockets implementation of TETware professional
RT.

First follow the instructions contained within the Installation Guide of the Realtime and Embedded
Systems Extension.

It is recommended that you install TETware professional and the Embedded Module into
/usr/ | ocal for this demonstration, but if this is not possible, instructions are given on how to
change the Embedded Demonstration to use a different location.

5.2 Sdlection the Test Run File

Once the installation of the Embedded Module is complete, click on the Qpen Test Run icon
and select embedded_deno. trf.

5.3 Using a Different L ocation

This Test Run File presumes that TETware professional has been installed into / usr/ | ocal . If
thisis not the case various options will heed to be changed.

InConfiguration: Local System Local Environnent:
« TET_ROOT should point to the location of thet et war e_pr of essi onal . j ar
 TET_SUI TE_ROOT should point to the location of the enmbedded deno directory

InConfiguration: Local System Local Execute:
 TET_EXEC TOCOL should point to the location of the binary “tet3rttm”.

10 January 2002 Page 15
The Open Group

TETware professional Real Time Guide

The scenario file will also need to be opened. This can be done by using the menu Confi g: Add
Scenari o File. The scenario file can be found in the enbedded_deno directory and is
caledt et _scen.

5.4 SelectingthelP Address

The IP address of the embedded system also needs to be set. This is held in the Configuration:
Local System: Loca Embedded: TET3RT_RTSYS | D. Currently this is set to the loop back
addressin 127.0.0.1.

5.5 Runningthe Test Run

Once the Test Run has been set up, it can be run by any of the following methods:
=0

e Clicking on the Execute Test Run icon on the tool bar i
e Using the Keyboard Shortcut Alt-E

» Selecting the menu option: Run: Execut e Test Run

Page 16 10 January 2002
The Open Group

TETware professional Real Time Guide

6 Programmers Guide

6.1 Overview
6.1.1 TheTest Manifest

It will be apparent from the description presented in the Section 2 that the functions that would be
performed by the TCM module in TETware professional are shared in TETware professional RT
between the RT Test Manager on the host system and the RT TCM on the realtime system. Thus,
some of the information about the test case that is available to the TETware professional TCM
cannot be accessed by the TETware professional RT Test Manager. In particular, the Test Manager
cannot easily access information about the arrangement of Invocable Components (ICs) and Test
Purpose functions (TPs) that isdefined in the test case’'st et _testlist[] array.

Instead, the TETware professional RT Test Manager reads this (and other) information from a test
manifest file soon after it starts up. Thisisan additional datafile used by TETware professional RT,
which must be provided by the test suite author. Each test case must have a test manifest file
associated with it.

6.1.2 Manufacturer-specific Subsystems

In order to enable the Test Manager to work with the TCM/API running on any particular realtime
system, it is necessary to customize both these components. This is achieved by the use of
Manufacturer-specific subsystems (MSS). Each subsystem is responsible for performing specific
tasks in connection with the realtime system to which it applies. These subsystems must be
implemented by, or on behalf of, the manufacturer of the realtime system that is to be tested.

The following subsystems are defined:

e Communication subsystem (implemented on host system and on realtime system).
Communicate between the host system and the realtime system.

e Execution subsystem (implemented on host system and on realtime system).
Transfer atest case from the host system to the realtime system and execute it.
Exit from (or terminate) a process running on the realtime system.

* Reset subsystem (implemented on host system).
Reset the realtime system.

The interface to each of these subsystems is provided by one or more functions (the MSS API
functions). These functions are described in Appendix C ‘*Manufacturer-specific subsystems'’.

10 January 2002 Page 17
The Open Group

TETware professional Real Time Guide

When the Test Manager or TETware professional RT TCM/API needs to make use of the services
provided by one of the subsystems, it calls the appropriate MSS API function.

6.1.3 Support For Tests That Modify The Process Environment

In a verification test suite, many test methods need particular environmental conditions to be set up,
or may modify their process environment in some way, that might have an adverse effect on the
behavior of subsequent testsin the test case. When writing such tests, acommon strategy employed
by test authors to overcome this problem is to put one or more test purpose functions in a child
process or subprogram started by acal tot et _fork().

Systems that conform to POSIX realtime profiles 51 and 52 are only required to support a single
process so, on those systems, t et _f or k() cannot be implemented; thus test strategies of this
kind cannot be used.

In order to overcome this problem, the Test Manager supports the concept of multiple test case
execution instances. A keyword in the test manifest indicates when a new test case instance should
be started.

Normally, when the Test Manager executes a test case on the realtime system, it instructs the test
case to invoke the startup, test purpose and cleanup functions in the same way as would TETware
professional. However, when the test suite author indicates in the test manifest that a new test case
instance should be started part way through the list of TP functions, the Test Manager performs the
following operations:

1. Instruct the test case to invoke the cleanup function;
Instruct the test case to exit;
Load and execute a new instance of the test case on the realtime system,;

Instruct the test case to invoke the startup function;

o A~ w N

Instruct the test case to invoke the next TP function.

6.1.4 Conditional Test Purpose Processing

In atypical test suite there may be many test purpose functions that use the value of a configuration
variable to determine whether or not a test should be performed. If the variable's value indicates
that the test should not be performed, the test purpose function simply emits atest case information
line, which says why the test cannot be performed, and registers a result such as UNSUPPORTED or
UNTESTED.

Page 18 10 January 2002
The Open Group

TETware professional Real Time Guide

When testing realtime systems, it would be inefficient to go to the trouble of executing one or more
test case instances on a realtime system just to check the value of configuration variables. In order
to make test suite execution more efficient, it is possible to instruct the Test Manager whether or not
to invoke a test purpose function depending on the value(s) of one or more variables in the execute
mode configuration. This is done by using keywords in the test manifest. These keywords are
described in Section 6.2.4 *‘ Test Manifest Keywords'’.

In the test manifest, each test purpose may have one or more configuration variable expressions
associated with it. Each of these expressions has zero or more test case information lines, and
exactly one result code, associated with it. Before the Test Manager instructs the realtime system to
invoke a test purpose function, it evaluates each expression in turn. If an expression is TRUE, the
Test Manager prints the test case information line(s) to the journal, generates the result and steps on
to the next test purpose. Otherwise, if the expression is FALSE, the Test Manager steps on to the
next expression. If none of the expressions are TRUE, the default action is to instruct the realtime
system to invoke the test purpose function in the normal way.

6.1.5 Test Reporting and Journaling

6.1.5.1 Test Caselnformation Lines

When atest case running on the realtime system makes a call to one of the functions that writes to
the journal®, the API on the realtime system sends the data specified in the call to the Test Manager
on the host system. Thusiit is the Test Manager that makes the entry in the execution resultsfile. In
addition, the TCM/API on the realtime system may send Test Case Manager Messages to the Test
Manager, and the Test Manager itself may write Test Case Information lines to the execution results
file.

In order to enable users and report writers to distinguish between Test Case Information lines that
originate from different sources, the Test Manager prepends strings to the different types of line, as
shown in the following table:

1 These functions are: tet_infoline(), tet_minfoline(), tet_printf(), tet_vprintf() and

tet_result().

10 January 2002 Page 19
The Open Group

TETware professional Real Time Guide

Sour ce of information line Prefix string
Test Manager ™
Manufacturer-specific subsystem | M5S:

Trace message from MSS M5S_TRACE:
RT-system TCM message RTSYS_TCM
Test case (none)

Table 1: Test Case Information Line Prefix Strings

6.1.5.2 Context, Block And Sequence Numbers

It will be seen from the information presented in the previous section that Test Case Information
lines that appear in the journal may originate from a number of sources, and not just from the
TCM/API that runs on the realtime system. Therefore it is not really possible for journal context
and block numbers to have the same meaning in TETware professional RT as they do in TETware
professional. Instead, in TETware professional RT, these values are determined as follows:

Context

All Test Case Information lines are written to the execution results file with the same context value.
This value is derived from the Test Manager's process ID in the usua way. A cal to
tet _context() onthereatime system hasno effect on context value that is maintained by the
Test Manager's TCM/AP!.

Block

A cal totet bl ock() on the realtime system causes the API to instruct the Test Manager to
call tet bl ock(). Thus the block number in the execution results file will change at certain
times but each change will affect all lines written after acall tot et _bl ock() inany process or
thread that is running on the realtime system.

Sequence

Thisis calculated by the Test Manager’'s TCM/API in the normal way. The value of the sequence
counter maintained by the TCM/API on the realtime system is not visible in the execution results
file.

6.1.6 Timeout Processing

The Test Manager invokes each test purpose function under the control of a timeout. If a test
purpose is still running when the timeout expires, the Test Manager resets the realtime system, thus
terminating the test purpose. Then, if there are more test purpose functions to invoke, the Test
Manager starts another test case instance on the realtime system in which to invoke subsequent test
purpose functions.

Page 20 10 January 2002
The Open Group

TETware professional Real Time Guide

The Test Manager uses information contained in the execute mode configuration and in the test
manifest in order to determine the timeout to be applied to each test purpose function. This
information is used as follows:

« A default test purpose timeout is defined in the execute mode configuration.

e The default timeout may be overridden by a longer test purpose timeout defined in the test
manifest. This timeout may be defined at the test purpose or the test case level; in the latter case
the timeout applies to al the test purposes in the test case unless alonger timeout is defined for
aparticular test purpose.

It should be noticed that a more specific timeout is only used if it is longer than the less specific
one. Thus, a per-test-purpose value of 5 seconds does not override a default value of 10 seconds.

In addition to the absolute timeout value just described, it is possible for a relative timeout to be
specified in the test manifest in terms of a number of time slices, where the length of one time slice
is defined in the execute mode configuration. Once again, the number of time slices may be
specified at the test purpose or test case level. If the length of a time dice as defined in the
execution mode configuration is related to the speed of the realtime system in some way, it is
possible for atest suite author to use this mechanism to relate a timeout to that speed.

The Test Manager calculates both the absolute timeout and, when the test manifest contains a
number of time dlices, the relative timeout as well. The actual timeout applied to a test purpose is
the greater of the two values thus calcul ated.

6.1.7 Realtime System Resets
The Test Manager may reset the realtime system under the following circumstances:

— when atest purpose times out; or
— when it receives a User Abort notification from TETware professional.

The Test Manager calls an MSS function to perform thistask. There are two levels of reset: soft and
hard. The Test Manager requests a hard reset when the MSS function indicates that a previous soft
reset operation has failed.

6.1.8 User Abort Processing

Itispossible for TETware professional to deliver aSI GTERM signal to the Test Manager. Usually
this occurs when TETware professional wants to interrupt test case processing after it receives a
keyboard signal.

10 January 2002 Page 21
The Open Group

TETware professional Real Time Guide

When the Test Manager receives a SI GTERM it instructs the test case to terminate, then waits for a
short time to receive an exit notification from the test case. If this notification is not received within
that time, the Test Manager resets the realtime system.

6.2 Test Manifest File

6.2.1 Introduction

When the Test Manager executes a test case on the realtime system, it needs to know certain
information about the test case. The test suite author makes this information available to the Test
Manager by providing a test manifest file with each test case. The test manifest file contains the
following information:

* Arrangement of invocable components and test purpose functions.

* Assignment of test purpose functions to test case execution instances.

» Timeout parameters.

» Configuration variable expressions, test case information lines and result codes.

6.2.2 FileName and L ocation
The name of the test manifest file is derived from the test case name, as follows:

» if the last component of the name of the test case starts with T., the name of the test
manifest fileis constructed by replacingthe T. prefix withan M prefix?;

» otherwise: the name of the test manifest file is constructed by prependingan M prefix to
the last part of the test case name.

For example: if the name of atest caseis T. open, the name of the corresponding test manifest file
is M open. Alternatively, if the name of atest caseist c1, the name of the corresponding test
manifest fileisM t c1.

The Test Manager looks for the test manifest file in the test case execution directory. Therefore, if
an alternate execution directory is being used, the build process must copy the test manifest file to
its place in the alternate execution directory hierarchy at the same time that it copies the test case
executable and any other required files.

2 This arrangement works well with the test case naming convention that is used in many of The Open Group's test

suites.

Page 22 10 January 2002
The Open Group

TETware professional Real Time Guide

6.2.3 File Format

The test manifest file is a plain text file. Each non-blank, non-comment line starts with a keyword
and a colon. When a keyword takes arguments, the colon is followed by one or more spaces and/or
tabs, then the arguments themselves. Blank lines and comment lines starting with # are ignored.

6.2.4 Test Manifest Keywords

6.2.4.1 Introduction

The keywords that may appear in atest manifest file are:
confi g-var
i nfoline
resul t
tc-instance
test-case-instance
t est - pur pose
ti meout-factor
ti meout
timeslices

Ordering of keywords is significant. For example, if the ti meout keyword appears before the
firstt est - pur pose keyword, it supplies atimeout value to be used by every test purpose in the
test case. By contrast, if ati meout keyword appears after at est - pur pose keyword, it
supplies atimeout value to be used only by the current test purpose.

These keywords are described in more detail in the subsections that follow.

10 January 2002 Page 23
The Open Group

TETware professional Real Time Guide

6.2.4.2 Thetest - pur pose Keyword

Synopsis
t est - pur pose: icnum
Description

This keyword describes a test purpose function. icnum defines the Invocable Component to which
thistest purpose belongs.

The number of t est - pur pose keywords and their associated IC numbers in the test manifest
file must exactly match the number of test purpose functions and their associated 1C numbers that
aredefined inthetest case’'stet _testlist[] array.

6.2.4.3 Thetest-case-instance Keyword

Synopsis

t est-case-i nst ance:
Description

When this keyword appears it causes the Test Manager to end the currently running test case
instance and start a new test case instance before issuing the next instruction to invoke a test
purpose function. The reason for providing this functionality is described in Section 6.1.3 ** Support
For Tests That Modify The Process Environment’’.

The t est - case-i nstance keyword may appear in the test manifest immediately before a
second or subsequent t est - pur pose keyword. Use of this keyword is optional; when no
test-case-i nstance keywords appear in atest manifest, all the test purposes that are to be
invoked are invoked in asingle instance of the test case.

Page 24 10 January 2002
The Open Group

TETware professional Real Time Guide

6.24.4 Thetc-instance Keyword

Synopsis

tc-instance:
Description

Thiskeyword isasynonymfort est - case-i nst ance.

6.24.5 Theconfi g-var Keyword

Synopsis

config-var: configuration-variable-expression

[

i nf ol i ne: test-case-information-line
[...]

]

resul t: result-name
Description

This keyword defines a configuration variable expression. When it appears, it is followed by zero or
more i nf ol i ne keywords and exactly one r esul t keyword. One or more of these keyword
groups may appear after at est - pur pose keyword. Use of these keyword groups is optional;
when no such groups appear, the Test Manager simply invokes the current test purpose function.

When the Test Manager is about to process a test purpose function that has one or more of these
keyword groups associated with it, the Test Manager first evaluates the specified configuration-
variable-expression. If the expression is TRUE, the Test Manager prints each test-case-infor mation-
line to the execution results file, reports the result associated with result-name and steps on to the
next test purpose. If the expression is FALSE, the Test Manager steps on to the next conf i g- var

keyword group, if thereis one. Finally, if none of the configuration variable expressions are TRUE,
the Test Manager instructs the test case to invoke the test purpose function.

10 January 2002 Page 25
The Open Group

TETware professional Real Time Guide

Each configuration-variable-expression is written using syntax reminiscent of that used in awk.
The following simple expressions are understood:

def i ned(variable)

variable ==

variable!

variable =
variable!

variable!
variable ==

"string

" string

TRUE
FALSE

TRUE
FALSE

If the named variable is defined in the execute mode
configuration, the expression is TRUE; otherwise the
expression is FALSE.

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
compared to the specified string. The expression is TRUE if
variable is defined and the comparison succeeds; otherwise
the expression is FALSE.

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
compared to the specified string. The expression is TRUE if
variable is not defined or if the comparison fails; otherwise
the expression is FALSE.

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, the first letter of
its value is examined. The expression is TRUE if variableis
defined and the first letter of its value is either T or t;
otherwise the expression is FAL SE.

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, the first letter of
its value is examined. The expression is TRUE if variableis
not defined, or if the first letter of its value is neither T nor
t ; otherwise the expression is FALSE.

variable™ /regul ar - expr essi on/

Page 26

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
matched against the specified extended regular-expression.
The expression is TRUE if variable is defined and the match
succeeds; otherwise the expression is FALSE.

10 January 2002
The Open Group

TETware professional Real Time Guide

variable! © /regul ar - expressi on/

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
matched against the specified extended regular-expression.
The expression is TRUE if variable is not defined or if the
match fails; otherwise the expression is FALSE.

These simple expressions may be combined in the usual way as follows:

I expr The expressionis TRUE if expr is FALSE.

expr, && expr, The expression is TRUE if both expr, and expr,are TRUE.
expr, || expr, The expression is TRUE if either expr, or expr.is TRUE.
(‘expr) Parentheses for grouping.

6.24.6 Theinfoline Keyword

Synopsis

i nfoline: test-case-information-line
Description
This keyword defines atest case information line.

When this keyword appears after a t est - pur pose keyword and before a confi g-var
keyword, the Test Manager always prints the specified test-case-information-line to the execution
result file. When this keyword appears after a confi g- var keyword, the Test Manager only
prints the specified test-case-information-line when the corresponding configuration variable
expression is TRUE.

Sequences of i nf ol i ne keywords may be used to print multiple test case information lines. Use
of this keyword is optional.

10 January 2002 Page 27
The Open Group

TETware professional Real Time Guide

6.24.7 Theresult Keyword

Synopsis
resul t: result-name
Description
This keyword instructs the Test Manager to generate aresult on behalf of atest purpose. When this

keyword appears after at est - pur pose keyword and before a confi g-var keyword, the
Test Manager always generates the result associated with result-name.

When this keyword appears after aconfi g- var keyword, the Test Manager only generates the
result associated with result-name when the corresponding configuration variable expression is
TRUE.

When this keyword is used before aconfi g- var keyword, only one instance may appear. Use
of this keyword before a conf i g- var is optional. Exactly one instance of this keyword must
appear after each conf i g- var keyword and any associated i nf ol i ne keywords.

result-name may be any of the result names that are known to the TCM?, or it may be the special
name TEST- RESULT. In the latter case the Test Manager does not immediately record a result but
instead instructs the realtime system to invoke the test purpose function and records the result from
that.

6.2.4.8 Theti nmeout Keyword

Synopsis

ti meout: seconds

3 These are the names defined for the standard result codes as well as those specified with any user-defined result

codes. For further details, refer to Section 4.1.3 “ Custom Result Code Tab” in the TETware professional User Guide.

Page 28 10 January 2002
The Open Group

TETware professional Real Time Guide

Description

This keyword specifies a test purpose timeout in seconds to be used in place of the default value
specified in the execute mode configuration.

When this keyword appears before the first t est - pur pose keyword, it applies to all the test
purpose functions in the test case. When this keyword appears after the first t est - pur pose
keyword, it applies only to the current test purpose.

Use of this keyword is optional.

The way in which the Test Manager calculates the actual timeout to be applied to a test purpose
function depends on several factors and is described in Section 6.1.8 ** Timeout Processing’’.

6.2.49 Theti neslices Keyword

Synopsis
tinmeslices: number
Description

This keyword specifies a test purpose timeout in terms of a number of timeslices. The length of a
timeslice is defined in the execute mode configuration.

When this keyword appears before the first t est - pur pose keyword, it applies to al the test
purpose functions in the test case. When this keyword appears after the first t est - pur pose
keyword, it applies only to the current test purpose.

Use of this keyword is optional.

The way in which the Test Manager calculates the actual timeout to be applied to a test purpose
function depends on several factors and is described in Section 6.1.8 ** Timeout Processing’’.

10 January 2002 Page 29
The Open Group

TETware professional Real Time Guide

6.2.4.10 Theti nmeout - f act or Keyword

Synopsis
timeout-factor: number
Description

This keyword isasynonym for thet i mesl i ces keyword.

6.2.5 Examples

Example 1
t est - pur pose:
t est - pur pose:

t est - pur pose:

A w N P

t est - pur pose:

This manifest accompanies atest case that has four test purpose functions, each in its own IC.
It corresponds to the following definition in the test case sourcefile:

static void tpl(), tp2(), tp3(), tp4();
struct tet testlist tet testlist[] = {

{ tpl, 11},

{ tp2, 2},

{ tp3, 31},

{ tp4, 4},

{ NULL, 0}
};
Example 2

test-purpose: 1
t est-purpose: 2

t est - purpose: 2

Page 30 10 January 2002
The Open Group

TETware professional Real Time Guide

This manifest accompanies a test case that has three test purpose functions; onein IC 1 and two in
IC 2. It corresponds to the following definition in the test case source file:

static void tpl(), tp2(), tp3();

struct tet testlist tet testlist[] ={
{ tpl, 11},
{ tp2, 2},
{ tp3, 2},
{ NULL, 0}
}
Example 3

test-purpose: 1
test-case-i nstance:
t est - purpose: 2

test - purpose: 3

In this example the first test purpose function isinvoked in one test case instance and the remaining
test purpose functions are invoked in another test case instance. Presumably this is because the
strategy employed by the first test purpose would have some adverse effect on the behavior of
subsequent test purpose functions.

Example 4
test-purpose: 1
infoline: this test purpose in not in use
resul t: NOTI NUSE

In this example the test purpose function is not invoked on the realtime system. Instead the Test
Manager prints the specified test case information line to the execution results file and records a
result of NOTI NUSE.

10 January 2002 Page 31
The Open Group

TETware professional Real Time Guide

Example 5
t est - pur pose: 1
config-var: I defi ned(VSX_BLOCK DEV) || VSX BLOCK_DEV == ""
i nfoline: VSX BLOCK DEV is not specified
result: UNRESOLVED
config-var: VSX_BLOCK_DEV == "unsup"
i nfoline: bl ock devices are not supported
resul t: UNSUPPORTED

This example shows how the value of a configuration variable may be used to control whether or
not a test purpose function is invoked. There are two configuration variable expressions; each
expression has atest case information line and a result associated with it.

When the Test Manager is about to invoke the test purpose function, it evaluates the first
configuration variable expression. This expression ensures that VSX_BLOCK_DEV is defined with
a non-empty value in the execute mode configuration. If the expression is TRUE, the Test Manager
prints the first test case information line and reports a result of UNRESOLVED, then moves on to the
next test purpose function. Otherwise, the Test Manager evaluates the second configuration variable
expression. This expression checks to see if VSX BLOCK DEV has been set to unsup. If this
expression is TRUE, the Test Manager prints the second test case information line and reports a
result of UNSUPPORTED, then moves on to the next test purpose function. Otherwise, the Test
Manager instructs the realtime system to invoke the test purpose function.

Example 6
timeout: 20
test-purpose: 1

t est - pur pose: 2

This example specifies a timeout of 20 seconds for each test purpose in the test case. (The actual
timeout value used by the Test Manager is the greater of this value and the default value specified in
the execute mode configuration.)

Example 7
test-purpose: 1
timeout: 20

t est - purpose: 2

Page 32 10 January 2002
The Open Group

TETware professional Real Time Guide

This example specifies a timeout of 20 seconds for the first test purpose only. (The actual timeout
value used by the Test Manager is the greater of this value and the default value specified in the
execute mode configuration.)

Example 8
test-purpose: 1
timeslices: 10

test - purpose: 2

This example specifies a timeout of 10 timeslices for the first test purpose only. The length of a
timeslice is specified in the execute mode configuration. (The actual timeout value used by the Test
Manager is the greater of this value and the default value specified in the execute mode
configuration.)

6.3 Using the Test Manager

6.3.1 Introduction

This section describes how to use the TETware professional RT Test Manager to control the
execution of test cases on arealtime system.

Before you can use the Test Manager in conjunction with a particular realtime system, both it and
the TCM/API must have been built for use with that system.

The Test Manager must have been linked with the Manufacturer-specific subsystem library for the
realtime system that you want to use. Likewise, each test case must have been linked with aversion
of the appropriate TCM/API that contains the Manufacturer-specific code for the realtime system
that you want to use. See Appendix C for details on how to implement Manufacturer-specific
subsystems for a realtime system.

10 January 2002 Page 33
The Open Group

TETware professional Real Time Guide

6.3.2 Test Manager Name and L ocation

The Test Manager is launched by a shell script called t et 3rttm. This script sets some
environment variables, then executes the Test Manager program itself. The name of this programis
rtt npr og. Both the script and the program reside in tet-root/ bi n.

Note that the Test Manager must always be invoked from the t et 3rt t m shell script and never
directly asrt t npr og.

6.3.3 Configuring TETwar e professional to usethe Test Manager

From TETware professional’ s point of view, the Test Manager is an exec tool. Therefore, to instruct
TETware professional to run test cases under the control of the Test Manager, you must set
TET_EXEC TOOL variable in the execute mode configuration to the path name of the Test
Manager launcher. For reasons of portability it is best to use t cc’s configuration variable
expansion capability to do this®.

For example:
TET_EXPAND CONF_VARS=t r ue
TET_EXEC TOOL=${ TET_ROOT}/ bin/tet3rttm

6.4 The TETware professional RT C API

6.4.1 Introduction

The TETware professional RT C API is derived from the Lite version of the TET3 C API. This
section lists the functions that are implemented in the TETware professional RT version of the C
AP, together with any differences between this version and the TET3 version.

Functions in this APl may be used by test cases that run on a realtime system. Asin TET3, both
single-threaded and thread-safe versions of the API are provided. However, shared library versions

4 Refer to Section 5.6 ** Configuration variables which modify TETware's operation’”” and Section 5.8 ** Configuration
variable expansion’’ in the TETware Programmers Guide for further details.

Page 34 10 January 2002
The Open Group

TETware professional Real Time Guide

of the API files are not provided in TETware professional RT. The thread-safe version of the
TETware professional RT API supports POSIX threads.

Support for API-conforming executed subprograms’ can only be provided in a portable manner on a
profile 54 system®. Since such a system is thus capable of supporting TET3 in its own right, support
for executed subprogramsis not provided in TETware professional RT.

For details of the API functions themselves, please refer to the Chapter 8 ‘* The C API’" and Chapter
10 ' The Thread-safe C and C++ APIS’, both in the TETware Programmers Guide.

6.4.2 C Language Binding

Test cases that use this API are compiled on the host system using a cross-compiler and other cross-
tools that are suitable for compiling programs for use on the runtime system. To the extent possible,
the way in which test cases are compiled is similar to that used in the standard (non-realtime)
version of TET3. In particular, the file names used by the API are the same.

Test cases written to use this API attach themselvesto it through the following files:
e tet-root/ lib/tet3/tcm o isthesinglethreaded version of the TCM.
e tet-root/ lib/tet3/1ibapi.a isthesinglethreaded version of the API library.
e tet-root/ lib/tet3/thrtcm o isthethread-safe version of the TCM.
e tetroot/ lib/tet3/1ibthrapi.a isthethread-safeversion of the API library.

e tet-root/ i nc/tet3/tet_api.h contains prototypes for the functions, declarations of
all the global variables, and definitions of all the structures and manifest constants that
constitute the C API.

Note that the suffixes of the names of object and library files shown above are those that are used
on a UNIX system. It is possible that different suffixes will be used by the cross-tools for a
particular realtime system.

Test cases that are to be linked with the thread-safe version of the TCM and APl must be compiled
with TET_PGCSI X _THREADS defined, in order to make visible the threads-related contents of
tet _api.h.

® That is a program that is linked with a child process controller and launched by a cdl to t et _exec() or

tet _spawn().

® Thatis: asystem that supports both multiple processes and afile system.

10 January 2002 Page 35
The Open Group

TETware professional Real Time Guide

6.4.3 Supported API functions

6.4.3.1 Introduction

A substantial subset of the functions provided in the Lite version of the TET3 C APl are
implemented in TETware professional RT, as shown in the following subsections. The subsection
headings correspond to those used in the chapters in the TETware Programmers Guide that describe
the C API.

6.4.3.2 Test Case Structure and Management

The dynamic test case interface is not supported.
All the other interfaces are supported.

6.4.3.3 Insulating from the Test Environment

The configuration variablesTET _SI G | GN and TET_SI G_LEAVE apply to the Test Manager.

The TET3RT_SI G | GN and TET3RT_SI G LEAVE variables can be set in the execute mode
configuration to instruct the TCM/API to ignore signals and |eave signals alone, respectively.

6.4.3.4 Error Handling and Reporting

All interfaces are supported.

6.4.3.5 Making Journal Entries

tet _setcontext () issupported but hasno effect on the journal context number.

tet setbl ock() causes the block number to be incremented in the Test Manager. All
subsequent Test Case Information lines generated both by the Test Manager and the test case have
the new block number.

All the other interfaces are supported.

6.4.3.6 Canceling Test Purposes

All interfaces are supported.

Page 36 10 January 2002
The Open Group

TETware professional Real Time Guide

6.4.3.7 Accessing Configuration Variables
All interfaces are supported.
6.4.3.8 Generating and Executing Processes

tet _fork() andtet_chil d aresupported only on profile 53 and 54 systems. In the thread-
saofe APl, acall totet _fork() -createsa child process that contains only a copy of the calling
thread.

The other interfaces are not supported.

6.4.3.9 Executed Process Functions

Sub-programsandt et _nai n() are not supported.

A cdl to tet _exit() cals the manufacturer-specific subsystem function
tet3rt_rt_exit().tet_exit() should only be caled from a child process on profile 53
and 54 systems.

Acdltotet | ogoff() closesthecommunication channel tothe Test Manager. This function
should only be called from a child process on profile 53 and 54 systems, when API services are no
longer required.

6.4.3.10 Test Case Synchronization
Not supported.

6.4.3.11 Remote System Infor mation
Not supported.

6.4.3.12 Remote Process Control
Not supported.

6.4.3.13 Thread Functions

All the interfaces required to support POSIX threads are implemented in the thread-safe version of
the API. These ae tet_pthread create(), tet_pthread_ join() and
tet _pthread_detach().

tet forkl1() isnotsupported.

10 January 2002 Page 37
The Open Group

TETware professional Real Time Guide

Appendix A - TETware professional License

+++++++++++++TET END USER LICENSE+++++++++++

BY DOWNLOADING THIS PRODUCT, YOU ARE CONSENTING TO BE BOUND BY THIS
AGREEMENT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT
INSTALL THE PRODUCT.

TETWARE PROFESSIONAL RELEASE 1 END USER LICENSE
REDISTRIBUTION NOT PERMITTED

This Agreement has two parts, applicable to the distributions as follows:

(A) Free binary evaluation copies - valid for up to 45 days, full
functionality - no warranty,

(B) Licensed versions - full functionality, warranty fitness as described
in documentation, includes annual support.

PART | (A above) -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET)
PAID (LIMITED TO EVALUATION USE)

GRANT.

X/Open Company Limited, trading as The Open Group (‘The Open Group’) grants you a non-exclusive
license to use the Software free of charge if your use of the Software is for the purpose of evaluating whether
to purchase an ongoing license to the Software. The evaluation period for use by or on behalf of any entity is
limited to a maximum of 90 days. If you are using the Software free of charge you are not entitled to hard-
copy documentation, support or telephone assistance. If you fit within the description above, you may use the
Software for any purpose and without fee.

DISCLAIMER OF WARRANTY.
Free of charge Softwareis provided onan ‘AS IS basis, without warranty of any kind.

THE OPEN GROUP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT

Page 38 10 January 2002
The Open Group

TETware professional Real Time Guide

SHALL THE OPEN GROUP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

PART Il (B above) -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT. Subject to payment of applicable license fees, The Open Group grants to you a non-exclusive
license to use the Software and accompanying documentation (' Documentation’) as described below.

Copyright (c) 1996, 1997, 1998, 1999, 2000 X/Open Company Ltd.

LIMITED WARRANTY.

The Open Group warrants that for a period of ninety (90) days from the date of acquisition, the Software, if
operated as directed, will substantially achieve the functionality described in the Documentation. The Open
Group does not warrant, however, that your use of the Software will be uninterrupted or that the operation of
the Software will be error-free or secure.

EXCEPT AS STATED ABOVE THE OPEN GROUP DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted, aslong as a support contract isin place.
Modification of the source is permitted.

Redistribution of the source code is not permitted without express written permission of The Open Group.
Distribution of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is not permitted unless the distributor
has a redistribution agreement with The Open Group.

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

10 January 2002 Page 39
The Open Group

TETware professional Real Time Guide

Portions of this work contain code derived from other versions of the Test Environment Toolkit, which are
copyright

Copyright 1990,1992 Open Software Foundation

Copyright 1990,1992 Unix International

Copyright 1990,1992 X/Open Company Ltd.

Copyright 1991 Hewlett-Packard Co.

Copyright 1993 Information-Technology Promotion Agency, Japan
Copyright 1993 Sunsoft, Inc.

Copyright 1993 UNIX System Laboratories, Inc., a subsidiary of Novell Inc.
Copyright 1994,1995 Uni Soft Ltd.

The unmodified source code of those works is freely available from ftp.xopen.org. The modified code
contained in TETware professional restricts the usage of that code as per this license.

O O

Page 40 10 January 2002
The Open Group

TETware professional Real Time Guide

Appendix B - Manufactur er-specific Subsystems

B.1 Introduction

An interface has been defined which enables TETware professional RT components to send
requests to other hardware and software subsystems. The implementation of the underlying
functionality is specific to the hardware and/or software involved, and is implemented by (or on
behalf of) the suppliers of these components. The following subsystems have been identified:

Communication subsystem Provides two-way communication between the Test Manager on the
host system and the TETware professional RT TCM/API on the
realtime system.

Exec subsystem Loads atest case executable on to the realtime system and executes
it; and, provides a profile-independent mechanism for test case
termination on the realtime system.

Reset subsystem Resets the realtime system.

Sections in this Appendix describe each subsystem in more detail, together with the API functions
that must be provided by the user. In addition, some support functions provided by the Test
Manager are described.

Functions that are implemented on the host system are used by the Test Manager, and functions that
are implemented on the realtime system are used by the TETware professional RT version of the
TCM and AP library.

B.2 Subsystem Descriptions

B.2.1 Communication Subsystem

This subsystem consists of two parts; one part on the host system and the other on the realtime
system. Each part is responsible for establishing a communication channel to the other part, and for
exchanging fixed length message packets over the channel. Typically this subsystem is
implemented using TCP/IP (if the realtime system supports it) or a connection between serial ports
on each system.

10 January 2002 Page 41
The Open Group

TETware professional Real Time Guide

B.2.2 Exec Subsystem

This subsystem consists of two parts; one part on the host system and the other on the realtime
system.

The part on the host system is responsible for copying a program image file onto the realtime
system and executing it. The part on the realtime system is used to terminate a running program, as
if exi t () hasbeen caled by the program.

B.2.3 Reset Subsystem

This subsystem consists of a single part on the host system. It is responsible for initializing the
realtime system to a known state.

The following operations are defined:
o SOft reset;
* Hardreset.

Normally the Test Manager requests a soft reset if a test purpose times out, or if it is necessary to
interrupt the currently running test purpose for some reason. If the soft reset operation fails, the Test
Manager requests a hard reset. This process is analogous to sending a SI GTERM signal to a
process running on a UNIX system, followed up by a SI GKI LL signal if the process has not
terminated within a reasonable time. If only one type of reset is possible for a particular realtime
system, then it should be performed in response to both types of reset request.

B.3 SourceFile Directories

Source files for the API functions described here reside in the following directories:

tet-root/ src/tet3rt/ meslib_native Directory containing source files for subsystems
that are implemented on the host system.

tet-root/ src/tet3rt/ neslib_rtsys Directory containing source files for subsystems
that are implemented on the realtime system.

Page 42 10 January 2002
The Open Group

TETware professional Real Time Guide

The TETware professional RT makefile scheme compiles the source files in these two directories
using the appropriate compiler.

B.4 API Functions

The sections that follow define the interface to the manufacturer-specific subsystemsfor a particul ar
combination of host system and realtime system.

An implementation of this APl must be supplied for each realtime system that is to be used with
TETware professional RT. The API is used by the Test Manager to deliver tests to the realtime
system, provide services for the tests and receive results from the tests.

The API is designed to support different implementations of each facility. For example, the
Communication subsystem might be implemented using a connection either over sockets or over a
serial line.

The TETware professional RT distribution includes some example implementations of
manufacturer-specific subsystems, which might be used as a starting point for a practical
implementation. These are described in Sections B.12 to B.14 of this Appendix.

B.5 Thetet3rt.h file

The file tet-root/ i nc/tet3/tet3rt.h contains declarations and definitions of al the
interfaces that constitute this API.

In addition to the interfaces described here, the t et 3rt . h file also contains declarations and
definitions that are internal to TETware professional RT and are not part of this API. Users are
reminded that only interfaces described in this chapter should be used by manufacturer-specific
subsystem implementations.

B.6 Return Values

Each API call described here returns an integer whose value corresponds to one of the following
manifest constants:

10 January 2002 Page 43
The Open Group

TETware professional Real Time Guide

TET3RT_K Function succeeded.

TET3RT_ECF A message operation encountered an End-of-File condition.

TET3RT_ER_ALREADY_COPEN The communication channel is already open.

TET3RT_ER CONFI G Configuration variable error.

TET3RT_ER_EXEC The program image could not be loaded on to the realtime
system and/or executed.

TET3RT_ER_| NVAL Invalid parameter to function call.

TET3RT_ER I O An 1/O error occurred.

TET3RT_ER_NOT_OPEN The communication channel is not currently open.

TET3RT_ER RESET The realtime system could not be reset in the manner
specified.

TET3RT_ER RTSYS ID Badrtsys id argument to function call.

TET3RT_ER SYSERROR Error in system call (e.g., out of memory, can't fork, etc.)

TET3RT_ER_TI MEDOUT Request timed out.

In the sections that follow, the possible return values for each function areincluded in the function’s
description.

B.7 Implementation Notes

B.7.1 Introduction

These notes are for guidance of implementers of APIs for al of the subsystems described here.
Where appropriate, other implementation notes are included in the descriptions of the APIs for
individual subsystems that follow.

B.7.2 Conditional Compilation

Conditional compilation may be used when it is necessary to provide different implementations of
subsystems that run on the realtime system to support different POSIX reatime profiles. The
TETware professional RT makefile scheme provides a compiler definition called
TET_PCSI X13_PROFI LE whose value is set to the POSIX profile of the reatime system for
which the TCM/API is being built. The following example illustrates how this definition might be
used to determine whether or not multiple processes are supported on the realtime system:

Page 44 10 January 2002
The Open Group

TETware professional Real Time Guide

#if TET_POSI X13_PROFI LE == 51 || TET_POSI X13_PROFI LE == 52
/* single process profile */

#el se
/[* multiple process profile */

#endi f

B.7.3 Error Reporting

Each API function returns a value to indicate the success or failure of the requested operation.
However, some of the error returns defined here can only convey fairly general information;
particularly those that describe hardware or operating system errors.

When an API function is able to provide more information relating to the reason for a failure, it
should do so by calling the TETware professional RT functiont et 3rt _nmss_printf (). This
function is described in Section B.11 ‘‘TETware professional RT Functions’ later in this
Appendix.

For example, suppose that the APl function tet 3rt _nmsgt m open() is implemented using
sockets. Such an implementation might typically make calls to socket (), bind() and
listen(). If any of these cals fails, tet3rt_nsgtmopen() would return
TET3RT_ER | O

However, in order to provide more precise information in the event of failure of any of the
underlying system calls, the API function should first make acall totet 3rt _nmss_printf ()
to log a message stating the nature of the problem. Such a message would typically include a string
describing the operating system error return, such asthe string returned by acal tostrerror ().

B.7.4 Use of Configuration Variables

A subsystem may choose to define configuration variables for its own use. In order to prevent name
clashes, the names of variables used by manufacturer-specific subsystems should start with the
prefix TET3RT_MSS .

The value of a variable may be obtained by calling the TETware API functiont et _get var ()
on the host system. This function is described in the section entitled ** Accessing configuration
variables’’ in the TETware Programmers Guide.

10 January 2002 Page 45
The Open Group

TETware professional Real Time Guide

Sometimes a subsystem may need to override the value of a parameter that the Test Manager passes
to one of itsfunctions. If necessary it can define a subsystem-specific configuration variable for this
purpose.

For example: suppose a particular implementation of the Reset subsystem needed to know the name
of a seria device to be used when performing a reset operation. In this case, the Reset subsystem
might define an additional configuration parameter named (say) TET3RT_MSS_RESET_TTY and
use the corresponding value when sending a reset request to the realtime system.

B.7.5 Signal Handling

Functions in this API should not ignore signals.

Functionsin this APl may block a signal for a short time in order to complete some atomic or time-
critical operation. A signal should not be blocked for the duration of some operation, which might
take some time to complete’. For example: acall tosel ect () oraccept (), calstoread()
orwrite() onasow device, etc. If afunction in this API changes the disposition of asignal, the
disposition should be restored. If asignal isreceived while acall to one of these API functionsisin
progress, the caller’s signal handler may return to the caller via a call to si gl ongj np() . This
will cause the calling process to perform some cleanup operations (if possible) and exit.

The only *‘expected’’ signal that might cause this action to occur is the SI GTERM signal that
might be delivered by TETware professional in response to a User Abort request. See Section 6.1.8
entitled ** User Abort processing’’ earlier in this guide.

If a manufacturer-specific subsystem needs to perform additional cleanup operations on receipt of a
S| GTERM signal, it should check the current disposition of the signal and, if it is not being
ignored, save the current handler and install a new one. If subsequently receipt of a SI GTERM
signal results in the subsystem-specific handler being called, the handler should:

1. Perform any required cleanup processing.

2. Restore the previous signal disposition that was saved when the subsystem-specific handler
wasinstalled.

Note that the message send and receive functions in the Communication subsystem do not need to concern
themselves with signals, except to cal tet3rt_bl ock_signal s() in the message receive function
immediately before recelving a message packet. Further details are presented in the descriptions of
tet3rt_msgtmrecv() andtet3rt_nsgtmsend() laterinthisAppendix.

Page 46 10 January 2002
The Open Group

TETware professional Real Time Guide

3. Unblock SI GTERM then send a SI GTERM to the current process. If some error results in
the handler continuing execution after this point, the handler should print a suitable
diagnostic and exit with a status of 1.

If a subsystem needs to perform this kind of processing, it should take care not to install its own
signal handler more than once.

B.7.6 Trace Debugging

TETware professional RT includes a trace subsystem that can be used for debugging purposes. On
the host system, the Test Manager implements this subsystem. On the realtime system, the
TETware professional RT TCM/API implements this subsystem.

When an API function wishes to generate a trace message, it may do so by calling the TETware
professional RT function t et 3rt _nss_trace() . In addition, there are some other functions
that may be useful when printing trace messages. All these functions are described in Section B.11
““TETware professional RT functions'’ later in this Appendix.

B.8 Communication Subsystem API

B.8.1 Introduction

The Communication subsystem is responsible for communications between the Test Manager on
the host system and the TETware professional RT TCM/API on the realtime system. After the Test
Manager has loaded and executed a test case on the realtime system, it opens a communication
channel to the realtime system. At the same time the TCM/API on the realtime system opens the
channel to the host system. Once the channel is open, the Test Manager and the TCM/API useiit to
exchange fixed length message packets. Each packet includes a magic number and a checksum so
that TETware professional RT processes can readily detect communication errors. When the
channel is no longer required, each side closes the channel. Typical implementations of this
subsystem might use TCP/IP or serial port communications.

B.8.2 tet3rt_msgtm_open()

Synopsis
int tet3rt_nsgtmopen(char *rtsys_id, int tineout);

10 January 2002 Page 47
The Open Group

TETware professional Real Time Guide

Description

This function should be implemented on the host system. A cal to this function opens a
communication channel from the Test Manager to the realtime system. Since a Test Manager only
tests a single realtime system, only one communication channel can be open at one time. The Test
Manager calls this function after it has loaded and executed atest case on the realtime system.

Parameters

rtsys_id

ti meout

Return Value

TET3RT_OK
TET3RT_ER RTSYS | D
TET3RT_ER_| NVAL

TET3RT_ER | O

TET3RT_ER_SYSERRCR
TET3RT_ER_ALREADY_OPEN
TET3RT_ER_CONFI G

TET3RT_ER_TI MEDQUT

Implementation Notes

Identifier for the realtime system to which this call applies.
The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS_ | D
variable in the execute mode configuration.

Specifies the number of seconds to wait for the open to
complete.

The communication channel was opened successfully.
rtsys_id doesnotidentify aknown realtime system.

A parameter is invalid. This error should be returned if
rtsys_id isNULL or pointsto an empty string.

An /O error occurred while opening the communication
channel.

A system error occurred (other than an 1/O error).
The communication channel is already open.

A required configuration variable is not defined or is set to an
invalid value.

The communication channel could not be opened within the
specified time.

If asocket isto be used for the communication channel, this call typically allocates a socket, listens
for connections and accepts a connection when one arrives. If the subsystem uses a socket in
passive mode, this leaves the realtime system free to choose whether or not to actually make the

connection.

Page 48

10 January 2002
The Open Group

TETware professional Real Time Guide

Once a channel has been opened, the subsystem should cache details of this channel for use in
subsequent API callsto this subsystem.

B.8.3 tet3rt_msgtm_close()

Synopsis

int tet3rt_nsgtmclose(void);
Description
This function should be implemented on the host system.

A cadll to this function closes the communication channel, which was opened by the last call to
tet3rt_nsgt mopen().

Return Value

TET3RT K The communication channel was closed successfully.

TET3RT_ER_NOT_OPEN Thereis no currently open communication channel.

TET3RT_ER I O An /O eror occurred while closing the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an 1/O error).

Implementation Notes

If there are requests waiting to be processed at the time of this call, they should be read and
discarded before the call returns.

The subsystem may delete any cached information about the communication channel after a call to
this function.

B.8.4 tet3rt_msgtm_recv()

Synopsis

int tet3rt_nsgtmrecv(char *nsgbuf, int tineout);

10 January 2002 Page 49
The Open Group

TETware professional Real Time Guide

Description

This function should be implemented on the host system.

A call to this function reads a message packet of length TET3RT_MSG _LEN bytes from the
realtime system, with timeout. This function returns when a packet has been received, or when the

timeout expires.
Parameters

nsgbuf

ti meout

Return Value

TET3RT_OK
TET3RT_EOF
TET3RT_ER _NOT_OPEN
TET3RT_ER_TI MEDOUT
TET3RT_ER_| NVAL

TET3RT_ER | O
TET3RT_ER_SYSERROR

Page 50

Pointer to a buffer of at least TET3RT _MSG _LEN bytes
long, into which the implementation should put the received
packet.

defines the number of seconds to wait for a packet to arrive.
If no packet can be received within the specified number of
seconds, the «cal should return a value of
TET3RT_ER TI MEDQUT. If tineout is zero, the call
should return a packet if one is pending, otherwise it should
return immediately.

A packet was received successfully.

EOF was encountered on the communication channel.
There is no currently open communication channel.
The timeout expired before a packet was received.

A parameter is invalid. This error should be returned if
msgbuf isNULL; or, if ti meout isnegative.

An /O error occurred on the communication channel.

A system error occurred (other than an 1/0 error).

10 January 2002
The Open Group

TETware professional Real Time Guide

Implementation Notes

When the Test Manager is operating in server mode, it callstet 3rt _nmsgt mrecv() with
signals unblocked. The implementation should wait until a message packet is available for reading,
then call the TETware professional RT function t et 3rt_bl ock_si gnal s() immediately
before reading the packet, so as to ensure that the read operation is not interrupted by asignal that is
being caught by the Test Manager.

B.8.5 tet3rt_msgtm_send()

Synopsis

int tet3rt_nsgtm send(char *nsgbuf);
Description
This function should be implemented on the host system.

A call to this function sends a message packet of length TET3RT_MSG_LEN bytes to the realtime
system.

Parameters

nsgbuf Pointer to a buffer containing the packet containing
TET3RT_MSG_LEN bytesto be sent to the realtime system.

Return Value

TET3RT_K The packet was sent successfully.

TET3RT_ER NOT_OPEN There is no currently open communication channel.

TET3RT_ER | NVAL A parameter is invalid. This error should be returned if
nsgbuf isNULL.

TET3RT_ER 1O An /O error occurred on the communication channel.

TET3RT_ER_SYSERROR A system error occurred (other than an 1/O error).

10 January 2002 Page 51

The Open Group

TETware professional Real Time Guide

B.8.6 tet3rt_msgrt_open()

Synopsis

int tet3rt_nsgrt_open(void);
Description
This function should be implemented on the realtime system.

A call to this function opens a communication channel from the TCM on the realtime system to the
Test Manager on the host system. Since a Test Manager only tests a single realtime system, only
one communication channel can be open at one time.

The TCM calls this function soon after it starts executing.

Return Value

TET3RT_K The communication channel was opened successfully.

TET3RT _ER 1O An /O eror occurred while opening the communication
channel.

TET3RT_ER SYSERROR A system error occurred (other than an 1/O error).

TET3RT_ER _ALREADY_ OPEN The communication channel is already open.

I mplementation Notes

If a socket is to be used for the communication channel, this call typically alocates a socket and
connects to the Test Manager on the host system.

Once a channel has been opened, the subsystem should cache details of this channel for use in
subsequent API callsto this subsystem.

If calls to trace debugging functions are to be used in manufacturer-specific code on the reatime
system, this function should set thet et 3rt _nss_t racefl ag variable before it returns. Refer
tothedescriptionof t et 3rt _nss_tracefl ag later inthis chapter for further details.

Page 52 10 January 2002
The Open Group

TETware professional Real Time Guide

B.8.7 tet3rt_msgrt_close()

Synopsis

int tet3rt_nsgrt_close(void);

Description
This function should be implemented on the realtime system.

A call to this function closes the communication channel, which was opened by the last call to
tet3rt_nsgrt_open().

Return Value

TET3RT K The communication channel was closed successfully.

TET3RT_ER_NOT_OPEN Thereis no currently open communication channel.

TET3RT _ER 1 O An 1/O error occurred while closing the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an 1/O error).

Implementation Notes

If there are requests waiting to be processed at the time of this call, they should be read and
discarded before the call returns. The subsystem may delete any cached information about the
communication channel after acall to this function.

B.8.8 tet3rt_msgrt_send()

Synopsis

int tet3rt_nsgrt_send(char *nsgbuf);

10 January 2002 Page 53
The Open Group

TETware professional Real Time Guide

Description
This function should be implemented on the realtime system.

A call to this function sends a message packet of length TET3RT_MSG_LEN bytes to the Test
Manager on the host system.

Parameters

nsgbuf Pointer to a buffer containing the packet containing
TET3RT_MSG_LEN bytesto be sent to the Test Manager.

Return Value

TET3RT K The packet was sent successfully.

TET3RT_ER_NOT_OPEN Thereis no currently open communication channel.

TET3RT_ER | NVAL A parameter is invalid. This error should be returned if
nsgbuf isNULL.

TET3RT_ER I O An 1/O error occurred on the communication channel.

TET3RT_ER SYSERROR A system error occurred (other than an 1/O error).

B.8.9 tet3rt_msgrt_recv()

Synopsis

int tet3rt_nsgrt_recv(char *nsgbuf, int tinmeout);
Description
This function should be implemented on the realtime system.

A call to this function reads a message packet of length TET3RT _MSG_LEN bytes from the Test
Manager on the host system, with timeout. This function returns when a packet has been received,
or when the timeout expires.

Page 54 10 January 2002
The Open Group

Parameters
nsgbuf

ti meout

Return Value

TET3RT_OK
TET3RT_EOF
TET3RT_ER _NOT_OPEN
TET3RT_ER_TI MEDOUT
TET3RT_ER_| NVAL

TET3RT_ER | O
TET3RT_ER_SYSERRCR

I mplementation Notes

TETware professional Real Time Guide

Pointer to a buffer of at least TET3RT_MSG_LEN bytes
long, into which the implementation should put the received
packet.

Defines the number of seconds to wait for a packet to arrive.
If no packet can be received within the specified number of
seconds, the «cal should return a vaue of
TET3RT_ER TI MEDOUT. If ti meout is zero, the call
should return a packet if one is pending, otherwise it should
return immediately.

A packet was received successfully.

EOF was encountered on the communication channel.
There is no currently open communication channel.
The timeout expired before a packet was received.

A parameter is invalid. This error should be returned if
nsgbuf isNULL; or,if ti meout isnegative.

An 1/O error occurred on the communication channel.

A system error occurred (other than an 1/O error).

When the TCM is operating in server mode, it callstet 3rt_nsgrt_recv() with signas
unblocked. The implementation should wait until a message packet is available for reading, then
call the TETware professional RT function t et 3rt_bl ock_si gnal s() immediately before
reading the packet, so as to ensure that the read operation is not interrupted by a signal that is being

caught by the TCM.

10 January 2002

Page 55
The Open Group

TETware professional Real Time Guide

B.9 Exec Subsystem API

B.9.1 Introduction

The Exec subsystem provides support for executing processes on the realtime system.
B.9.2 tet3rt_rt_exec()

Synopsis
int tet3rt_rt_exec(char *rtsys_id, char *tcnane);
Description

This function should be implemented on the host system. A call to this function copies a test case
executable to the realtime system and executesiit.

Parameters

rtsys_id Identifier for the realtime system to which this call applies.
The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS_ | D
variable in the execute mode configuration.

t cname Name of the file containing the test case to be copied to the
realtime system.

Return Value

TET3RT_K The test case was copied and executed successfully.

TET3RT_ER RTSYS ID rtsys_id doesnotidentify aknown realtime system.

TET3RT_ER | NVAL A parameter is invalid. This error should be returned if one
of the argumentsis NULL or pointsto an empty string.

Page 56 10 January 2002

The Open Group

TETware professional Real Time Guide

TET3RT_ER_CONFI G A required configuration variable is not defined or is set to an
invalid value.
TET3RT_ER _EXEC An error occurred while the test case was being copied to,

and/or executed on, the realtime system.

B.9.3 tet3rt_rt_exit()

Synopsis

int tet3rt _rt_exit(int status);
Description
This function should be implemented on the realtime system.

A call to this function terminates the calling process, as if by a call to exi t (). This function is
defined in order to provide the TETware professional RT TCM/API with a consistent way of
terminating, irrespective of the POSIX profile supported by the realtime system. (This is because
theexi t () functionisnot specified for some of the POSIX realtime profiles.)

It is not necessary for this function to communicate the process exit status back to the Test Manager
since, by the time the TCM/API calls this function, it has already done so.

Parameters

st at us The process exit status. Whether or not the function can do
anything useful with this value depends on the
implementation.

Return Value

This function must not return.
I mplementation Notes

On profiles which only support a single process and whereexi t () or some equivalent functionis
not implemented, this function might smply go into an infinite loop. In this case, a subsequent call
totet3rt_rt_exec() should first perform an appropriate reset operation in order to gain
control of the realtime system before loading and executing the test case.

10 January 2002 Page 57
The Open Group

TETware professional Real Time Guide

B.10 Reset Subsystem API

B.10.1 I ntroduction

This subsystem provides the facility to reset the realtime system.

B.10.2 tet3rt_rt_reset()

Synopsis

int tet3rt_rt_reset(char *rtsys_id, int action);

Description

This function should be implemented on the host system.

Parameters

rtsys_id

action

Identifier for the realtime system to which this call applies.
The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS | D
variable in the execute mode configuration.

A value that indicates the type of reset operation to be
performed (see below).

The following values are defined for act i on:

TET3RT_SOFT_RESET

TET3RT_HARD RESET

Page 58

Soft reset.

The Test Manager uses this form of reset when atest purpose
function times out or if execution must be interrupted for
some other reason (e.g., on receipt of a User Abort
instruction fromt cc).

Hard reset.

10 January 2002
The Open Group

TETware professional Real Time Guide

The Test Manager uses this form of reset when a previous
soft reset operation failed.

Return Value

TET3RT_K The request completed successfully.
Note: it may not always be possible to determine whether or
not the reset has been successful.

TET3RT_ER RTSYS I D rtsys_i d doesnot identify a known realtime system.

TET3RT_ER | NVAL A parameter is invalid. This error should be returned if
rtsys_id isNULL or pointsto an empty string.

TET3RT_ER _CONFI G A required configuration variable is not defined or is set to an
invalid value.

TET3RT_ER_RESET The redtime system could not be reset in the manner
specified.

B.11 TETwareprofessional RT Functions

B.11.1 I ntroduction

These functions may be called from manufacturer-specific API functions. Except where indicated,
they are provided both in the Test Manager on the host system, and in the TETware professional RT
TCM/API on the realtime system.

These functions are declared in thefilet et 3rt . h.

B.11.2 Defined Constants

The following constants may be used in manufacturer-specific API functions. They are defined in
thefiletet 3rt. h.

TET3RT_LNUMSZ Maximum number of characters (including the sign and the
terminating NULL) in the string representation of a long
decimal value.

10 January 2002 Page 59

The Open Group

TETware professional Real Time Guide

TET3RT_LONUMSZ Maximum number of characters (including the terminating
NULL) in the string representation of along octal value.

TET3RT_LXNUMSZ Maximum number of characters (including the terminating
NULL) in the string representation of a long hexadecimal
value.

Thefile<l i m ts. h> must beincluded beforet et 3rt. h in order to make these valuesvisible.

B.11.3 Error Reporting

B.11.3.1 tet3rt_mss printf()

Synopsis
void tet3rt_mss_printf(char *format, ...);
Description

This function may be called from a manufacturer-specific subsystem to report a detailed error
message. Where possible, a message reported using this function is printed in the journa. If
necessary, along message may be divided into more than one line by including embedded new lines
at suitable points.

Parameters
The parameters to this function are the sasme asfor pri nt f ().

Return Value
This function does not return a value.

B.11.3.2 tet3rt_mss generror()

Synopsis
void tet3rt_nss_generror(int err, char *file, int |ine,
char *sl1, char *s2);

Page 60 10 January 2002
The Open Group

TETware professional Real Time Guide

Description

Thisfunction is only provided in the Test Manager.
This function may be used to report a manufacturer-specific subsystem error message which
consists of:

» the source file name and the line number where the error was detected;

e one or two user-supplied error message strings,

e asystem error string obtained fromacall tostrerror ().

Typically it isinvoked via a macro, which should be defined using the following code fragment:
/* error reporting */
static char srcFile[] = __FILE _;
#undef tet3rt_error /* renmove the definition in tet3rt.h */
#define tet3rt_error(err, sl, s2) \
tet3rt_nss_generror((err), srcFile, __LINE__, (sl), (s2))

When thisis done, an error message may be generated using code similar to the following:
if (fopen(file, "r") == (FILE *) 0) {
tet3rt_error(errno, "can't open", file);
[* *
}

Parameters

err Thevalue of err no to be used when generating the system
error message string to be appended to the message. If err
iS zero, No system error message string is generated.

file The name of the source file to be used in the error message.
Normally thisis derived fromthe _FI LE _ macro that is
defined by the C preprocessor.

line The line number to be used in the error message. Normally
thisisderived fromthe LI NE__ macro that is defined by
the C preprocessor.

sl The first part of the error message. This string must always
be supplied.

s2 The second part of the error message. If no second part is to
be printed, this parameter may be NULL.

10 January 2002 Page 61
The Open Group

TETware professional Real Time Guide

Return Value

This function does not return avalue.

B.114 Trace Debugging

B.11.4.1 tet3rt_mss trace()

Synopsis
void tet3rt_nss_trace(int level, char *format, ...);
Description

This function enables a manufacture-specific subsystem to print atrace message using the trace
debugging system in the calling process.

Parameters

| evel Defines the trace level for this message, between 1 and 10.
Generally speaking, a higher value should be used to indicate
agreater level of verbosity.

f or mat The format to be used for the message, after the style of
printf().

Return Value

This function does not return avaue.

B.11.4.2 tet3rt_mss traceflag
Synopsis

extern int tet3rt_nss_tracefl ag;

Page 62 10 January 2002
The Open Group

TETware professional Real Time Guide

Description
Thisvariable is only implemented on the realtime system.

The trace system on the realtime system uses the value stored in this variable to decide whether or
not M SS trace messages should be printed.

The Communication subsystem on the host system should obtain the value of the
TET3RT_MSS_RTSYS_TRACE variable in the execute mode configuration and send it to the
Communication subsystem on the redtime system, which should then set
tet3rt_nss_traceflag to this vaue. When this is done, the value specified by the
configuration variable can be used to control the generation of manufacturer-specific subsystem
trace messages on the realtime system.

B.11.4.3 tet3rt_mss tdump()

Synopsis
void tet3rt_nmss_tdunp(int level, char *buf, int len, char *title);
Description

This function enables a manufacturer-specific subsystem to request the trace debugging systemin
the calling process to print a hex dump of an area of memory.

Parameters

| evel Defines the trace level for this memory dump, between 1 and
10. By convention, memory dumps are printed at trace level
10.

buf Pointer to the first byte to be dumped.

I en Number of bytes to be dumped.

title Text to be printed before the memory dump. If title is
NULL, adefault title is printed.

10 January 2002 Page 63

The Open Group

TETware professional Real Time Guide

Return Value

This function does not return avalue.

B.11.4.4 tet3rt_prmsser()
Synopsis

char *tet3rt_prmnsser(int err);
Description

This function returns a printabl e representation of an API function return code. It may be used when
constructing trace messages and other diagnostic strings.

Parameters

err The API function return value whose symbolic value isto be
printed.

Return Value

Pointer to a string containing the symbolic value corresponding to er r.

B.11.5 Signal Handling

B.11.5.1 tet3rt_block_signals()

Synopsis

void tet3rt_bl ock_signal s(void);
Description

A call to thisfunction blocks signals that are being caught by the calling process.

Page 64 10 January 2002
The Open Group

TETware professional Real Time Guide

The functions tet3rt_nmsgtmrecv() and tet3rt_nsgrt_recv() should cal this
function after they have determined that a message packet is available for reading, but before the
read operation starts. This should be done in order to ensure that the imminent read operation is not
interrupted by signals that are being caught by the calling process.

Return Value

This function does not return avalue.

B.12 Example M SS I mplementations

Appendix C ‘‘Manufacturer-specific subsystems’ describes the interfaces that must be
implemented by the user for each realtime system on which test cases are to be executed by
TETware professional RT. The TETware professional RT distribution contains some example MSS
implementations that might be used as a starting point when customizing TETware professional RT
to work with a particular realtime system.

In each example the Communication subsystem is a complete implementation, whereas the other
subsystems are trivial implementations or only provide functionality sufficient for use during the
TETware professional RT development process. Each example is described in the sections that
follow.

B.13 Example Socket-based | mplementation

B.13.1 I ntroduction

This MSS implementation might be suitable for use with a realtime system that supports TCF/IP.
The source code for this example isin the following directories:

tet-root/ src/tet3rt/ neslib_native/ socket _exanpl e
Test Manager components.

tet-root/ src/tet3rt/neslib_rtsys/socket exanpl e
Realtime system components.

10 January 2002 Page 65
The Open Group

TETware professional Real Time Guide

B.13.2 Communication Subsystem

B.13.2.1 Subsystem Description

This subsystem uses sockets to communi cate between the Test Manager on the host system and test
cases running on a realtime system. The host name of the realtime system is specified by the
TET3RT_RTSYS_| D variable in the execute mode configuration.

When the Test Manager callst et 3rt _nmsgt m open(), the implementation acquires a stream
socket and binds it to an ephemeral TCP port (the listen port). Then it forks a child process. This
child process acquires a datagram socket and uses it to send configuration packets to a pre-defined
UDP port (the configuration port) on the realtime system. The port number to use is hard-coded in
the source code. Each configuration packet contains the host system’s IP address and the port
number of the listen port. At the same time the parent process listens for incoming connections on
the listen port.

Meanwhile the test case on the realtime system acquires a datagram socket, binds it to the
configuration port and waits for configuration packets to arrive from the Test Manager. When one
arrives, the test case uses a stream socket to connect to the Test Manager using the IP address and
port number specified in the configuration packet.

When the connection request arrives, the Test Manager accepts it in the parent, closes the listen
socket and kills the child process. Then the connection is used to exchange message packets
between the Test Manager on the host system and the test case on the realtime system.

B.13.2.2 Subsystem-specific Configuration Variables

This implementation of the Communication subsystem uses the following configuration variables:

TET3RT_MSS_RTSYS | P_ADDR

This variable can be used to specify the IP address of the
realtime system. When this variable is defined, the IP address
specified is used instead of the one that would otherwise be
derived from the value of TET3RT_RTSYS_| D.

Use of this variable is optional. It should only be defined
when the realtime system’s IP address cannot be derived
from the value of TET3RT_RTSYS | D.

TET3RT_MSS_SERVER | P_ADDR

This variable can be used to specify the IP address that is to
be used by test cases on the realtime system when connecting
to the Test Manager on the Host system. When this variable

Page 66 10 January 2002
The Open Group

TETware professional Real Time Guide

is defined, the IP address specified is used instead of the one
that would otherwise be derived from the value of the host
system'’ s hostname.

Use of this variable is optional. It should only be defined
when:

e the host system’s hostname cannot be resolved to a
single IP address, or

e the host system has more than one network interface
and the |P address associated with the hostname refers
to an interface other than the one to which the realtime
system is connected.

TET3RT_MBS_RTSYS_TRACE

This variable specifies the trace level to be used in the MSS
code on the realtime system. Use of this variable is optional;
if not defined, its value defaults to zero.

B.13.3 Exec Subsystem
B.13.3.1 Test Manager Side

Thisis a simple implementation that usesr cp to copy atest case to the realtime system, and r sh
to execute the test case on the realtime system. It is useful mainly when using a UNIX system to
emulate the role of arealtime system. It is not suitable for use with an actual realtime systemor ina
production-testing environment.

B.13.3.2 Realtime System Side

This is a trivial implementation. On profile 51 and 52 systems, acal totet3rt _rt_exit()
goes into an infinite loop round a call to pause() . On profile 53 and 54 systems, a cal to
tet3rt_rt_exit() simplycalsexit().

If thisimplementation is used as the basis of a practical one, the code executed on profile 51 and 52
systems should be replaced by acall to a (platform-specific) process exit function, if thereis one.

B.134 Reset Subsystem

Thisis asimple implementation that works in conjunction with the simple exec subsystem based on
rcp andrsh. Inthisimplementation, acall totet 3rt _rt_reset () simply sendsasigna to
a currently running r sh process. As with the smple exec subsystem described previoudly, this

10 January 2002 Page 67
The Open Group

TETware professional Real Time Guide

implementation is useful mainly when using a UNIX system to emulate the role of a realtime
system. It is not suitable for use with an actual realtime system or in a production-testing
environment.

B.14 Example Serial Line Implementation
B.14.1 I ntroduction

This MSS implementation might be suitable for use with a realtime system which supports a serial
port but which does not support TCP/IP. The source code for this example is in the following
directories:

tet-root/ src/tet3rt/ neslib_nativel/serial _exanple

Test Manager components.
tet-root/ src/tet3rt/ nmeslib_rtsys/serial _exanple

Realtime system components.

B.14.2 Communication Subsystem

This subsystem uses a serial line to communicate between the Test Manager on the host system and
test cases running on a realtime system. The name of the serial line to use on the host system is
specified by the TET3RT_RTSYS | D variable in the execute mode configuration. The name of
the serial line to use on the realtime system, and other serial line parameters to use on both systems,
are hard coded in the sourcefiles.

B.14.3 Exec Subsystem
B.14.3.1 Test Manager Side

This is a trivial implementation. A call totet 3rt _rt_exec() simply prompts the user to
perform the required operations by hand. This implementation would not really be suitable for use
in a production-testing environment.

B.14.3.2 Realtime System Side

Theimplementationof t et 3rt _rt _exit () isthesameasthat provided in the example socket-
based implementation.

Page 68 10 January 2002
The Open Group

TETware professional Real Time Guide

B.14.4 Reset Subsystem

This is a trivial implementation. A call totet3rt _rt_reset () simply prompts the user to
perform the required operations by hand. This implementation would not really be suitable for use
in a production-testing environment.

10 January 2002 Page 69
The Open Group

