
Test Environment Toolkit

TETware Design Specification
Revision 1.0

TET3-SPEC-1.0

iiiiiiiiiiiiiiiiiiiiiiii

Released: 30 April 1996
iiiiiiiiiiiiiiiiiiiiiiiicc
c
c

cc
c
c

X/Open Company Limited

The information contained within this document is subject to change without notice.

Copyright  1996 X/Open Company Limited

This document is produced by UniSoft Ltd. at:

150 Minories
LONDON
EC3N 1LS
United Kingdom

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

1. Foreword

1.1 Introduction
X/Open has asked UniSoft to prepare a Design Specification for enhancements to the
TET. The name of the revised TET will be TETware.

This document is being provided for review purposes, in order to encourage discussion
among X/Open member companies and other organisations considered important by
X/Open. It is not intended to include this document in a future TETware release.

1.2 Background
During evolution of the TET, two distinct development threads have emerged. One –
dTET2 – provides support for local, remote and distributed testing through a client/server
architecture. The other – ETET – while supporting only local testing, contains a number
of features which have become popular among certain members of the TET user
community.

Both of these developments are derived from TET release 1.10. This is the latest release
of the base TET and was made by X/Open during 1992.

It is proposed to re-integrate these two threads into a single standard product with the
intention of satisfying the needs of users of both of the existing toolkits.

1.3 Project goals
The goals of this project are:

1. To create a single implementation of the TET which is a superset of the features
within the existing implementations.

2. To add a number of new features to this revised implementation and to improve,
integrate, or rewrite certain features which have been implemented by third parties.

3. To ensure that the revised software provides backward compatibility with existing
TET implementations.

4. To ensure that the revised software is portable to a wide range of popular platforms
outside the traditional sphere of Unix-like and POSIX-conforming environments.

In addition to the functional requirements presented above, X/Open has the following
goals:

1. That support be available to TETware users.

2. That TETware should be suitable for use by the X/Open test suites which are being
specified (in particular the ODBC/CLI test suite) and the existing X/Open test
suites.

3. That TETware should be usable in conjunction with test cases generated by ADL
(which is currently being developed by X/Open).

30 April 1996 Page 1
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Given the wide ranging scope of these goals, X/Open and UniSoft have agreed that the
first step should be to develop a design specification for TETware. Feedback will be
sought from X/Open and other organisations which are considered important by X/Open.
This will ensure that TETware meets all the requirements set by X/Open and the other
organisations.

The following diagram illustrates the relationship between TETware and existing TET
implementations:

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
hh

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
chh

c
c
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhc

c
c
c
c
c
c
c
c
hhh

c
c
c
c
c
c
c
c
chhh

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

TET 1.10 ETET 1.10.3

dTET2 TETware

Note that this diagram is not to scale.

1.4 Conventions used in this document
The following typographic conventions are used throughout this document:

g Courier font is used for function, variable and program names, literals and
file names.

g The names of variable values are presented in italic font .

g Bold font is used for headings and for emphasis.

g In a syntax definition, an optional element is enclosed in square brackets [].

g An ellipsis . . . indicates that the previous element may be repeated as required.

1.5 Related documents
The following documents contain additional information about the existing TET, dTET2
and ETET implementations:

g Test Environment Toolkit: Architectural, Functional and Interface Specification
Revision 4.5

Page 2 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

g Distributed Test Environment Toolkit Version 2: Architectural, Functional and
Interface Specification Revision 5.2

g Distributed Test Environment Toolkit Version 2: dTET2 Programmers Guide
Revision 1.3

g Distributed Test Environment Toolkit Version 2: dTET2 Installation and User
Guide Revision 1.3

g Extended Test Environment Toolkit: Programmers Guide Revision 1.10.3

For ease of reference, portions of some of these documents are reproduced as appendices
to this document.

1.6 Terminology
Certain terms described here are used in this document to describe the different types of
test case that may be executed by TETware.

A local test case is one that executes on the local system; that is, the system on which the
Test Case Controller tcc is executed.

A remote test case is one that executes on a system other than the one on which tcc is
executed. tcc collects the test case’s execution results file output from the remote
system and includes it in the journal file on the local system. Although it is possible for
several remote test cases to execute concurrently on different remote systems, the test
harness does not provide for interaction between remote test cases.

A distributed test case is one that has several parts; these parts execute concurrently on
different systems. When a distributed test case is being executed, the test harness ensures
that each test purpose part starts at the same time on each system. Thus each part of a
particular distributed test case must always contain identical number of invocable
components and test purposes, even if this means that some of the test purpose parts do
nothing. It is likely that parts of a distributed test purpose will interact with each other in
some way during the course of their execution. In particular, the test harness provides a
means by which the different parts of a test purpose may synchronise with each other.
Each test purpose part submits a result which indicates the success or failure of that part
of the test purpose. The test harness arbitrates between the results submitted by the parts
of the test purpose that are executing on each system and enters a single consolidated
result in the journal file.

A more complete description of some of the terms and component names used when
describing dTET2 is presented in the chapter entitled ‘‘Overview of the Distributed Test
Environment Toolkit Version 2’’ in the dTET2 Installation and User Guide.

A diagram showing how the different dTET2 components relate to each other is
presented in appendix E, ‘‘dTET2 architecture’’.

30 April 1996 Page 3
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 4 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

2. TETware architecture options

2.1 Lightweight TETware
dTET2 uses a client/server architecture in order to process remote and distributed test
cases. This requires a great deal of additional code (including the network code) to be
included in dTET2 processes which is not used when processing local test cases.

In order to enable TETware to be ported to a wide range of systems, an option will be
provided which will exclude the remote and distributed test case processing facilities
from TETware. This will take the form of a compile-time option. Use of this option will
affect the way in which both tcc and the API library is built. In particular, certain
scenario directives and API functions will be unavailable or have no effect when this
option is used.

The version of TETware that will result when this option is used will be known as
TETware-Lite. When this option is used, there will be no requirement for the target
system to support networking. The version of TETware that will result when this option
is not used will be referred to in this document as fully-featured TETware in a context
where it is necessary to distinguish between the two versions of TETware.

TETware-Lite will not make calls to any network functions. On Unix-like systems,
TETware-Lite will only use system interfaces specified in POSIX.1.

2.2 Master and slave systems
The architectural model presented in the current dTET2 specification describes test case
processing in terms of a master system and zero or more slave systems. The master
system is identified by a system ID of zero and slave systems by a non-zero system ID.

dTET2 provides facilities to execute test cases in several ways as follows:

g Execution of non-distributed test cases on the local (or master) system (that is,
local test cases).

g Execution of non-distributed test cases on one or more remote (or slave) system
(that is, remote test cases).

g Execution of distributed test cases with the parts of each test case executing
simultaneously on both the local (or master) system and one or more remote (or
slave) systems.

The dTET2 specification differentiates between the master and slave systems in several
ways as follows:

i. The master system is the one on which tcc is invoked.

30 April 1996 Page 5
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

ii. The difference between a remote and a distributed test case is determined by
whether or not the master system is specified in the remote directive in the
scenario file.1

iii. The master system is included implicitly in a user synchronisation request.

The differentiation between master and slave systems will be eliminated in TETware,
resulting in a symmetrical relationship between all the systems which participate in a
distributed test case. Advantages of this enhancement are:

i. The processing logic in tcc is greatly simplified, since there is no need to treat
different systems in different ways when processing test cases.

ii. When a distributed test case is to be executed on systems where facilities or
resources are insufficient to support the execution of a fully-featured tcc, it will
be possible to control test case execution from a (more feature-rich) system which
is not participating in the test case.2

The implication that this enhancement will have on the design of tcc is expanded in the
section entitled ‘‘Local and remote procedures’’ which appears in chapter 3.

hhhhhhhhhhhhhhh
1. When the master system appears in the system list which accompanies the remote directive in the

scenario file, this indicates that distributed test case parts are to be executed on each of the named
systems. When the master system does not appear in the remote directive’s system list, this indicates
that remote test cases are to be executed in parallel on the named systems.

2. When this is done it will be possible to execute parts of a distributed test case on (say) one or more
PC-type systems under the control of a tcc running on (say) a Unix-like system. In this arrangement,
the Unix-like system hosts the scenario and configuration files and provides storage for journal files,
together with test case output files transferred from the PC-type systems using
TET_OUTPUT_CAPTURE mode or the TET_TRANSFER_SAVE_FILES mechanism.

Page 6 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

3. The Test Case Controller tcc

3.1 Introduction
The requirements imposed by remote and distributed testing have made demands of the
existing tcc structure far beyond those envisaged in the original tcc design. Therefore
it will be necessary to undertake a thorough overhaul of tcc in order to enable the
requirements of dTET2 and ETET to coexist and, at the same time, provide a sound basis
for future enhancement.

3.2 Process structure
When processing remote, distributed and parallel test cases, the dTET2 tcc forks a child
process to supervise the execution of each test case element. A disadvantage of this
approach is that it relies on behaviour of the Unix fork() system call which is not
always available on non-Unix systems.

The TETware tcc will not use child processes in this way, but will instead implement a
flat process structure where the progress of all test cases is monitored in a single tcc
process. Use of this process control implementation will assist in porting tcc to non-
Unix systems.

3.3 Local and remote procedures
In the existing dTET2 architecture, tcc performs its processing on the master system
directly, while processing on slave systems is performed by a server process called
tccd. Once tcc has established communication with tccd on each slave system, each
tccd performs such actions on its slave system as may be required, on receipt of a
request from tcc on the master system. When tcc wishes to send such a request, it
does so by calling a server interface function. Descriptions of server interface functions
that are implemented in dTET2 are presented in appendix H, ‘‘Server interface
functions’’.

When tcc is invoked, processing takes place according to which mode(s) are specified
on the command line. This processing consists of a series of actions – reading
configuration variables, building, executing or cleaning test cases, gathering results and
so on.

In TETware, each of these operations is performed by a particular function – an action
function – which will reside in a library. When the tcc processing logic wishes to
perform one of these actions, it will do so by calling an interface function. Each of these
interface functions will contain two code sections; one section will make a direct call to
the action function, while the other will make a call to the equivalent server interface
function. Only one of these sections will be selected by means of conditional
compilation, depending on whether TETware or TETware-Lite is to be built.

When TETware-Lite is built, tcc will be linked with the library containing the action
functions; thus the processing logic and the action functions will be contained in a single

30 April 1996 Page 7
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

process. As a result, TETware-Lite will only support test case execution on a single
system (as has been noted earlier).

In TETware-Lite the flow of control through tcc is as follows:

control
logic

hhhhhhhhhh

hhhhhhhhhh

interface
functions

hhhhhhhhhh

hhhhhhhhhh

action
functions

hhhhhhhhhh

hhhhhhhhhh

tcc

When fully-featured TETware is built, tcc will not be linked with the action function
library. Instead, this library will be used when building tccd and action functions will
be called as a result of requests received from tcc. As a result, consistency of behaviour
between the two TETware versions will be assured. In addition, symmetry of operation
between all participating systems will be achieved because tcc actions will be
performed by tccd on all systems, both local and remote. A further benefit is that it will
be possible to run tcc on a system that is not participating in the test case run, thus
reducing the impact of the test harness software on the system(s) under test.

In fully-featured TETware the flow of control through tcc and tccd is as follows:

control
logic

hhhhhhhhhh

hhhhhhhhhh

interface
functions

hhhhhhhhhh

hhhhhhhhhh

remote
procedure

callscc
c
c
hhhhhhhhhh

cc
c
chhhhhhhhhh

action
functions

hhhhhhhhhh

hhhhhhhhhh

network connection

tcc

tccd

3.4 TCM/API interface
The interface between tcc and the TCM/API is defined in the base TET specification.
This interface is supported by TETware-Lite.

Page 8 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

However, this interface is insufficient to support the requirements imposed by distributed
testing, and so a different interface was introduced in dTET2.3 This interface is not
defined by a specification and so is only available for use in conjunction with the C
TCM/API that is supplied in dTET2.

TETware-Lite does not support remote and distributed testing, and so does not need to
support a dTET2-style tcc to TCM/API interface.

Fully-featured TETware will support a dTET2-like private interface in addition to the
public TET-style interface. The public interface will be provided mainly for the benefit
of APIs other than the TETware C API and may be used when local and remote test cases
are being processed. The private interface will be used only by the TETware C API and
may be used when local, remote and distributed test cases are being processed.

It is not intended to define the private interface in a specification as part of this project. If
X/Open considers that it would be beneficial to produce such a specification, it is
suggested that this should be made the subject of a separate project.

3.5 Locking strategy
The TET specification requires tcc to acquire various exclusive and non-exclusive locks
when a test case is being processed. This is done so as to guard against unwelcome
interaction between processes when a test case is being processed by more than one tcc
invocation, or when multiple instances of a test case are being executed in parallel under
the control of tcc.

In TET 1.10 and dTET2, locks are acquired both in the test case directory and possibly in
the alternate execution directory as well. In ETET 1.10.3, it is possible to prevent locks
from being acquired in this way by specifying certain communication variables.

In TETware, locking will be performed mostly as required by the TET specification.
However, failure to acquire a lock because of an inability to write to a read-only file
system will be ignored. Thus it will be possible for TETware to process a test suite
which resides on a read-only file system.

hhhhhhhhhhhhhhh
3. Note that the dTET2 also supported the base TET tcc to TCM/API interface for non-distributed test

cases.

30 April 1996 Page 9
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

3.6 Supported features

3.6.1 Configuration variables

3.6.1.1 Introduction

Configuration variables are variables which are defined by the user in a configuration file.
There is one file for each of tcc’s modes of operation; namely, build mode, execute
mode and clean mode. In dTET2, configuration variables may be defined both in files on
the master system and in files on each slave system. Generally speaking, a variable
defined in a file on the master system is visible on all systems, whereas a variable defined
in a file on a slave system is visible only on the system on which it is defined.4 In
addition, dTET2 uses a file on the master system which contains variables that specify
certain information about slave systems. This is known as the distributed configuration
file.

Certain variables whose names begin with TET_ are reserved for use by the TET
implementation. In dTET2, a variable whose name begins with the prefix
TET_REMnnn_ has the prefix removed before the variable is sent to system nnn .

Further information about configuration variables is presented in appendix A,
‘‘Comparison tables for configuration variables’’.

3.6.1.2 Configuration variables derived from existing TET implementations

All the configuration variables which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

The following configuration variables will be supported in TETware in the same way as
in ETET 1.10.3:

TET_API_COMPLIANT
TET_PASS_TC_NAME

3.6.1.3 New configuration variables

3.6.1.3.1 TET_COMPAT – select TETware compatibility mode
During the evolution of dTET2 and ETET, certain specification differences have
emerged. An example of such a difference is the syntax of the :parallel: and
:repeat: scenario file directives. A new configuration variable will be provided to
enable test suite authors to select which behaviour is required.

The name of this variable is TET_COMPAT. Possible values for this variable are dtet2
to select dTET2 behaviour or etet to select ETET 1.10.3 behaviour. No default value
is defined for this variable.

hhhhhhhhhhhhhhh
4. It is possible to override this behaviour using the TET_REMnnn_ mechanism.

Page 10 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

tcc will inspect the value of this variable when a decision must be made whether to
provide compatibility with dTET2 or ETET 1.10.3. A diagnostic will be printed if tcc
needs to decide which compatibility mode to use and this variable is not set or set to an
invalid value.

3.6.1.3.2 TET_REMnnn_TET_RUN – specify runtime test root directory
These variables may be set in the distributed configuration file. The effect of setting the
variable for system nnn is the same as that of setting the TET_RUN environment variable
on the master system.

3.6.2 Communication variables

3.6.2.1 Introduction

Communication variables are environment variables which are used to pass information
to TET processes. They may be set in one of the following ways:

g Environment variables which influence the behaviour of tcc are set by the user
before tcc is run.

g Environment variables which are used to communicate information to the
TCM/API are set by tcc before a test case is processed.

Further information about communication variables is presented in appendix B,
‘‘Comparison tables for communication variables’’.

3.6.2.2 Communication variables derived from TET 1.10 and dTET2

All the communication variables which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

3.6.2.3 Communication variables derived from ETET 1.10.3

3.6.2.3.1 TET_SUITE_ROOT – change the default test suite root directory
This variable will be supported in TETware.5 Since TETware is able to process remote
and distributed test cases in addition to local test cases, the behaviour of this variable
must be extended in order to be effective on remote systems.

In TETware, the TET_SUITE_ROOT communication variable will be mapped on to the
TET_TSROOT distributed configuration variable on the master system. When tcc is
executed, it determines the value of TET_TSROOT automatically on the master system.
However, if TET_SUITE_ROOT is present in the environment, its value will instead be
used for TET_TSROOT on the master system. Values of TET_TSROOT for other
systems will be specified in the distributed configuration file as is done in dTET2.

hhhhhhhhhhhhhhh
5. A distributed configuration variable called TET_TSROOT is implemented in dTET2 which performs a

similar function.

30 April 1996 Page 11
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

When tcc processes a test case on either a local system or a remote system, the value of
the TET_SUITE_ROOT environment variable made available to the test case will be
taken from the setting of the TET_TSROOT distributed configuration variable that is in
effect on that system.

3.6.2.3.2 TET_RUN – specify runtime test suite root directory
This variable will be supported in TETware. Its setting will only be effective on the
master system. Similar behaviour can be specified for remote system nnn by setting the
corresponding TET_REMnnn_TET_RUN variable in the distributed configuration file on
the master system.

3.6.2.3.3 Other communication variables in ETET 1.10.3
Given the nature of the following communication variables, it is not considered
necessary to implement these variables at this time:

TET_EXTENDED
TET_JOURNAL_PATH
TET_LOCK

However, tcc will not prevent these variables from being passed in the environment
when a test case is being processed. Thus, test cases written to an API which requires
one of these variables to be in the environment will still work when run under the control
of the TETware tcc.

The way that TETware performs locking when processing a test suite on a read-only file
system is described in the section entitled ‘‘Locking strategy’’ elsewhere in this chapter.

3.6.3 Scenario directives

3.6.3.1 Introduction

The names of test cases to be processed by tcc are specified in a scenario file. Scenario
directives specify how these test cases are to be processed.

Further information about scenario directives is presented in appendix C, ‘‘Comparison
tables for scenario directives’’.

3.6.3.2 Directives derived from existing TET implementations

All the scenario file directives which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

The following scenario file directives will be supported in TETware in the same way as
in ETET 1.10.3:

ˆscenario-name
@executable-path
:group:
:parallel:
:repeat:
:timed_loop:
:random:

Page 12 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

In addition, ETET 1.10.3 permits the use of ; to group colon-delimited directives using
the following syntax:

:group-execution[;. . .]:test-list

This syntax will be supported in TETware.

3.6.3.3 Conflicts between dTET2 and ETET 1.10.3 scenario file syntax

There are conflicts between dTET2 and ETET 1.10.3 in the way that certain scenario
directives are interpreted as follows:

g Where ETET 1.10.3 expects a directive to be followed by a test list, dTET2
expects the directive to be followed by the name of a file which contains the list of
tests.

g Where a dTET2 directive of the form :xxx: has a list of tests associated with it,
the lists of tests is delimited by a matching :endxxx: directive.

The TETware tcc will support both types of syntax for scenario file directives. When it
is necessary to distinguish between dTET2 and ETET 1.10.3 syntax, the setting of the
TET_COMPAT configuration variable will determine which syntax is accepted.6

Note that dTET2-style :endxxx: delimiters will not be accepted when ; separated
directives are used. In this case, only ETET-style syntax will be accepted.

An indication of which directives are affected by TET_COMPAT is given in one of the
tables presented in appendix C, ‘‘Comparison tables for scenario directives’’.

3.6.3.4 New scenario directives

3.6.3.4.1 :variable: – specify configuration variables
A directive will be provided to enable configuration variables to be specified in a
scenario file.

The syntax of this directive is as follows:

:variable,name=value[,. . .]:test-case

The configuration variable name is set to value while test-case is being processed
according to tcc’s current mode of operation.7

hhhhhhhhhhhhhhh
6. The behaviour of this configuration variable is described in the section entitled ‘‘TET_COMPAT –

select TETware compatibility mode’’ elsewhere in this chapter.

7. That is: build, execute or clean mode.

30 April 1996 Page 13
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

When assigning a value to a variable, value is interpreted as a fixed string.8

In order not to confuse the test harness, attempts to use this directive to set most variables
whose name begins with TET_ will be ignored. However, when a remote or distributed
test case is being processed, it will be possible to assign a user-defined configuration
variable9 on a specific system by prefixing its name with TET_REMnnn_ in the usual
way.

The precedence of configuration variables set using the :variable: directive is above
that of variables specified in configuration files but lower than that of variables specified
with a -v option on the tcc command line.

For completeness, dTET2-style syntax for this variable will be accepted by tcc when
dTET2 compatibility mode is in effect.

3.6.3.4.2 :distributed: – specify a distributed test case
dTET2 permits the use of the :remote: directive to specify both remote and
distributed test cases. Test cases within the scope of this directive are processed either as
remote or as distributed test cases, depending on whether or not the master system
appears in the system list which accompanies the directive.

A directive will be provided to enable a test case to be processed as a distributed test case
irrespective of whether the master system appears in the accompanying system list.

The syntax of this directive takes one of two forms, as follows:

:distributed,nnn[,. . .]:file

:distributed,nnn[,. . .]:
test-case
. . .
:enddistributed:

In the first form, each test case listed (one per line) in file is processed on the systems
specified by nnn . . . as a distributed test case. In the second form, each named test-case
is processed on the systems specified by nnn . . . as a distributed test case.

For completeness, ETET-style syntax for this variable will be accepted by tcc when
ETET compatibility mode is in effect.

hhhhhhhhhhhhhhh
8. It is understood that in an existing unpublished extension to the base TET in which the :variable:

directive is implemented, value may also be derived from another configuration variable or from the
environment. While variable substitution may be desirable in a scenario file, it is considered more
appropriate to perform this kind of processing by using a scenario file preprocessor. Such a
preprocessor can also perform macro expansion and other similar operations. It is likely that a TET
scenario file preprocessor will be the subject of a separate design specification exercise.

9. That is: a variable whose name does not begin with TET_ .

Page 14 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4. Test case support

4.1 The C API

4.1.1 Introduction
The TETware C API will be derived from the one supplied with dTET2. Thus, local,
remote and distributed test cases may be built using this API.

Certain changes and enhancements will be made to the supported functions in order to
enable this API to be ported to non-Unix platforms. Features will be added which will
enhance the functionality available to test case writers. These are described in the
sections which follow.

In addition, support will be provided to enable test cases to operate in a multi-threaded
environment on Unix-like systems. This is described in chapter 5, ‘‘Thread support’’.

Readers may find it helpful to refer to the section entitled ‘‘C language binding’’ in the
dTET2 Programmers Guide when reading the sections that follow. For ease of reference,
this section is reproduced in appendix F.

Further information about C API interfaces is presented in appendix D, ‘‘Comparison
tables for C API interfaces’’.

4.1.2 Error reporting
At present, some API functions which can fail report errors in various ways, while others
don’t really attempt to report errors at all. The reason for this is largely historical.

In TET, only tet_fork() and tet_exec() can fail and the reason for failure can
(presumably) be found by examining errno (although the specification does not state
this explicitly).

In dTET2, one of the functions which can fail (tet_sync()) prints an error message to
the journal file on failure, whereas others (tet_remexec(), tet_remwait() and
tet_remkill()) are required by the specification to set errno to indicate some (but
not all) failure modes.

This behaviour will be retained in TETware in order to provide backward compatibility
with the existing implementation. In addition, a more comprehensive error reporting
mechanism for API functions will be available by the provision of certain global
variables by the API.

The syntax of these variables is as follows:

extern int tet_errno;
extern char *tet_errlist[];
extern int tet_nerr;

When an API function fails, it will store a failure code in the global variable
tet_errno. These failure codes will be defined in the file tet_api.h.

30 April 1996 Page 15
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

An array of short message strings will be provided in the tet_errlist[] array. Test
suite authors may use tet_errno to index tet_errlist[] in order to obtain a
string describing the reason for the failure of an API function. The number of strings will
be made available in the global variable tet_nerr; test suite authors should check this
value in order to avoid an array subscript error when indexing tet_errlist[].

The list of tet_errno values and the associated error message strings will be finalised
during the development of TETware.

4.1.3 Changes in API function specifications

4.1.3.1 Introduction

The move to a symmetrical model for distributed processing in TETware will have a
small impact on the specification of certain API functions. These changes will not affect
the portability of existing distributed test cases which use the dTET2 API.

These changes are described in the sections which follow.

4.1.3.2 Remote system designations

At present, the function tet_remgetlist() returns the number of slave systems
participating in a distributed test case. The system name list returned indirectly through
*sysnames contains the (numerical) names of the slave systems.

In TETware, tet_remgetlist() will return the number of other systems
participating in a distributed test case. The system name list returned indirectly through
*sysnames will contain the names of the other systems. The system name list will
always be zero-terminated. If tet_remgetlist() is called on system 0, the zero list
entry is not counted when determining the function’s return value. If
tet_remgetlist() is called on systems other than system 0, the list entry for system
0 will be the last entry in the list and so will be counted when determining the function’s
return value. This behaviour will ensure that existing test cases which pass the system
name list generated by tet_remgetlist() to a subsequent call to tet_sync()
will continue to function correctly when linked with the TETware C API.

4.1.4 New API functions

4.1.4.1 Introduction

This section describes API functions which will be added both to TETware and
TETware-Lite. Experience has shown that each of these functions will be of use to test
suite authors.

Prototypes for the functions described here will be included in the file tet_api.h.

Page 16 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.1.4.2 Making journal entries

4.1.4.2.1 tet_printf() – write formatted information line
A function will be provided to write one or more formatted information lines to the
execution results file.

The syntax of this function is as follows:

int tet_printf(char *format, /* [arg,] */ ...);

This function formats the string specified by format which may contain
printf()-like conversion specifications. If the string contains more than one
information line, each line except the last should be delimited by a newline character.

If the formatted string contains a line that is longer than the maximum permitted for a
journal information line, the API adds extra newlines in order to break the long line into
two or more shorter lines. If possible, an added newline will replace a blank character in
the string so that the string is broken on a word boundary.

When all formatting is complete, the lines are written to the execution results file by a
call to tet_minfoline()10.

A successful call to tet_printf() returns the number of bytes written to the
execution results file. If a call to tet_printf() is unsuccessful, −1 is returned and
tet_errno is set to indicate the cause of the error.

4.1.4.2.2 tet_vprintf() – write formatted information line
A function will be provided to write one or more formatted information lines to the
execution results file, which takes its arguments from a varargs argument list.

The syntax of this function is as follows:

int tet_vprintf(char *format, va_list ap);

The operation and return value of this function are the same as for tet_printf(),
except that instead of being called with a variable number of arguments, it is called with
a varargs argument list.

hhhhhhhhhhhhhhh
10. Thus ensuring that in a distributed test case the lines are written to the execution results file in a single

operation.

30 April 1996 Page 17
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

4.1.5 New API functions for use in distributed test cases

4.1.5.1 Introduction

This section describes API functions which will be added to fully-featured TETware.
Experience has shown that each of these functions will be of use to test suite authors
when writing distributed test cases.

Prototypes for functions, structure declarations and symbolic constants described here
will be included in the file tet_api.h.

4.1.5.2 Remote system information

4.1.5.2.1 tet_remtime() – return system time on remote system
A function will be provided to return the system time on a remote system.

The syntax of this function is as follows:

int tet_remtime(int sysid, time_t *tp);

A successful call to tet_remtime() returns zero and the time on the remote system is
returned indirectly through *tp. If a call to tet_remtime() is unsuccessful, −1 is
returned and tet_errno is set to indicate the cause of the error.

4.1.5.2.2 tet_getsysbyid() – return systems file entry
A function will be provided to return the systems file entry for a specified system.
This function will enable part of a distributed test case to determine the host (or node)
names of other systems participating in the test case.

The syntax of this function is as follows:

struct tet_sysent {
int ts_sysid; /* dTET2 system ID */
char ts_name[TET_SNAMELEN]; /* system’s host name */

};

int tet_getsysbyid(int sysid, struct tet_sysent *sysp);

sysid specifies the system ID for which the systems file entry is required. sysp
points to a (user-supplied) area of memory in which the information is to be placed after
a successful call.

A successful call to tet_getsysbyid() returns zero. If a call to
tet_getsysbyid() is unsuccessful, −1 is returned and tet_errno is set to
indicate the cause of the error.

Page 18 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.1.5.3 Test case synchronisation

4.1.5.3.1 Introduction
Functions will be provided to enable authors of distributed test cases to gain access to all
of the user sync facilities provided by the dTET2 synchronisation subsystem11. These
facilities are as follows:

g Synchronisation between distributed test case parts on two or more systems to a
particular sync point.

g The ability to sync unsuccessfully as well as successfully (that is, the ability to
specify the sync vote that is to be used in the request).12

g The ability to send and receive sync message data when making a sync request.

g The ability to access status information about other participating systems that is
available within the API after the completion of a sync event.

4.1.5.3.2 tet_remsync() – synchronise with other systems
A function will be provided to enable one part of a distributed test case to synchronise
with other parts of the same test case executing on other systems.

The syntax for this function is as follows:

int tet_remsync(long syncptno, int *sysnames, int nsysname,
int waittime, int vote, struct tet_synmsg *msgp);

The behaviour of this function and meanings of its arguments are similar to those
described for tet_msync() in the section entitled ‘‘Test case synchronisation’’ in the
dTET2 Programmers Guide. Only the differences will be described here; these are as
follows:

g The list of participating system names pointed to by sysnames is not terminated
by a zero. Instead, the number of system names in the list must be specified
explicitly by the nsysname argument.

g Since the distinction between master and slave systems is to be removed in
TETware, system zero will not automatically be added to the list of participating
systems. Instead, system zero must be included explicitly if it is to participate in
the sync event.

hhhhhhhhhhhhhhh
11. For a description of these facilities and an explanation of the terminology used in this section, please

refer to the chapter entitled ‘‘Test case synchronisation’’ in the dTET2 Installation and User Guide.
For ease of reference, this section is reproduced in appendix G.

12. This will enable one part of a distributed test case to indicate to other parts its intention to abandon
processing in a particular test purpose. At present the only way that this can be achieved is for a test
case part not to sync as expected, thus causing the event to fail. This results in a number of
unnecessary error messages being sent to the journal file.

30 April 1996 Page 19
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

g The vote argument should be set to one of the defined constants TET_SV_YES
or TET_SV_NO, depending on whether the calling process wishes to sync
successfully or unsuccessfully.

A successful call to tet_remsync() returns zero. If a call to tet_remsync() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

The tet_remsync() function will replace the existing tet_sync() and
tet_msync() functions in the current dTET2 API. Although tet_sync() and
tet_msync() will continue to be supported in TETware in order to provide backwards
compatibility with previous dTET2 releases, they will be marked ‘‘to be withdrawn’’.
Test suite authors should use tet_remsync() when writing new test cases.

4.1.5.3.3 Control over sync error reporting
At present, the API prints a message to the journal file when a call to tet_sync() or
tet_msync() is unsuccessful. Although this behaviour is useful when a sync event
fails unexpectedly, in practice the failure is often because one part of a distributed test
purpose wants to abandon processing for some reason, usually after submitting an
UNRESOLVED result. The test purpose prints its own diagnostic message in this
circumstance, rendering the API-generated messages redundant. This is because the test
purpose intends the sync event to fail; indeed, the sync failure is used to indicate to other
participating systems that they should also abandon processing. Furthermore, the number
of messages generated by the API can become quite large, particularly when more than
two systems are involved. This is because the API on each system prints its own error
messages detailing the status of all the other participating systems.

A mechanism will be introduced to enable authors of distributed test cases to exercise
some control over the default error handling provided by the API and, optionally, provide
customised sync error reporting. When a test suite author uses the ability to specify a
sync vote in a tet_remsync() call in conjunction with this mechanism, spurious
API-generated messages about intentional sync event failures will be eliminated from
journal files.

If a call to an API sync function is unsuccessful, the API will call the sync error handling
function pointed to by the global variable tet_syncerr.

This variable is declared as follows:

extern void (*tet_syncerr)(struct tet_syncstat *statp, int nstat);

This variable will be initialised to point to the API’s default sync error reporting function
tet_syncreport(), but may be changed by the test suite author to point to a user-
supplied sync error handling function.

When (*tet_syncerr)() is called by the API, statp points to the first in a list of
structures describing the sync status of each of the other systems participating in the
event. nstat specifies the number of structures in the list. The global variable
tet_errno will be set to indicate the cause of the error before (*tet_syncerr)()
is called.

Page 20 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

The sync status structure is defined as follows:

struct tet_syncstat {
int tsy_sysid; /* system ID */
int tsy_state; /* sync state */

};

/* sync state values */
#define TET_SS_NOTSYNCED 1 /* sync request not received */
#define TET_SS_SYNCYES 2 /* system voted YES */
#define TET_SS_SYNCNO 3 /* system voted NO */
#define TET_SS_TIMEDOUT 4 /* system timed out */
#define TET_SS_DEAD 5 /* process exited */

4.1.5.4 Making journal entries

4.1.5.4.1 tet_minfoline() – write multiple information lines
A function will be provided to write multiple information lines to the execution results
file. This will enable a distributed test case part to write more than one information line
to the execution results file as an atomic operation. The possibility that these lines might
be interspersed with information lines from other parts of the same test is avoided.13

The syntax of this function is as follows:

int tet_minfoline(char **lines, int nlines);

lines points to the first in a list of pointers to strings which are to be written to the
execution results file as an atomic operation. A NULL pointer in the list is ignored.
nlines specifies the number of string pointers in the list.

A successful call to tet_minfoline() returns zero. If a call to
tet_minfoline() is unsuccessful, −1 is returned and tet_errno is set to indicate
the cause of the error.

4.1.6 API considerations for non-Unix systems

4.1.6.1 Introduction

The original TET specification was intended to be implemented on Unix-like (or, more
specifically) POSIX.1-conforming systems. It will be necessary to modify the C API in
order to enable TETware to operate on non-Unix systems.

The sections that follow describe the additions and changes that will be required. The
information presented here is summarised in a table in appendix D, ‘‘Comparison tables
for C API interfaces’’.

hhhhhhhhhhhhhhh
13. This API function will enable authors of distributed test cases to access a facility to write multiple lines

atomically which already exists in the dTET2 execution results file access subsystem.

30 April 1996 Page 21
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Refer to the section entitled ‘‘C language binding’’ in the dTET2 Programmers Guide for
details of existing API functions. For ease of reference, this section is reproduced in
appendix F.

4.1.6.2 Test case structure and management functions

The global variable tet_nosigreset will be provided on all platforms. However, its
effectiveness on a non-Unix platform will be determined by the extent to which the
platform supports Unix-style signal handling.

4.1.6.3 Insulating from the test environment

On a non-Unix platform, the ability to leave signals untouched or to ignore them will
only be supported to the extent that the platform supports Unix-like signals. In
particular, it should be noted that non-Unix platforms do not necessarily support all the
POSIX.1 signals.

4.1.6.4 Generating and executing processes

4.1.6.4.1 Introduction
At present, the functions in this category are tet_fork() and tet_exec(). The
specification for these functions assumes a Unix-like hierarchical process model which is
not necessarily available on non-Unix platforms. In TETware these functions will only
be supported on Unix-like systems; thus, test cases which use these functions will not be
portable to non-Unix platforms.

New API functions for performing process control within test cases will be supported (to
the extent that is possible) on all platforms where TETware is implemented. Prototypes
for these functions will be provided in the file tet_api.h. These functions are
described in the sections that follow.

4.1.6.4.2 tet_spawn() – start a new process
This function will initiate a new process and will perform an operation similar to a call to
tet_fork() with a NULL parentproc argument, followed by a call to
tet_exec() in the child process.

The syntax of this function is as follows:

pid_t tet_spawn(char *file, char *argv[], char *envp[]);

The meanings of the arguments to tet_spawn() are the same as for the arguments to
tet_exec().

A successful call to tet_spawn() returns the process ID of the new process. If a call
to tet_spawn() is unsuccessful, −1 is returned and tet_errno is set to indicate the
cause of the error.

An appropriate definition for pid_t will be included in the file tet_api.h on
platforms on which pid_t is not defined in the file <sys/types.h>.

A process that is started by tet_spawn() should be linked with the child process
controller tcmchild.o and will otherwise behave as if it had been launched by a call

Page 22 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

to tet_exec(), subject to any limitations imposed by the different process model
implemented on a non-Unix platform.

4.1.6.4.3 tet_wait() – wait for a process started by tet_spawn() to terminate
This function will enable a test case to wait for a process started by tet_spawn() to
terminate and to obtain that process’s exit status.

The syntax of this function is as follows:

int tet_wait(pid_t pid, int *statp);

tet_wait() waits for the process identified by pid to terminate and returns that
process’s exit status indirectly through *statp. pid is the process ID returned by a
previous successful call to tet_spawn(). A successful call to tet_wait() returns
zero. If a call to tet_wait() is unsuccessful, −1 is returned and tet_errno is set to
indicate the cause of the error.

To the extent that the concepts are supported on non-Unix platforms, the value returned
through *statp can be examined by the macros defined in <sys/wait.h> on Unix-
like platforms. When these macros are not provided on a non-Unix platform, appropriate
definitions will be included in the file tet_api.h.

Note that on platforms which do not support multi-tasking, a call to tet_spawn() will
block until the new process terminates. However, tet_wait() can still be used to
obtain the exit status of the new process on such platforms.

4.1.6.4.4 tet_kill() – terminate a process started by tet_spawn()
This function will enable a test case to terminate a process started by a previous call to
tet_spawn().

The syntax of this function is as follows:

int tet_kill(pid_t pid, int sig);

pid is the process ID returned by a previous successful call to tet_spawn(). sig
specifies the signal which is to be sent to the named process. sig is ignored on non-
Unix platforms where signals are not supported; instead, an appropriate mechanism is
used to terminate the process if possible.

A successful call to tet_kill() returns zero. If a call to tet_kill() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

This function is a no-op on platforms which do not support multi-tasking.

4.1.7 API considerations for TETware-Lite

4.1.7.1 Introduction

As has been indicated elsewhere in this document, TETware-Lite does not support
remote or distributed processing. Therefore, certain API functions and variables which
may be used in distributed test cases are not supported in TETware-Lite.

30 April 1996 Page 23
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Certain API functions which are only appropriate for use in distributed test cases cannot
operate in the environment provided by TETware-Lite. These functions will not be
present in the API library supplied with TETware-Lite. This is to enable test case
authors to identify at compile time the use of functions which are only supported in
fully-featured TETware.

This section describes the way that each TETware version will affect the availability and
behaviour of interfaces in the C API. The information presented here is summarised in a
table in appendix D, ‘‘Comparison tables for C API interfaces’’.

4.1.7.2 Making journal entries

A call to tet_minfoline() will be functionally equivalent to calling
tet_infoline() once for each line which is to be printed to the journal file.

4.1.7.3 Executed process functions

A call to tet_exit() will be functionally equivalent to calling exit().

A call to tet_logoff() will have no effect.

4.1.7.4 Test case synchronisation

tet_sync(), tet_msync(), tet_remsync(), tet_syncreport() and
(*tet_syncerr)() are not supported.

4.1.7.5 Remote system designations

A call to tet_remgetlist() will always return zero. A pointer to a list containing a
single zero value will be returned indirectly through **sysnames.

A call to tet_remgetsys() will always return zero.

4.1.7.6 Remote process control

tet_remexec(), tet_remwait() and tet_remkill() are not supported.

4.1.7.7 Remote system information

tet_remtime() and tet_getsysbyid() are not supported.

4.2 The C++ API
A lightweight C++ API will be included in TETware. This will be implemented in the
same way as in ETET 1.10.3. The file tet_api.h which is part of the C API will be
enhanced so as to enable it to be used in this API as well. Local, remote and distributed
test cases may be built using this API.

Page 24 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.3 The xpg3sh API
The xpg3sh API from TET 1.10 is currently included in dTET2 and will be included in
TETware. This API may be used in conjunction with local and remote test cases. As
with dTET2, there is no support for distributed test cases when this API is used.

It is not intended to include this API in TETware distributions for non-Unix platforms.

4.4 The ksh API
The ksh API from ETET 1.10.3 will be included in TETware. This API may be used in
conjunction with local and remote test cases. There will be no support for distributed test
cases when this API is used.

It is anticipated that, after porting, this API will be usable on PC platforms where the
MKS Toolkit is installed.

4.5 The perl API
The perl API from ETET 1.10.3 will be included in TETware. This API may be used
in conjunction with local and remote test cases. There will be no support for distributed
test cases when this API is used.

Whether or not this API is useful depends on whether a perl implementation is
available on the target platform. At the time of writing, it has not been determined
whether a perl implementation is available for all of the non-Unix platforms to which it
is intended to port TETware.

30 April 1996 Page 25
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 26 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

5. Thread support

5.1 Introduction
The C Test Case Manager and API library will be enhanced in TETware so as to enable
the use of threads in test cases. The support for threads will be present in both TETware
and TETware-Lite versions which run on Unix-like platforms.

When TETware is built on a Unix-like platform, both ‘‘standard’’ and thread-safe
versions of the TCM and the API library will be generated. Reasons for having two
versions of these files include the following:

g The additional overhead of the thread-safe code will be avoided in the majority of
test cases which do not require it.

g The need to link the majority of test cases which do not use threads against
additional system libraries will be avoided. Thus, compatibility with existing TET
implementations will be maintained.

If it is required to make use of threads in test case code, the test suite author will specify
a compile-time option and link the test case with the thread-safe versions of the TCM and
the API library.

5.2 API issues

5.2.1 Changes to existing API functions
The internal workings of certain API functions will be enhanced to include an option to
generate both ‘‘standard’’ and thread-safe versions. When the thread-safe version is
built, code will be enabled to control the execution of critical code sections with the use
of mutexes, and to control access to global data with the use of data locks.

The interface to API functions will be the same, regardless of whether the standard or
thread-safe versions are used. It is not anticipated that it will be necessary to provide
special reentrant versions of any of the existing API functions.

5.2.2 New API functions

5.2.2.1 Generating and executing processes

5.2.2.1.1 tet_fork1() – create a new process containing a single thread
When the thread-safe API is used, a call to tet_fork() creates a child process which
contains all the threads which exist in the parent process. A function will be provided
which creates a child process containing only the thread of the calling process, but will
otherwise behave as does tet_fork().

30 April 1996 Page 27
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The syntax of this function is as follows:

int tet_fork1(void (*childproc)(void), void (*parentproc)(void),
int waittime, int validresults);

The arguments and return value of this function are the same as those of tet_fork().

5.2.2.2 Thread control

5.2.2.2.1 tet_thr_create() – create a new thread
A function will be provided to create a new thread in a test purpose. When this function
is used to create a new thread, the API stores information about the newly-created thread
in order to enable the TCM to perform appropriate actions when the test purpose returns
control to the TCM, or when an unexpected signal occurs.

The syntax of this function is as follows:

int tet_thr_create(void *stack_base, size_t stack_size,
void (*start_routine)(void *), void *arg,
long flags, thread_t *new_thread);

The arguments and return value are the same as those for the thr_create() function.
A call to tet_thr_create() attempts to create a new thread by calling
thr_create() with the same arguments. The return value of tet_thr_create()
is the same as that of the underlying thr_create() call. Unlike other API calls,
tet_thr_create() does not set tet_errno if the call fails.

Unexpected results may occur if a test suite creates a new thread other than by using this
function.

5.2.2.3 Access to global API variables

Functions in the thread-safe API library will maintain per-thread versions of certain
global variables that are defined in the API. Examples of such variables are
tet_errno and tet_child.

Functions will be provided to return per-thread values of these variables. The names of
the functions themselves will not be part of the API.14 Instead, the file tet_api.h will
redefine each variable when a compile-time option is in effect. When the global variable
is redefined in this way, a reference to the variable will instead access the per-thread copy
of the variable that is maintained by the API.

For example, if the name of the function to access the per-thread value of tet_child
is tet_thr_child(), the following definition will be visible in tet_api.h when
the compile-time option is used:

#define tet_child (*tet_thr_child())

hhhhhhhhhhhhhhh
14. Therefore an API-conforming test case should never call any of these functions directly.

Page 28 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

5.3 TCM enhancements
It is expected that, if a test purpose creates a new thread, the test purpose should take
responsibility for terminating the new thread and waiting for them before return.
However, in order to guard against the case where this does not happen, and also to
provide for the handling of unexpected signals, the thread-safe version of the TCM will
be enhanced as follows:

g The TCM will call each test purpose using a single thread (the main thread).
When a test purpose thread returns control to the TCM:

— if the thread is not the main thread, the thread exits

— if the thread is the main thread, it waits for each of the other threads to exit

g When an unexpected signal is caught by the TCM:

— if the thread that catches the signal is not the main thread, it forwards the
signal to the main thread and exits

— if the thread that catches the signal is the main thread, it terminates each of
the other threads

g When the TCM waits for a thread to exit, it terminates the thread if the thread does
not exit after a certain time has expired.

g When the TCM terminates a thread, it does so by sending a SIGTERM signal to the
thread. If the thread does not exit after a certain time, the TCM sends a SIGKILL
signal which forcibly terminates the thread.

5.4 Client/server issues

5.4.1 Introduction
In fully-featured TETware, certain API calls result in requests being sent to TETware
servers. Examples of such calls are tet_remsync() which sends a request to the
synchronisation daemon tetsyncd, and tet_infoline() which sends a request to
the execution results daemon tetxresd. Although it would be possible for each thread
in a multi-threaded test purpose to make its own connection to each TETware server, in
practice this is not considered necessary. The reasons for this are different for each type
of server and are presented in the sections that follow.

Instead, the flow-of-control for each API function that passes though a particular server
will be regarded as a critical code section. One mutex will be used to control access to
each server and its associated process table entry in the client process.

30 April 1996 Page 29
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

5.4.2 The test case controller daemon tccd
A test case sends a request to a tccd running on a remote system as a result of a call to
one of the remote process control functions.15 One such call – tet_remwait() – can
block when a non-zero timeout parameter is specified. Since access to each server is
to be controlled by a mutex, a call to tet_remwait() which blocks will prevent
access to a particular tccd by other threads in the same process.

However, the use of remote process control functions is deprecated in TETware; indeed,
these functions are only supported in order to provide backwards compatibility with
dTET2. Instead, if it is necessary to execute a process on another system which is
participating in a distributed test case, it is recommended that the process should be
started by the part of the test case that is executing on that system.

The limitation on the use of remote process control functions in a multi-threaded
environment will be documented (together with this recommendation) in the function
descriptions in the TETware Programmers Guide.

5.4.3 The synchronisation daemon tetsyncd
A test case sends a request to tetsyncd as a result of a call to one of the API’s
synchronisation functions. Since synchronisation is defined in terms of systems and not
processes, only one process on a particular system may represent that system in a
particular synchronisation event. A consequence of this requirement is that it is an error
for two processes on the same system to make overlapping synchronisation requests. It
follows, therefore, that in a multi-threaded environment it would be an error for two
threads on the same system to make overlapping synchronisation requests (whether or
not the threads are in the same process).

In view of this there would be no advantage to be gained by enabling individual threads
to make their own connections to tetsyncd.

5.4.4 The execution results daemon tetxresd
A test case sends a request to tetxresd as a result of a call to one of the API functions
which process information which is to appear in the journal file. Since all file i/o
operations must be single-threaded, there would be no significant advantage to be gained
by enabling individual threads to make their own connections to tetxresd.

hhhhhhhhhhhhhhh
15. The functions in this category are: tet_remexec(), tet_remwait() and tet_remkill().

Page 30 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

6. Portability to non-Unix platforms

6.1 Introduction
The TET specification assumes that TET will be implemented on a Unix-like platform.
In addition, the design of existing TET and dTET2 implementations make use of Unix-
style operating system services and library routines which are not always available on
non-Unix platforms.

Examples of such services include:

g Multi-tasking using a preemptive scheduler.

g A hierarchical process structure.

g Notification of asynchronous events using POSIX.1-style signals.

g Use of fork() to clone a copy of the calling process.

g Use of read() and write() system calls to perform i/o using arbitrary record
sizes.

g Use of pipes to transfer data between processes.

g Access to network services using socket calls or XTI.

g The availability of a software development system with a user interface which is,
for the most part, the same on all systems.

In addition, it is common for compilers which run on some popular PC platforms to
require the use of extensions to the C language that are necessary in order to support
certain features of the PC’s machine architecture.

It is intended to make TETware available on a number of popular platforms outside the
traditional sphere of Unix-like and POSIX.1-conforming environments. The impact that
the non-availability of certain Unix-like system services might have on TETware
functionality and portability will vary, depending on the nature of the difference between
the Unix-like and non-Unix platform.

When considering the differences between the various platforms and how they might be
overcome, several classes of difference emerge. The first class of difference relates to
the case where there is an ANSI and a non-ANSI way of performing a particular task.
For example, the lack of Unix-style read() and write() system calls can be
overcome fairly easily by the use of their ANSI equivalents. Furthermore, if code that
uses the Unix-style calls is replaced by code that uses the ANSI calls, the modified code
is still portable to all systems.

A second class of difference between Unix and non-Unix systems is a little more difficult
to accommodate. If TETware uses a system interface or header file element which is not
available on a non-Unix system, a compatibility library function or header file element
must be supplied which may be different for each affected platform. For example, on a
platform which supports the concept of a process ID but does not include a definition for

30 April 1996 Page 31
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

pid_t in <sys/types.h>, a suitable definition must be visible in one of the
TETware header files when the code is compiled on that platform.

A third class of difference involves situations where the design of the code must be
changed. For example, the lack of a fork() system call on many non-Unix systems
means that a design which makes use of the properties of fork() must be changed.
This is one of the motivations behind the intention to re-design tcc in TETware, in the
way that is described in chapter 3, ‘‘The Test Case Controller tcc’’.

A final class of difference is one where it is pragmatic simply to accept the limitation
imposed by the difference. An example of such a difference is the lack of multi-tasking
which uses a preemptive scheduler. In such cases TETware will still work on the
affected platform but with some loss of functionality.

The way in which differences between Unix-like and non-Unix systems will be catered
for in TETware are described in the sections which follow. It should be understood that
the information presented here refers to the part of TETware that is written in C; namely,
the Test Case Controller subsystem and the C TCM/API. Information related to the
portability of each of the other TCM/APIs is presented in the section describing the API
concerned in chapter 4, ‘‘Test case support’’.

Comparisons of functionality between TETware on different platforms are summarised
in tables which are presented in several appendices at the end of this document.

6.2 Supported platforms
To the extent possible, it is intended to port TETware to the following non-Unix
platforms:

g DOS + Windows 3.11

g Windows 95

g Windows NT

When TETware is ported to a platform which supports a graphical user interface, it will
be compiled as a console application. It is suggested that the provision of a graphical
user interface to TETware should be undertaken as a separate project if this is considered
important by X/Open.

6.3 TETware-Lite
TETware-Lite will be ported to all of the supported platforms.

6.4 Fully-featured TETware
Fully-featured TETware uses a client-server architecture and so the demands that are
placed on the underlying operating system are rather greater than those imposed by
TETware-Lite. In particular, the design of the Test Case Controller subsystem in fully-
featured TETware requires the underlying operating system to support multi-tasking

Page 32 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

using a preemptive scheduler.

The effect of this is that it will be possible to run tcc on a platform which supports
multi-tasking and so these platforms may operate either as a local (or master) system or
as a remote system. However, it will only be possible for a platform which does not
support multi-tasking to operate as a remote system under the control of a tcc which is
running on a multi-tasking platform.

It is anticipated that the following non-Unix platforms will support TETware both as a
local and a remote system:

g Windows NT

whereas the following platforms will only support TETware as a remote system which
does not run tcc:

g DOS + Windows 3.11

g Windows 95

It should be noted that it will only be possible for platforms that do not support multi-
tasking to participate in a single remote or distributed test case at a time.

6.5 Compiler subsystem issues
When TETware is ported to each non-Unix system, it will be ported in a form suitable
for use with a particular software development environment. The resulting code will
only be guaranteed to compile successfully if the specified environment is in place on the
target system.

Details of the environment required to compile TETware for each supported platform
will be presented in the Installation and Build Notes for the target platform.16

In order to accommodate the differences between the environments on each of the target
platforms, conditional compilation will be used in the source code wherever it is practical
to do so. Where this is not practical, platform-specific code will be separated out into
platform-specific source files. Platform-specific make definition files will contain
sufficient information to enable the appropriate version of each source file to be selected
when each TETware component is to be built.

hhhhhhhhhhhhhhh
16. Refer to the section entitled ‘‘Installation and Build Notes’’ in chapter 7 for further details.

30 April 1996 Page 33
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 34 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

7. Documentation

7.1 Introduction
The sections that follow describe the documents that will be supplied with the TETware
distribution. These documents will be supplied in Postscript form.

The documents included in the TETware distribution will all describe the state of the
product at the time the distribution is made. Out-of-date documents and documents
describing previous TET releases will not be included.

7.2 Document source format
The documentation in existing TET implementations is written and supplied in troff
source format. More recently, Postscript format documentation has also been included in
most TET releases.

It is understood that X/Open is considering as a general policy the merits of supplying
documentation in HTML format. This is in order to enable documents to be viewed
conveniently with a suitable Web browser. It will be seen from the sections that follow
that it is proposed to base the TETware guides on existing (troff- and Postscript-
format) TET and dTET2 documents.

If HTML format documents are to be produced for the next TET release, it will be
necessary to convert and/or re-structure the troff source of each document to a format
and structure more suitable for use with HTML. It is anticipated that such a conversion
will require a fair amount of effort. In view of this, it is suggested that if X/Open wish to
have HTML-format documentation at this time, the conversion of TET documentation to
HTML format should be undertaken as a separate project.

7.3 Programmers Guide
Material for this guide will be taken from the Programmers Guides that are supplied with
dTET2 and ETET 1.10.3.

The structure of the TETware Programmers Guide will differ from that of previous
Programmers Guides as follows:

g Sections which consist mainly of material copied from the original TET
specification will be reviewed for relevance to the target audience. These sections
will be edited, relocated or removed as necessary, so that the guide’s clarity and
usability is enhanced.

g A chapter describing how to write a distributed test case will be added. In
particular, programming techniques for the effective use of synchronisation
between test case parts will be described.

g A section will be added which describes how to use the (*tet_startup)()
facility to support Internationalisation and the use of locales.

30 April 1996 Page 35
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

g A section will be added which describes how to use TETware to process a test
suite which resides on a read-only file system.

g A section will be added which describes how to write a multi-threaded test case.

g Detailed descriptions of C API functions will be presented in manpage format.

g The comparison tables contained in several of the appendices to this document will
be included in the updated Programmers Guide.

An indication of the status of each C API function will be included in the description of
each function as follows:

— whether the function is specific to TETware implementations on Unix-like systems
or supported on all TETware implementations

— whether the function should be used in new test cases, provided only for backwards
compatibility with previous TET releases, or deprecated for some other reason

When use of a function is deprecated for any reason, the function’s description will
indicate which current function or facility should be used in order to achieve the same
effect.

7.4 Installation and User Guide
This guide will be derived from the dTET2 Installation and User Guide. Sections will be
updated and/or added as necessary to describe the operation of TETware, including at
least the following areas:

g The symmetrical architecture of TETware systems.

g TETware-Lite vs . fully-featured TETware.

g Using TETware on different supported platforms.

g The different TCM/APIs supplied with TETware.

g Configuration variables.

g Communication (or environment) variables.

g Scenario file directives.

g Sections describing TETware for users familiar with TET 1.10, dTET2 and
ETET 1.10.3.

Most of the information in the section describing how to install and build the test harness
will be relocated to a separate document entitled ‘‘TETware Installation and Build
Notes’’. This information will be replaced by a pointer to that document.

Page 36 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

7.5 Installation and Build Notes
One set of Installation and Build Notes will be produced for each platform on which
TETware is supported. These Notes will replace the section in the Installation and User
Guide which describes how to build and install the test harness.

As has been noted elsewhere, it is intended to supply TETware in binary form on certain
platforms. The versions of the Installation and Build Notes for such platforms will make
a clear distinction between information related to the source distribution and information
relating to the binary distribution on that platform.

7.6 Specification document
It is not intended to include a specification document with TETware distributions.

The base TET was first described in a document entitled ‘‘Test Environment Toolkit –
Architectural, Functional and Interface Specification’’. Although some changes have
been made to this document during the evolution of the TET, information in the
document has not always been kept in step with TET implementations. As a result,
existing versions of the Specification document are not really suitable for use as the basis
of a TETware Specification document and it is anticipated that a fair amount of effort
would be required to produce a definitive Specification document for TETware.

In view of this, it is suggested that if the availability of a definitive specification for
TETware is important to X/Open, this should be undertaken as a separate project. It is
anticipated that a definitive TETware Specification would include material from the base
TET Specification and also from this document.

7.7 Release Notes

7.7.1 Generic Release Notes
Each release of TETware will be accompanied by a set of generic Release Notes. It is
intended that this document will be the very first document that a user reads when
receiving the release.17 The Release Notes document will contain information about the
particular TETware release that it accompanies, together with pointers to the other
documents in the release.

It is anticipated that the generic Release Notes will contain information under at least the
following headings:

g New features in this release

g Status of this release

hhhhhhhhhhhhhhh
17. And, hopefully, before attempting to start work with the release!

30 April 1996 Page 37
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

g Problems fixed since the last release

g Known problems in this release

g Building and installing TETware

g Problem reporting

In order to maximise the clarity and usability of the Release Notes, this document will
not contain detailed instructions concerning how to install or operate TETware. Instead,
references will be provided to the chapters and sections in the main documents where this
information is presented.

7.7.2 Supplementary Release Notes for specific platforms and
distribution types

It is anticipated that there may be circumstances where it is necessary to issue a
supplement to the generic Release Notes. When a supplement is issued, it will contain
information which is relevant only to a particular platform on which a release of
TETware is made.

When it is necessary to issue such a supplement, it is anticipated that it will have a title
similar to ‘‘TETware Release M . N – Release Notes Supplement for type Distributions on
XXX Platforms’’, where M . N is the release number, type indicates a Source, a Binary or
a Source and Binary distribution and XXX specifies the target platform for which the
release is made.

Page 38 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

8. Miscellaneous issues

8.1 Compatibility with existing TET implementations

8.1.1 Introduction
TETware provides backwards compatibility for test cases written to run under the control
of existing TET implementations; namely, TET 1.10, dTET2 and ETET 1.10.3.

Compatibility information relating to various TETware features is summarised in the
tables presented in several appendices at the end of this document.

8.1.2 Compatibility issues

8.1.2.1 C language test cases

TETware provides compatibility at source code level for all existing API-conforming test
cases that are written using the C and C++ APIs. Existing test cases should be re-linked
with the TETware TCM and API library in order to take full advantage of the facilities
provided by the TETware API.

In addition, support is provided in TETware for all existing TET 1.10 and most
ETET 1.10.318 test case binaries. However, dTET2 test cases must be relinked with the
TETware TCM and API library in order to function correctly.

In a few cases it will be necessary to make changes to test cases which have been written
to run under the control of previous TET implementations as follows:

g If a TET or ETET test purpose makes a call to exit(), it is desirable to replace
this with a call to tet_exit().19 If this is not done, the test case will still
function correctly in every respect but a harmless ‘‘client closed connection’’
message will be emitted by tetsyncd and tetxresd when the test case exits.20

hhhhhhhhhhhhhhh
18. Except test cases which rely on the behaviour associated with TET_EXTENDED,

TET_JOURNAL_PATH and TET_LOCK. Refer to the section entitled ‘‘Communication variables
derived from ETET 1.10.3’’ in chapter 3 for a discussion concerning these variables.

19. Refer to the section entitled ‘‘Executed process functions’’ in the dTET2 Programmers Guide for a
description of tet_exit(). For ease of reference the chapter containing this section is reproduced in
appendix F.

20. This behaviour will only be observed in fully-featured TETware. It will not occur in TETware-Lite
since, in this case, tcc does not make use of server processes.

30 April 1996 Page 39
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

g For the same reason, it is desirable to insert a call to tet_logoff()
immediately before an explicit call to one of the exec() functions.21

g If a scenario file contains one of the directives which has different syntax in
ETET 1.10.3 and dTET2, it will be necessary to include a definition for the
TETware-specific TET_COMPAT variable in the configuration file for each of
tcc’s modes of operation.22

In TET 1.10 and ETET 1.10.3 it is possible to execute a C language test case directly
from the command line without the use of tcc. However, in dTET2 it is not possible to
execute a C language test case directly from the command line; instead, such test cases
must always be executed under the control of tcc.

When TETware-Lite is used, it is possible to execute a C language test case either
independently or under the control of tcc. However, when fully-featured TETware is
used, it is not possible for the user to set up the environment that the C API needs in
order to support remote or distributed testing. Thus a C language test case cannot be
executed independently but must always be run under the control of tcc.

8.1.2.2 Test cases which use other APIs

Support is provided for test cases whose APIs use the interface between tcc and the
TCM/API that is described in the base TET specification. APIs which use this interface
include the xpg3sh, ksh and perl APIs. This support is present in both TETware and
TETware-Lite.

As in existing TET implementations, it is possible to execute a test case independently in
TETware as well as under the control of tcc when one of these APIs is used.

hhhhhhhhhhhhhhh
21. Refer to the section entitled ‘‘Executed process functions’’ in the dTET2 Programmers Guide for a

description of tet_logoff(). For ease of reference the chapter containing this section is reproduced
in appendix F.

22. This issue is discussed in the section entitled ‘‘Conflicts between dTET2 and ETET 1.10.3 scenario file
syntax’’ in chapter 3.

When the TETware tcc encounters a syntax ambiguity in a scenario file and this variable is not set, it
prints a diagnostic and does not process the scenario. Thus the user is protected from the possibility of
unexpected default behaviour when a test suite designed to run under the control of ETET 1.10.3 or
dTET2 is processed by TETware.

Refer to the section entitled ‘‘TET_COMPAT – select TETware compatibility mode’’ in chapter 3 for a
description of this configuration variable.

Page 40 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

8.1.3 Combining test cases from existing TET implementations
TETware is able to process a scenario which contains a mixture of test cases taken from
TET 1.0, dTET2 and ETET 1.10.3 test suites. However, if such a scenario uses
directives whose syntax is different in dTET2 and ETET 1.10.3, it will be necessary to
decide which syntax to use and then use the chosen syntax throughout the scenario file.

30 April 1996 Page 41
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 42 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

APPENDICES

30 April 1996 Page 43
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 44 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

A. Comparison tables for configuration variables

A.1 Introduction
This appendix contains tables which indicate the status of each configuration variable in
several contexts.

The meanings of symbols which appear in these tables are as follows:

√ configuration variable has the effect described in the specification
∂ configuration variable sometimes has effect
b configuration variable has no effect
1 2 etc. refer to notes at the end of each table table

A.2 Support for configuration variables in different
TETware versions

ii
Configuration variable name TETware TETware-Liteii
TET_API_COMPLIANT √ √
TET_BUILD_FAIL_TOOL √ √
TET_BUILD_FILE √ √
TET_BUILD_TOOL √ √
TET_CLEAN_FILE √ √
TET_CLEAN_TOOL √ √
TET_COMPAT √ √
TET_EXEC_FILE √ √
TET_EXEC_IN_PLACE √ √
TET_EXEC_TOOL √ √
TET_LOCALHOST √ b
TET_OUTPUT_CAPTURE √ √
TET_PREBUILD_TOOL √ √
TET_REMnnn_TET_EXECUTE √ b
TET_REMnnn_TET_ROOT √ b
TET_REMnnn_TET_RUN √ b
TET_REMnnn_TET_TSROOT √ b
TET_REMnnn_variable √ ∂ 1
TET_RESCODES_FILE √ √
TET_SAVE_FILES √ √
TET_SIG_IGN √ √
TET_SIG_LEAVE √ √
TET_TC_PASS_NAME √ √
TET_TRANSFER_SAVE_FILES √ b
TET_XTI_MODE √ b
TET_XTI_TPI √ biicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Notes:

1. Only effective when nnn is 000.

30 April 1996 Page 45
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

A.3 Support for configuration variables on different
platforms

When remote or distributed test cases are being processed, it is possible to define a
variable in a configuration file on the master system which applies to a remote system. In
addition, it is possible to define a variable in a configuration file on a remote system
which applies only to that system. When interpreting the symbols in this table it should
be understood that the symbol refers to the platform on which the variable is defined and
not necessarily to the platform to which the variable applies.

ii
Platformii

Unix DOSConfiguration variable name
POSIX.1 Windows

Windows NT
ii
TET_API_COMPLIANT √ √ √
TET_BUILD_FAIL_TOOL √ √ √
TET_BUILD_FILE √ √ √
TET_BUILD_TOOL √ √ √
TET_CLEAN_FILE √ √ √
TET_CLEAN_TOOL √ √ √
TET_COMPAT √ √ √
TET_EXEC_FILE √ √ √
TET_EXEC_IN_PLACE √ √ √
TET_EXEC_TOOL √ √ √
TET_LOCALHOST √ b b
TET_OUTPUT_CAPTURE √ √ √
TET_PREBUILD_TOOL √ √ √
TET_REMnnn_TET_EXECUTE √ b √
TET_REMnnn_TET_ROOT √ b √
TET_REMnnn_TET_RUN √ b √
TET_REMnnn_TET_TSROOT √ b √
TET_REMnnn_variable √ ∂ 1 √
TET_RESCODES_FILE √ √ √
TET_SAVE_FILES √ √ √
TET_SIG_IGN √ b √
TET_SIG_LEAVE √ b √
TET_TC_PASS_NAME √ √ √
TET_TRANSFER_SAVE_FILES √ b √
TET_XTI_MODE √ b b
TET_XTI_TPI √ b biicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1. A fully-featured TETware master system is not supported on this platform. Thus,
setting this variable is only effective when the platform acts as a remote system.

Page 46 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

A.4 Compatibility with configuration variables in existing
TET implementations

iii
TET implementationiiiConfiguration variable name

TET 1.10 ETET 1.10.3 dTET2 2.3 TETwareii
TET_API_COMPLIANT b √ b √
TET_BUILD_FAIL_TOOL √ √ √ √
TET_BUILD_FILE √ √ √ √
TET_BUILD_TOOL √ √ √ √
TET_CLEAN_FILE √ √ √ √
TET_CLEAN_TOOL √ √ √ √
TET_COMPAT b b b √
TET_EXEC_FILE √ √ √ √
TET_EXEC_IN_PLACE √ √ √ √
TET_EXEC_TOOL √ √ √ √
TET_LOCALHOST b b √ 1 √ 1
TET_OUTPUT_CAPTURE √ √ √ √
TET_PREBUILD_TOOL b b √ √
TET_REMnnn_TET_EXECUTE b b √ √
TET_REMnnn_TET_ROOT b b √ √
TET_REMnnn_TET_RUN b b b √
TET_REMnnn_TET_TSROOT b b √ √
TET_REMnnn_variable b b √ √
TET_RESCODES_FILE √ √ √ √
TET_SAVE_FILES √ √ √ √
TET_SIG_IGN √ √ √ √
TET_SIG_LEAVE √ √ √ √
TET_TC_PASS_NAME b √ b √
TET_TRANSFER_SAVE_FILES b b √ √
TET_XTI_MODE b b √ 1 √ 1
TET_XTI_TPI b b √ 1 √ 1iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Notes:

1. This variable is only effective when the XTI network transport interface is used.

30 April 1996 Page 47
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 48 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

B. Comparison tables for communication variables

B.1 Introduction
This appendix contains tables which indicate the status of each communication variable
in several contexts.

The meanings of symbols which appear in these tables are as follows:

√ communication variable has the effect described in the specification
∂ communication variable sometimes has effect
b communication variable has no effect
1 2 etc. refer to notes at the end of each table table

When interpreting the information contained in these tables, it should be understood that
communication variables are provided for use by the test harness and are not part of the
API. Therefore, the effectiveness or otherwise of a particular communication variable
will not affect the portability of API-conforming test cases between different TET
implementations or supported platforms.

The following variables are part of the published interface between the user and tcc:

TET_EXECUTE
TET_EXTENDED
TET_LOCK
TET_ROOT
TET_RUN
TET_SUITE_ROOT
TET_TMP_DIR

The following variables are part of the published interface between tcc and the
TCM/API:

TET_ACTIVITY
TET_CODE
TET_CONFIG
TET_EXTENDED
TET_JOURNAL_PATH
TET_LOCK
TET_ROOT
TET_RUN
TET_SUITE_ROOT

30 April 1996 Page 49
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

B.2 Support for communication variables in different
TETware versions

ii
Communication variable name TETware TETware-Liteii
TET_ACTIVITY √ √
TET_CODE √ √
TET_COM_VAR √ √
TET_CONFIG √ √
TET_DIST √ b
TET_EXECUTE √ √
TET_EXTENDED b b
TET_JOURNAL_PATH b b
TET_LOCK b b
TET_ROOT √ √
TET_RUN √ √
TET_SUITE_ROOT √ √
TET_TIARGS √ b
TET_TMP_DIR √ √
TET_TSARGS √ biic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

B.3 Support for communication variables on different
platforms

iii
Platformii

Unix DOSCommunication variable name
POSIX.1 Windows

Windows NT
ii
TET_ACTIVITY √ √ √
TET_CODE √ √ √
TET_COM_VAR √ √ √
TET_CONFIG √ √ √
TET_DIST √ √ √
TET_EXECUTE √ √ √
TET_EXTENDED b b b
TET_JOURNAL_PATH b b b
TET_LOCK b b b
TET_ROOT √ √ √
TET_RUN √ √ √
TET_SUITE_ROOT √ √ √
TET_TIARGS √ √ √
TET_TMP_DIR √ √ √
TET_TSARGS √ √ √iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 50 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

B.4 Compatibility with communication variables in
existing TET implementations

iii
TET implementationiiiCommunication variable name

TET 1.10 ETET 1.10.3 dTET2 2.3 TETwareii
TET_ACTIVITY √ √ √ √
TET_CODE √ √ √ √
TET_COM_VAR b b √ √
TET_CONFIG √ √ √ √
TET_DIST b b √ √
TET_EXECUTE √ √ √ √
TET_EXTENDED b √ b b 1
TET_JOURNAL_PATH b √ b b 1
TET_LOCK b √ b b 1
TET_ROOT √ √ √ √
TET_RUN b √ b √
TET_SUITE_ROOT b √ b √
TET_TIARGS b b √ √
TET_TMP_DIR √ √ √ √
TET_TSARGS b b √ √iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Notes:

1. It is not considered necessary to implement this variable at present. Refer to the
section entitled ‘‘Other communication variables in ETET 1.10.3’’ in chapter 3.

30 April 1996 Page 51
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 52 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

C. Comparison tables for scenario directives

C.1 Introduction
This appendix contains tables which indicate the status of each scenario file directive in
several contexts.

The meanings of symbols which appear in these tables are as follows:

√ scenario directive is fully supported as described in the specification
∂ scenario directive is partially supported
× scenario directive is not supported
1 2 etc. refer to notes at the end of each table table

Certain TET scenario directives consist of more than one line. This is indicated by
indenting the second and subsequent lines in a multi-line directive.

30 April 1996 Page 53
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

C.2 Support for scenario directives in different TETware
versions

ii
Scenario directive TETware TETware-Liteii

comment √ √
scenario-name √ √
test-case √ √
"text" √ √
ˆscenario-name √ √
@test-case √ √
:include:file √ √
:parallel[,count]:test-list √ √
:parallel[,count]:file √ √
:parallel[,count]: √ √

test-case
[. . .]
:endparallel:

:group[,count]:test-list √ √
:group[,count]:file √ √
:group[,count]: √ √

test-case
[. . .]
:endgroup:

:repeat,count:test-list √ √
:repeat,count:file √ √
:repeat,count: √ √

test-case
[. . .]
:endrepeat:

:random:test-list √ √
:random:file √ √
:random: √ √

test-case
[. . .]
:endrandom:

:timed_loop,seconds:test-list √ √
:timed_loop,seconds:file √ √
:timed_loop,seconds: √ √

test-case
[. . .]
:endtimed_loop:

:remote,nnn[,. . .]:test-list √ ×
:remote,nnn[,. . .]:file √ ×
:remote,nnn[,. . .]: √ ×

test-case
[. . .]
:endremote:

:distributed,nnn[,. . .]:test-list √ ×
:distributed,nnn[,. . .]:file √ ×
:distributed,nnn[,. . .]: √ ×

test-case
[. . .]
:enddistributed:

:variable,name=value[,. . .]:test-list √ √
:variable,name=value[,. . .]:file √ √
:variable,name=value[,. . .]: √ √

test-case
[. . .]
:endvariable:

:group-execution[;. . .]:test-list √ √
:group-execution[;. . .]:file √ √iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 54 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

C.3 Support for scenario directives on different platforms
ii

Platformii
Unix DOSScenario directive

POSIX.1 Windows Windows NT
ii
comment √ √ √
scenario-name √ √ √
test-case √ √ √
"text" √ √ √
ˆscenario-name √ √ √
@test-case √ √ √
:include:file √ √ √
:parallel[,count]:test-list √ √ √
:parallel[,count]:file √ √ √
:parallel[,count]: √ √ √

test-case
[. . .]
:endparallel:

:group[,count]:test-list √ √ √
:group[,count]:file √ √ √
:group[,count]: √ √ √

test-case
[. . .]
:endgroup:

:repeat,count:test-list √ √ √
:repeat,count:file √ √ √
:repeat,count: √ √ √

test-case
[. . .]
:endrepeat:

:random:test-list √ √ √
:random:file √ √ √
:random: √ √ √

test-case
[. . .]
:endrandom:

:timed_loop,seconds:test-list √ √ √
:timed_loop,seconds:file √ √ √
:timed_loop,seconds: √ √ √

test-case
[. . .]
:endtimed_loop:

:remote,nnn[,. . .]:test-list √ √ √
:remote,nnn[,. . .]:file √ √ √
:remote,nnn[,. . .]: √ √ √

test-case
[. . .]
:endremote:

:distributed,nnn[,. . .]:test-list √ √ √
:distributed,nnn[,. . .]:file √ √ √
:distributed,nnn[,. . .]: √ √ √

test-case
[. . .]
:enddistributed:

:variable,name=value[,. . .]:test-list √ √ √
:variable,name=value[,. . .]:file √ √ √
:variable,name=value[,. . .]: √ √ √

test-case
[. . .]
:endvariable:

:group-execution[;. . .]:test-list √ √ √
:group-execution[;. . .]:file √ √ √iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

30 April 1996 Page 55
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

C.4 Compatibility with scenario directives in existing TET
implementations
iii

TET implementationiiiScenario directive
TET 1.10 ETET 1.10.3 dTET2 2.3 TETwareii

comment √ √ √ √
scenario-name √ √ √ √
test-case √ √ √ √
"text" √ √ √ √
ˆscenario-name × √ × √
@test-case × √ × √
:include:file × × √ √
:parallel[,count]:test-list × √ × √ 1
:parallel[,count]:file × × ∂ 2 √ 1
:parallel[,count]: × × ∂ 2 √

test-case
[. . .]
:endparallel:

:group[,count]:test-list × √ × √ 1
:group[,count]:file × × ∂ 2 √ 1
:group[,count]: × × ∂ 2 √

test-case
[. . .]
:endgroup:

:repeat,count:test-list × √ × √ 1
:repeat,count:file × × √ √ 1
:repeat,count: × × √ √

test-case
[. . .]
:endrepeat:

:random:test-list × √ × √ 1
:random:file × × × √ 1
:random: × × × √

test-case
[. . .]
:endrandom:

:timed_loop,seconds:test-list × √ × √ 1
:timed_loop,seconds:file × × × √ 1
:timed_loop,seconds: × × × √

test-case
[. . .]
:endtimed_loop:

:remote,nnn[,. . .]:test-list × × × √ 1
:remote,nnn[,. . .]:file × × √ √ 1
:remote,nnn[,. . .]: × × √ √

test-case
[. . .]
:endremote:

:distributed,nnn[,. . .]:test-list × × × √ 1
:distributed,nnn[,. . .]:file × × × √ 1
:distributed,nnn[,. . .]: × × × √

test-case
[. . .]
:enddistributed:

:variable,name=value[,. . .]:test-list × × × √ 1
:variable,name=value[,. . .]:file × × × √ 1
:variable,name=value[,. . .]: × × × √

test-case
[. . .]
:endvariable:

:group-execution[;. . .]:test-list × √ × √ 1
:group-execution[;. . .]:file × × × √ 1iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 56 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Where there is a conflict between dTET2 and ETET syntax for these directives,
tcc will determine which syntax to accept by examining the value of the
TET_COMPAT configuration variable. An error will occur if TET_COMPAT is not
set, or set to an incorrect value.

2. The optional count argument is not supported.

30 April 1996 Page 57
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 58 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

D. Comparison tables for C API interfaces

D.1 Introduction
This appendix contains tables which indicate the status of each C API function and
variable in several contexts. Some of the information in these tables is provisional and
will be finalised during the course of the development of TETware.

The meanings of symbols which appear in these tables are as follows:

√ function or variable is fully supported as described in the specification
∂ function or variable is partially supported
× function or variable is not supported
b function or variable is present but has no effect
1 2 etc. refer to notes at the end of each table table

30 April 1996 Page 59
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

D.2 Support for interfaces in different TETware versions
ii
Function or variable name cc TETware cc TETware-Liteii
Test case structure and managementii
tet_testlist[] √ √
(*tet_startup)() √ √
(*tet_cleanup)() √ √
tet_thistest √ √
tet_nosigreset √ √
tet_pname c

c
c
c
c
c
c

√ c
c
c
c
c
c
c

√ii
Making journal entriesii
tet_setcontext() √ √
tet_setblock() √ √
tet_infoline() √ √
tet_minfoline() √ √
tet_printf() √ √
tet_vprintf() √ √
tet_result() cc

c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√ii
Cancelling test purposesii
tet_delete() √ √
tet_reason() cc

c
√ cc

c
√ii

Manipulating configuration variablesii
tet_getvar() cc √ cc √ii
Generating and executing processesii
tet_fork() √ √
tet_fork1() √ 1 √ 1
tet_exec() √ √
tet_child √ √
tet_spawn() √ √
tet_wait() √ √
tet_kill() cc

c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√ii
Executed process functionsii
tet_main() √ √
tet_exit() √ √ 2
tet_logoff() √ b
tet_thistest √ √
tet_pname c

c
c
c
c
c

√ c
c
c
c
c
c

√ii
Test case synchronisationii
tet_sync() √ ×
tet_msync() √ ×
tet_remsync() √ ×
(*tet_syncerr)() √ ×
tet_syncreport() c

c
c
c
c
c

√ c
c
c
c
c
c

×ii
Remote system designationsii
tet_remgetlist() √ √ 3 4
tet_remgetsys() cc

c
√ cc

c
√ 3ii

Remote process controlii
tet_remexec() √ 5 ×
tet_remwait() √ 5 6 ×
tet_remkill() c

c
c
c

√ 5 c
c
c
c

×ii
Error reportingii
tet_errno √ √
tet_errlist[] √ √
tet_nerr c

c
c
c

√ c
c
c
c

√ii
Remote system informationii
tet_remtime() √ ×
tet_getsysbyid() cc

c
√ cc

c
×ii

Thread controlii
tet_thr_create() √ 1 √ 1iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc cc c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 60 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Only present in the thread-safe API library on Unix-like systems.

2. Equivalent to calling exit().

3. Always returns zero.

4. System name list always contains a single entry for system zero.

5. The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

6. A call to this function may have undesirable side effects in a multi-threaded
environment.

30 April 1996 Page 61
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

D.3 Support for interfaces on different platforms
iii

Platformiii
Unix DOSFunction or variable name

c
c
c
c

POSIX.1 cc
c

Windows cc
c

Windows NT
ii
Test case structure and managementiii
tet_testlist[] √ √ √
(*tet_startup)() √ √ √
(*tet_cleanup)() √ √ √
tet_thistest √ √ √
tet_nosigreset √ b √
tet_pname c

c
c
c
c
c
c

√ c
c
c
c
c
c
c

√ c
c
c
c
c
c
c

√iii
Making journal entriesiii
tet_setcontext() √ √ √
tet_setblock() √ √ √
tet_infoline() √ √ √
tet_minfoline() √ √ √
tet_printf() √ √ √
tet_vprintf() √ √ √
tet_result() cc

c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√iii
Cancelling test purposesiii
tet_delete() √ √ √
tet_reason() cc

c
√ cc

c
√ cc

c
√iii

Manipulating configuration variablesiii
tet_getvar() cc √ cc √ cc √iii
Generating and executing processesiii
tet_fork() √ × ×
tet_fork1() √ 1 × ×
tet_exec() √ × ×
tet_child √ b √
tet_spawn() √ √ 2 √
tet_wait() √ b 2 √
tet_kill() cc

c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

b cc
c
c
c
c
c
c
c

∂ 3iii
Executed process functionsiii
tet_main() √ ∂ 4 √
tet_exit() √ √ √
tet_logoff() √ √ √
tet_thistest √ √ √
tet_pname c

c
c
c
c
c

√ c
c
c
c
c
c

√ c
c
c
c
c
c

√iii
Test case synchronisationiii
tet_sync() √ √ √
tet_msync() √ √ √
tet_remsync() √ √ √
(*tet_syncerr)() √ √ √
tet_syncreport() c

c
c
c
c
c

√ c
c
c
c
c
c

√ c
c
c
c
c
c

√iii
Remote system designationsiii
tet_remgetlist() √ √ √
tet_remgetsys() cc

c
√ cc

c
√ cc

c
√iii

Remote process controliii
tet_remexec() √ 5 6 √ 5 6 √ 5 6
tet_remwait() √ 5 6 7 √ 5 6 √ 5 6
tet_remkill() c

c
c
c

√ 5 6 c
c
c
c

√ 5 6 c
c
c
c

√ 5 6iii
Error reportingiii
tet_errno √ √ √
tet_errlist[] √ √ √
tet_nerr c

c
c
c

√ c
c
c
c

√ c
c
c
c

√iii
Remote system informationiii
tet_remtime() √ 5 √ 5 √ 5
tet_getsysbyid() cc

c
√ cc

c
√ cc

c
√iii

Thread controliii
tet_thr_create() √ 1 × ×iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc cc cc cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 62 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Only present in the thread-safe API library.

2. Execution of the calling process is suspended until the new process terminates.

3. The sig parameter is ignored.

4. Processes launched by tet_remexec() are not supported.

5. A call to this function will fail if the remote system does not support multi-tasking.

6. The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

7. A call to this function may have undesirable side effects in a multi-threaded
environment.

30 April 1996 Page 63
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

D.4 Compatibility with interfaces in existing TET
implementations

iii
TET implementationiiiFunction or variable name

cc
c

TET 1.10 cc ETET 1.10.3 cc dTET2 2.3 cc TETwareii
Test case structure and managementiii
tet_testlist[] √ √ √ √
(*tet_startup)() √ √ √ √
(*tet_cleanup)() √ √ √ √
tet_thistest √ √ √ √
tet_nosigreset √ √ √ √
tet_pname c

c
c
c
c
c
c

√ c
c
c
c
c
c
c

√ c
c
c
c
c
c
c

√ c
c
c
c
c
c
c

√iii
Making journal entriesiii
tet_setcontext() √ √ √ √
tet_setblock() √ √ √ √
tet_infoline() √ √ √ √
tet_minfoline() × × × √
tet_printf() × × × √
tet_vprintf() × × × √
tet_result() cc

c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√ cc
c
c
c
c
c
c
c

√iii
Cancelling test purposesiii
tet_delete() √ √ √ √
tet_reason() cc

c
√ cc

c
√ cc

c
√ cc

c
√iii

Manipulating configuration variablesiii
tet_getvar() cc √ cc √ cc √ cc √iii
Generating and executing processesiii
tet_fork() √ √ √ √ 1
tet_fork1() × × × √ 2
tet_exec() √ √ √ √ 1
tet_child √ √ √ √
tet_spawn() × × × √
tet_wait() × × × √
tet_kill() cc

c
c
c
c
c
c
c

× cc
c
c
c
c
c
c
c

× cc
c
c
c
c
c
c
c

× cc
c
c
c
c
c
c
c

√iii
Executed process functionsiii
tet_main() √ √ √ √
tet_exit() × × √ √
tet_logoff() × × √ √
tet_thistest √ √ √ √
tet_pname c

c
c
c
c
c

√ c
c
c
c
c
c

√ c
c
c
c
c
c

√ c
c
c
c
c
c

√iii
Test case synchronisationiii
tet_sync() × × √ √ 3
tet_msync() × × √ √ 3
tet_remsync() × × × √
(*tet_syncerr)() × × × √
tet_syncreport() c

c
c
c
c
c

× c
c
c
c
c
c

× c
c
c
c
c
c

× c
c
c
c
c
c

√iii
Remote system designationsiii
tet_remgetlist() × × √ √
tet_remgetsys() cc

c
× cc

c
× cc

c
√ cc

c
√iii

Remote process controliii
tet_remexec() × × √ 4 √ 4
tet_remwait() × × √ 4 √ 4 5
tet_remkill() c

c
c
c

× c
c
c
c

× c
c
c
c

√ 4 c
c
c
c

√ 4iii
Error reportingiii
tet_errno × × × √
tet_errlist[] × × × √
tet_nerr c

c
c
c

× c
c
c
c

× c
c
c
c

× c
c
c
c

√iii
Remote system informationiii
tet_remtime() × × × √
tet_getsysbyid() cc

c
× cc

c
× cc

c
× cc

c
√iii

Thread controliii
tet_thr_create() × × × √ 2iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc cc cc cc cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Page 64 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Only supported on Unix-like systems. Use tet_spawn() in order to ensure
portability to all systems.

2. Only present in the thread-safe API library on Unix-like systems.

3. Provided for backwards compatibility with existing dTET2 test cases. New test
cases should use tet_remsync() instead.

4. The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

5. A call to this function may have undesirable side effects in a multi-threaded
environment.

30 April 1996 Page 65
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 66 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

E. dTET2 architecture

E.1 Origin
The diagram in this appendix is reproduced from the dTET2 Installation and User Guide.
It is presented here in order to assist readers in understanding the architecture and
component names used in the current dTET2 implementation.

E.2 Diagram and component definitions
The following diagram provides a simplified view of how the different dTET2
components relate to each other:

Master System

scenario
file

c
c
c

tcc
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

c
c
c

MTCM
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

tetsyncd
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

tetxresd
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

c
c
c

results
file

Slave System(s)

tccd
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

c
c
c

STCM
c
c
c
hhhhhhhhhhhh

c
c
chhhhhhhhhhhh

hh

tcc – dTET2 Test Case Controller
tccd – Test Case Controller daemon
tetsyncd – Synchronisation daemon
tetxresd – Execution results daemon
MTCM – Master Test Case Manager + master test case parts
STCM – Slave Test Case Manager + slave test case parts

30 April 1996 Page 67
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 68 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

F. C language binding

F.1 Origin
The body of this appendix is taken from the section entitled ‘‘C language binding’’ in the
dTET2 Programmers Guide. It is reproduced here for ease of reference and for use in
conjunction with the section entitled ‘‘The C API’’ elsewhere in this document.

Please note that references in this appendix to other sections and chapters refer to
sections and chapters in the dTET2 Programmers Guide and not to parts of this
document.

F.2 Introduction
Applications written to this language binding attach themselves to it through the
following files:

g tet-root/lib/dtet2/libapi.a contains the support routines for test purposes.

g tet-root/lib/dtet2/tcm.o contains the routine main() and associated
support routines for the sequencing and control of invocable components and test
purposes.

g tet-root/lib/dtet2/tcmchild.o contains a main() routine which can be
used by test suites when building processes which test purposes will launch using
the tet_exec() interface.

g tet-root/lib/dtet2/tcmrem.o contains a main() routine which can be used
by test suites when building processes which test purposes will launch using the
tet_remexec() interface.

g tet-root/inc/dtet2/tet_api.h contains a definition of
struct tet_testlist, values for use as arguments to tet_result()
(i.e., TET_PASS, TET_FAIL, TET_UNRESOLVED, TET_NOTINUSE,
TET_UNSUPPORTED, TET_UNTESTED, TET_UNINITIATED and
TET_NORESULT) plus declarations and prototypes for all the ‘C’ API interfaces.

Each of these files should be accessed by test suites via their build tool in a way which is
appropriate given the available ‘C’ language translation system. Test suite authors are
advised to allow easy specification of alternate path names for these files (possibly
through dTET2 configuration variables), thus improving the flexibility of their suites.

Note that test cases built to this API require the TCCs to execute. This is because the
amount of effort required to establish an environment in which test cases could execute
without the TCCs is substantial. This applies especially to the requirement for test
purpose synchronisation and result arbitration.

If the communication variables normally set by the MTCC are unset when the test case is
executed, TET_ACTIVITY defaults to 0, TET_CODE to tet_code and TET_CONFIG
to none. If the file tet_code does not exist in the current directory, then the default set

30 April 1996 Page 69
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

of result codes are used. If the test case requires configuration variables or additional
result codes, those communication variables should be set accordingly.

F.3 Test case structure and management functions
These functions support functionality used in initialising and cleaning up test cases, and
in selecting invocable components and test purposes (described in the chapter entitled
‘‘Writing a C language API-conforming test suite’’ elsewhere in this guide).

Synopsis
struct tet_testlist {

void (*testfunc)(void);
int icref;

};

struct tet_testlist tet_testlist[];

void (*tet_startup)(void);

void (*tet_cleanup)(void);

int tet_thistest;

int tet_nosigreset;

char *tet_pname;

Description
The tet_testlist[] array declares, in the testfunc element of the structure, the
pointer to the function that is associated with each test purpose and, in the icref
element of the structure, the relationship of the test purpose to an invocable component.
The tet_testlist[] array is terminated by a structure with the testfunc element
set to NULL. No other element of the array will use the value NULL for this element.

For each requested invocable component, the TCM scans the tet_testlist[] array
and executes, in order, each test purpose that is associated with that invocable
component. When all invocable components are requested, the TCM executes all ICs
for which entries are defined in the tet_testlist[] array, in ascending order. In
both cases the TCM will calculate the number of test purposes that are to be executed for
each requested invocable component.

The TCM does not perform any error checking on the contents of the
tet_testlist[] array. It is the test author’s responsibility to ensure that the
contents of the array is correctly specified. In particular, it should be noted that in a
distributed test case the tet_testlist[] structure must be exactly replicated on each
system that is to participate in the test and, therefore, contain the same number of
members. This may require the inclusion of test purposes on some systems that do
nothing except register a result of PASS.

The function pointers tet_startup and tet_cleanup are set to the functions to be
used for test case specific start up and clean up procedures respectively. The start up
procedure is executed before the first requested invocable component and the clean up
procedure is executed on completion of the last requested invocable component. These

Page 70 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

routines are executed irrespective of which invocable components are requested. Note
that if either of these pointers is set to NULL, the TCM will not attempt to call the
respective function.

The TCM is provided as the main() routine to the test case program and contains an
external declaration of the tet_startup and tet_cleanup function pointers and of
the tet_testlist[] array.

The tet_thistest variable contains the sequence number (starting at 1) of the
element in the tet_testlist[] array that is associated with the currently executing
test purpose. During execution of the start up and clean up functions, tet_thistest
is set to zero.

The tet_nosigreset variable controls whether the TCM reinstates signal handlers
for unexpected signals before each test purpose. The default value of zero means that
signal handlers will be reinstated before each test purpose, to ensure that unexpected
signals do not go unnoticed if an earlier test purpose installed a local handler but did not
restore the original handler. If tet_nosigreset is set to a non-zero value in the
start-up function called via (*tet_startup)(), then signal handlers will be left in
place between test purposes. In test cases where stray signals constitute a test failure, it
is recommended that tet_nosigreset is left with its default value of zero. This is
because, even if test purposes contain code to restore the signal handling, this code will
not be executed if an unexpected signal arrives and the TCM skips to the start of the next
test purpose.

The tet_pname variable contains the process name as given on the test case command
line.

F.4 Insulating from the test environment
The following configuration variables are used by the ‘C’ language TCM to help
determine which events should be handled for the test case, and which should be passed
through. They are used by the TCM to support functionality to insulate test cases from
the test environment.

TET_SIG_IGN defines (by comma separated number) the set of signals that are to
be ignored during test purpose execution. Any signal that is not set
to be ignored or to be left (see TET_SIG_LEAVE below) with its
current disposition, will be caught when raised and the result of the
test purpose will be set to UNRESOLVED because of the receipt of
an unexpected signal. A test purpose may undertake its own signal
handling as required for the execution of that test purpose. The
disposition of signals will be reset after the test purpose has
completed, unless the global variable tet_nosigreset is non-
zero. The TCM needs to know how many signals the
implementation supports in order to set up catching functions for
these signals.

30 April 1996 Page 71
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

TET_SIG_LEAVE defines (by number) the set of signals that are to be left unchanged
during test execution. In most cases this will mean that the signal
takes its default action. However, the user can change the
disposition of the signal (to ignore) before executing the TCC if this
signal is to remain ignored during the execution of the test purposes.

The implementation does not allow the signals defined by POSIX.1 (ISO 9945−1) to be
set to be ignored or left unchanged, as this may pervert test results.

F.5 Making journal entries
These functions support functionality used in creating journal entries.

Synopsis
void tet_setcontext(void);

void tet_setblock(void);

void tet_infoline(char *data);

void tet_result(int result);

Description
The tet_setcontext() function sets the current context to the value of the current
process ID. A call to tet_setcontext() should be made by any application which
executes a fork() to create a new process and which wishes to write entries from both
processes. The call to tet_setcontext() must be made from the child process, not
from the parent.

The tet_setblock() function increments the current block ID. The value of the
current block ID is reset to one at the start of every test purpose or after a call to
tet_setcontext() which altered the current context. The sequence ID of the next
entry, a number which is automatically incremented as each entry is output to the
execution results file, is set to one at the start of each new block.

The tet_infoline() function outputs an information line to the execution results
file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call to tet_infoline()
causes the current context to be set to the value of the calling process ID and the current
block ID to be set to one.

The tet_result() function sets the result to result. This result is output to the
execution results file by the TCM upon test purpose completion. This ensures that all
informational messages are written out before the test purpose result, and that there is
one (and only one) result generated per test purpose. If the result code is one for which
the action specified in the result codes file is to abort testing, then the TCM will exit after
the test purpose has completed. If an immediate abort is desired, then the test purpose
should execute a return statement immediately after the call to tet_result().

If a test purpose does not call tet_result(), the TCM will generate a result of
NORESULT. If more than one call to tet_result() is made with different result

Page 72 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

codes, the TCM determines the final result code by use of precedence rules. The
precedence order (highest first) is:

FAIL
UNRESOLVED, UNINITIATED
NORESULT (i.e., invalid result codes)
Test suite supplied codes
UNSUPPORTED, UNTESTED, NOTINUSE
PASS

Where two or more codes have the same precedence then all calls to tet_result()
with one of those codes are ignored except the first such call.

F.6 Canceling test purposes
These functions support functionality used to cancel test purposes.

Synopsis
void tet_delete(int testno, char *reason);

char *tet_reason(int testno);

Description
The function tet_delete() marks the test purpose specified by testno as canceled
on the local system and will output reason as the reason for cancellation on the
information line which is output whenever the TCM attempts to execute this test purpose.
The argument testno is the sequence number (starting at 1) of the corresponding
element in the tet_testlist[] array. If the requested testno does not exist, no
action is taken. If the requested testno is already marked as canceled, the reason is
changed to reason and the test purpose remains marked as canceled. If the reason is
set to (char *) NULL then the requested testno is marked as active; this enables
previously canceled test purposes to be re-activated.

Note that the string pointed to by reason is not copied by tet_delete(), so it must
point to static data, as the calling function will have terminated when the reason string is
accessed by the TCM. Also, care should be taken not to re-use a buffer that has
previously been passed to tet_delete(). This function cannot be called from a child
process.

If tet_delete() is called in a distributed test case, the API notifies other
participating TCMs of the cancellation. This notification occurs when the TCMs
synchronise with each other before attempting to execute the cancelled test purpose.
Thus, none of the TCMs execute a distributed test purpose which has been cancelled on
any of the participating systems.

The function tet_reason() returns a pointer to a string which contains the reason
why the test purpose specified by testno has been canceled on the local system. If this
test purpose does not exist or is not marked as canceled on the local system, a value of
(char *) NULL is returned. It is not possible to use tet_reason() in a
distributed test case to determine whether or not a remote test purpose part has been
cancelled.
30 April 1996 Page 73

X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

F.7 Manipulating configuration variables
The functions in this section support functionality used for manipulating configuration
variables.

Synopsis
char *tet_getvar(char *name);

Description
The function tet_getvar() retrieves the setting of the configuration variable name
and returns a pointer to that setting. This pointer will remain valid for the life of the
process, regardless of subsequent calls to tet_getvar().

Note that if a variable has no setting, tet_getvar() returns a pointer to an empty
string. If a requested variable is undefined, tet_getvar() returns a NULL pointer.

F.8 Generating and executing processes
These functions support forking new child processes.

Synopsis
int tet_fork(void (*childproc)(void), void (*parentproc)(void),

int waittime, int validresults);

int tet_exec(char *file, char *argv[], char *envp[]);

extern pid_t tet_child;

Description
The tet_fork() function creates a new process which is a copy of the calling process
and modifies the signal disposition in the newly created process such that any signals that
were being caught in the parent process are set to their default values in the child process.
The child process will then commence execution of the routine childproc() and,
upon completion of this routine, will terminate with an exit code that indicates to the
parent the correctness of execution of this routine. If the routine parentproc() is not
set to NULL, this routine will be executed by the parent process before the exit code of
the child process is waited for.

On completion of the optional parentproc() routine, the exit code returned by the
child process will be examined by masking off the bits which are set in
validresults. If the result is zero, tet_fork() assumes that this was a legal (or
expected) termination code. If not, it assumes that the child process completed with an
unexpected result and an error has occurred. This unexpected result is reported to the
execution results file. The tet_fork() function will return −1 if the result of the child
process was invalid, or the valid result code if the result of the child process was one of
the valid results. When tet_fork() returns −1 it reports the nature of the error using
tet_infoline() and sets the test purpose result code to UNRESOLVED by calling
tet_result(). If waittime is not set to zero, the parent process will ensure that the
child process does not continue to execute for more than waittime seconds after the
completion of the routine parentproc().
Page 74 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

The tet_exec() function may be called from a childproc() routine of a child
process generated by a call to tet_fork(). The tet_exec() function will pass the
argument data as specified by argv[] and the environment data specified by envp to
the process specified by file. The usage of the tet_exec() is equivalent to that of
the ISO 9945−1 execve() function, except that the API adds arguments and
environment data that are to be interpreted by the driver of the executed file. Also, the
new process should be built with tcmchild.o if that process is expected to make use
of API calls. If tet_exec() is called without first calling tet_fork(), the results
are undefined. This is because the tet_fork() function makes calls to
tet_setcontext() in the child and tet_setblock() in the parent to distinguish
output from the child and from the parent before, during and after execution of the
parentproc() routine.

The global variable tet_child is provided for use in the parentproc() routine
called from tet_fork(). It is set to the process ID of the child.

F.9 Executed process functions
These functions are to be used by processes executed through the tet_exec() and
tet_remexec() functions.

Synopsis
int tet_main(int argc, char *argv[]);

void tet_exit(int status);

void tet_logoff(void);

int tet_thistest;

char *tet_pname;

Description
The function tet_main(), supplied by the test suite developer, is called by the
main() function of the dTET2-supplied child process controllers tcmchild.o and
tcmrem.o. Prior to calling tet_main(), tcmchild.o and tcmrem.o both set the
tet_thistest variable to the number associated with the test purpose in the process
that called tet_exec() or tet_remexec(). This value should not be changed by
the executed process.

The current context is preserved from the calling process and the current block is
incremented by one before tet_main() is called.

If tet_main() returns, its return value becomes the child process’s exit status. If the
child process was started by a call to tet_exec(), the child process’s exit status will
be returned to the process which called the tet_fork() function; in this case, the
value returned from tet_main() will usually match one of the valid result values
specified in the call to tet_fork(). If the child process was started by a call to
tet_remexec(), the child process’s exit status may be returned to the parent by a call
to tet_remwait().

30 April 1996 Page 75
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The function tet_exit() should be used instead of exit() by child processes that
are started by calls to tet_exec() or tet_remexec(). This function logs off all
dTET2 servers, then calls exit() with the specified status as argument.
tet_exit() should only be called from the child process that is started by
tet_exec() or tet_remexec() and not by any of its children.

The function tet_logoff() may be called by child processes that are started by calls
to tet_exec() or tet_remexec(), which do not need to make any further dTET2
API calls and are not able to call tet_exit() at process termination time (e.g., if one
of the flavours of exec() is about to be called in the child process). tet_logoff()
should only be called once from the child process. The results are undefined if a process
or any of its descendents makes any dTET2 API calls after tet_logoff() is called.

The tet_pname variable in the child process contains the process name as given in the
argv[0] parameter to tet_main().

F.10 Test case synchronisation
These functions enable parts of a distributed test purpose or a user-supplied startup or
cleanup function that are running on different systems to synchronise to an agreed point
in the executing code. They are only available for use in distributed test cases.

Synopsis
int tet_sync(long syncptno, int *syncnames, int waittime);

int tet_msync(long syncptno, int *syncnames, int waittime,
struct tet_synmsg *msgp);

Description
A call to tet_sync() causes the calling process’s system to synchronise with one or
more of the other systems that are participating in a particular distributed test case. The
call can only succeed if each of the systems specified in the call also expect to
synchronise with each other and with the calling process.

When tet_sync() is called from a process executing on a slave system, this indicates
that the process wishes to synchronise with the master system as well as the other
systems listed in the zero-terminated array of system IDs pointed to by syncnames. If
syncnames is NULL, this is interpreted to mean an empty list of slave system IDs.

When tet_sync() is called from a process executing on the master system, this
indicates that the process wishes to synchronise with the systems listed in the zero-
terminated array of slave system IDs pointed to by syncnames. syncnames cannot
be NULL or point to an empty array in this case since the master system must synchronise
with at least one slave system.

syncptno specifies the sync point number to which the calling process wishes to
synchronise. If syncptno is zero, a successful call to tet_sync() will return as
soon as all participating systems have synchronised to the next sync point. If
syncptno is greater than zero, a successful call to tet_sync() will return as soon as
all participating systems have synchronised using a sync point number which is not less

Page 76 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

than syncptno. When syncptno is greater than zero, the call will fail if a sync point
has already occurred during the lifetime of the current test case whose number is greater
than or equal to syncptno. The results are undefined if a negative syncptno is
specified.

waittime specifies the number of seconds that may elapse between synchronisation
requests from other participating systems before the calling process times out. If
waittime is greater than zero, a call to tet_sync() will be successful if all the
participating systems synchronise to the specified sync point with no more than
waittime seconds between each request. If waittime is zero, a call to
tet_sync() will return immediately, whether or not it is successful. If waittime is
negative, a call to tet_sync() will wait indefinitely for the specified sync point to
occur or until the request fails for some reason. Test suite authors should be aware of the
potential for deadlock if a negative waittime is specified.

The call to tet_sync() returns zero as soon as all the participating systems
synchronise at least as far as the specified sync point without timing out.

The call to tet_sync() returns −1 when one of the following conditions occur:

g More than waittime seconds elapse between synchronisation requests from
participating systems.

g A related synchronisation request times out on one of the other participating
systems.

g The user-supplied function in a test case on one of the other participating systems
returns control to its TCM before synchronising.

g The sync point specified by syncptno has already occurred.

g The calling process is running on the master system and syncnames is NULL or
points to an empty system ID list.

g A system ID appears more than once in the array pointed to by syncnames.

g An invalid parameter is specified in the call.

g The API encounters a problem while processing the request.

tet_msync() operates in the same way as does tet_sync(), with the additional
facility of enabling systems to exchange sync message data during a successful call. One
participating system may send sync message data which will be made available to the
other systems when the call returns.

tet_msync() takes an additional msgp argument which points to a tet_synmsg
structure (as defined in <dtet2/tet_api.h>). This structure contains the following
elements:

30 April 1996 Page 77
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

struct tet_synmsg {
char *tsm_data;
int tsm_dlen;
int tsm_sysid;
int tsm_flags;

};

When tet_msync() is called by a distributed test purpose part on each system, one
system sends data which may be received by other systems. The API associates the sync
message data with the particular sync point specified by the syncptno parameter used
in the tet_msync() call on the sending system. In order to receive the message data,
the syncptno parameter in calls to tet_msync() on receiving systems must
reference this sync point exactly, either by specifying the same value for syncptno as
that used on the sending system, or by specifying a zero syncptno.

The test purpose part on the sending system should indicate a desire to send sync
message data by initialising members of the tet_synmsg structure as follows before
tet_msync() is called:

g tsm_data points to the message to be sent.

g tsm_dlen is set to the number of bytes of message data to be sent.

g tsm_flags is set to TET_SMSNDMSG.

The test purpose part(s) on the receiving system(s) should indicate their willingness to
receive sync message data by initialising members of the tet_synmsg structure as
follows before tet_msync() is called:

g tsm_data points to a buffer in which the message data is to be received.

g tsm_dlen is set to the length of the receiving buffer.

g tsm_flags is set to TET_SMRCVMSG.

If the call to tet_msync() is successful, then on return the API modifies members of
the tet_synmsg structure on the receiving systems(s) as follows:

g Up to tsm_dlen bytes of sync message data are copied to the receiving buffer
pointed to by tsm_data.

g tsm_dlen is set to the number of bytes of sync message data actually copied.

g tsm_sysid is set to the system ID of the system that sent the data, or to −1 if
there is no message data associated with the sync point specified by syncptno.

g If the API must truncate the message because the receiving buffer is not big
enough, the TET_SMTRUNC bit is set in tsm_flags.

If more than one system tries to send sync message data for a particular sync point, the
API performs the following operations:

i. Decide from which system to accept data and redesignate the other sending
systems as receiving systems.

Page 78 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

ii. Process the redesignated systems as described above.

iii. Clear the TET_SMSNDMSG bit and set the TET_SMRCVMSG bit in tsm_flags
on the redesignated systems.

iv. Set the TET_SMDUP bit in tsm_flags on all systems.

If a system tries to send a message which is larger than the maximum permitted message
size (as defined by the value TET_SMMSGMAX in <dtet2/tet_api.h>), the API
perform the following actions:

i. Truncate the message to the maximum size before accepting it.

ii. Set the TET_SMTRUNC bit in tsm_flags on all systems.

If the call to tet_msync() is unsuccessful, the values of members of the
tet_synmsg structure are undefined when the call returns.

If a system calls tet_msync() with a msgp of NULL, the API regards it as a receiving
system but does not return any message data to it. Thus a call to tet_msync() with a
msgp of NULL is functionally equivalent to calling tet_sync().

The API treats sync message data as opaque and does not perform byte-swapping or
other processing when data is exchanged between machines with different architectures.
So it is best only to send ASCII strings in messages that are to be exchanged between
systems which might run on different machines.

When calls to tet_sync() or tet_msync() are unsuccessful, the API places an
entry in the journal file indicating the cause of the failure. If the call was unsuccessful
because one or more of the participating systems failed to synchronise, or the related
process timed out or terminated before the specified sync point occurred, this message
identifies the systems that failed to synchronise successfully.

Since synchronisation with other systems is defined in terms of system IDs (rather than
individual process IDs), it is the responsibility of the test suite author to ensure that only
one process running on a particular (logical) system calls tet_sync() or
tet_msync() at one time. The results are undefined if processes running on the same
system make overlapping tet_sync() or tet_msync() calls.

For an overview of dTET2 synchronisation and a description of how to interpret
tet_sync() and tet_msync() journal messages, see the chapter entitled ‘‘Test
case synchronisation’’ in the dTET2 Installation and User Guide.

30 April 1996 Page 79
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

F.11 Remote system designations
These functions enable a dTET2 test purpose to retrieve information about system
designations.

Synopsis
int tet_remgetlist(int **sysnames);

int tet_remgetsys (void);

Description
The tet_remgetlist() function returns the number of slave systems which are
participating in a distributed test case. If there is at least one slave system available, a
pointer to a zero-terminated array containing the names of the available slave systems is
returned indirectly through *sysnames.

The tet_remgetsys() function returns the system ID of the system on which the
calling process is executing.

F.12 Remote process control
These functions enable a part of a distributed test case running on one system to generate
a remote process on another system.

Synopsis
int tet_remexec(int sysname, char *file, char *argv[]);

int tet_remwait(int remoteid, int waittime, int *statloc);

int tet_remkill(int remoteid);

Description
The tet_remexec() function may be called from a distributed test case. The calling
process will wait until the requested process has been started and has synchronised with
it.

Upon successful synchronisation the call to tet_remexec() returns the remoteid
of the remote executed process as a value greater than zero. If the call to
tet_remexec() fails, a value of −1 is returned.

The sysname argument is the system ID of one of the other systems that is participating
in the current distributed test case and the corresponding STCC is requested to initiate the
process specified by file. The location of file is relative to the remote system’s
TET_EXECUTE directory if set, otherwise, it is relative to tet-root on the remote system.
Since the request is performed by a STCC, it is not necessary for a process to call
tet_fork() before calling tet_remexec().

The tet_remexec() function passes the argument data as specified by argv[] to
the process specified by file. The usage of tet_remexec() is similar to the
ISO 9945−1 execv() function.

Page 80 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Note that the environment is not passed in a tet_remexec() call because it is not
expected that there will be any correlation of the environment information on the remote
machine to that of the calling process. Any data that is need by the remote process must
be passed as an argument.

The call to tet_remexec() returns −1 and sets errno to EINVAL if sysname does
not refer to a known remote system.

The call to tet_remexec() returns −1 and sets errno to ENOEXEC if file cannot
be executed on the remote system, or if synchronisation with the remote process was not
successful.

The call to tet_remexec() returns −1 and sets errno to EFAULT if the file or
argv parameters are invalid.

The call to tet_remexec() returns −1 and sets errno to EIO if the connection with
the remote system is broken.

The tet_remwait() function waits for the termination of a remote process initiated
by tet_remexec(). The remoteid argument is the remote execution identifier
returned from a successful call to tet_remexec().

The call to tet_remwait() provides the exit status of the remote process in the
integer pointed to by statloc and returns zero if the call has completed successfully.
The exit status value returned indirectly through *statloc represents the value
returned by the wait() system call on the remote system. Thus, when interpreting a
signal number extracted from *statloc on the local system, the test suite author
should bear in mind that it is possible for the meanings of signal numbers on the remote
system to be different from meanings defined (e.g., in <signal.h>) on the local
system.

If the call to tet_remwait() fails to complete after waittime seconds or fails for
any other reason a value of −1 is returned and *statloc is not updated. When
waittime is set to zero, the call to tet_remwait() will return immediately, either
with an error if the requested process has not yet terminated or with the exit status if the
requested process has already terminated.

The call to tet_remwait() returns −1 and sets errno to EINVAL if remoteid
does not refer to a process initiated from a call to tet_remexec().

The call to tet_remwait() returns −1 and sets errno to ECHILD if remoteid
refers to a process which is already the subject of a successful call to tet_remwait().

The call to tet_remwait() returns −1 and sets errno to EAGAIN if timeout
elapses.

The call to tet_remwait() returns −1 and sets errno to EINTR if the call is
interrupted.

The call to tet_remwait() returns −1 and sets errno to EIO if the connection to the
remote system is broken.

30 April 1996 Page 81
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The tet_remkill() function causes the STCC which controls the remote process
designated by remoteid to terminate the process. The tet_remkill() call returns
immediately without awaiting confirmation that the process has terminated. (This
information can be obtained from a subsequent call to tet_remwait() if required).

The call to tet_remkill() returns −1 and sets errno to EINVAL if remoteid
does not refer to a process initiated from a call to tet_remexec().

The call to tet_remkill() returns −1 and sets errno to EIO if the connection to the
remote system is broken.

Page 82 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

G. Test case synchronisation

G.1 Origin
The body of this appendix is taken from the chapter entitled ‘‘Test case synchronisation’’
in the dTET2 Installation and User Guide. It is reproduced here in order to assist readers
in understanding the concepts and processing involved when parts of a distributed test
case synchronise with each other.

G.2 Introduction
This chapter describes how systems synchronise with each other and explains how to
interpret diagnostic messages which are generated when synchronisation requests do not
complete successfully.

G.3 Synchronisation request concepts

G.3.1 Request types
There are two types of synchronisation performed by dTET2 processes. Automatic
synchronisation requests are generated when Test Case Managers synchronise with each
other at certain pre-defined points during test case execution. User synchronisation
requests are generated when different parts of a distributed test purpose call the
tet_sync() or tet_msync() API library routines.

G.3.2 Request parameters
Each synchronisation request is accompanied by a sync point number, a system ID list,
a sync vote and an optional timeout. In addition, a request may include an indication
that the requesting process wishes to send or receive sync message data during the
synchronisation operation.

Processes on systems which want to synchronise with each other send requests to the
dTET2 Synchronisation daemon (tetsyncd). tetsyncd waits until all systems have
submitted their requests and then notifies each participating process of the result.

The value of the sync vote specified in a synchronisation request can be either yes or
no. tetsyncd notifies all participating processes of how each system voted in each
request.

If a process specifies a timeout when making a request, then tetsyncd starts a per-
process timeout as soon as the request is received. Each per-process timeout is reset to
its initial value as each subsequent request is received from other participating systems;
however, if the timeout for any process expires before all systems have submitted their
requests then the synchronisation is considered to have failed.

It is possible for one system making a synchronisation request to send sync message
data with the request. If the synchronisation is successful, then tetsyncd returns this
data to other participating systems which have indicated willingness to receive such data

30 April 1996 Page 83
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

when synchronisation is complete.

G.3.3 Sync events
tetsyncd defines a new sync event when the first system makes a request to
synchronise to a particular sync point with a group of other systems. A sync event is
considered to have completed as soon as one of the following conditions are met:

1. All of the systems that are expected to synchronise have done so.

2. One of the systems that has synchronised times out after having done so.

3. A process that has made a synchronisation request disconnects from tetsyncd
before all the other systems that are expected to synchronise have done so.

When the event completes, all processes that have participated in the event are notified of
the result. An event is considered to have succeeded if all systems that are expected to
participate in the event submit requests with a yes vote. If a process on any of the
participating systems submits a no vote, times out or disconnects from tetsyncd
before the event completes, then the event is considered to have failed.

G.3.4 Sync states
tetsyncd maintains a set of sync states for each sync event. One sync state in this set
is maintained for each system that is expected to participate in a sync event.

The sync state of a system is indicated by one of the following mnemonics:

SYNC-YES The system has synchronised with a yes sync vote.

SYNC-NO The system has synchronised with a no vote.

NOT-SYNCED The system has not yet participated in this sync event.

TIMED-OUT The system has synchronised but the associated timeout has expired
before the sync event completed.

DEAD The system has synchronised but the participating process has
disconnected from tetsyncd before the sync event completed.

These mnemonics are used in diagnostic messages that relate to synchronisation request
failures and other unexpected synchronisation conditions.

Page 84 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

G.3.5 With what to synchronise?
As indicated above, when a dTET2 process makes a synchronisation request, it specifies
a list of system IDs with which is wishes to synchronise. This means that any one
dTET2 process running on a particular system can participate in a sync event on behalf
of that system. It is not possible for a process to use dTET2 synchronisation facilities to
synchronise with a particular process on a named system, or for processes on the same
system to use these facilities to synchronise with each other.27

G.4 Automatic synchronisation requests

G.4.1 Description
Automatic synchronisation requests are generated by the dTET2 Test Case Manager, and
by the API when a remote executed process is started. The list of systems that are
expected to participate in automatic sync events for each distributed test case is defined
before the first request is made. Each automatic synchronisation request is accompanied
by a sync ID which identifies this list of systems. Processes which make automatic
synchronisation requests do not send or receive sync message data.

The following subsections describe the circumstances under which automatic
synchronisation requests are made, and the parameters that are used in each type of
request.

G.4.2 Test case manager synchronisation
When a distributed test case is executed, the TCMs on each participating system
synchronise with each other during certain stages of test case processing. The sync point
number associated with each request is used to identify which stage is about to begin.
The timeout specified with each request depends on which stage is about to begin.

hhhhhhhhhhhhhhh
27. Note that the term system refers to a logical system ID, not to a physical machine. Therefore, it is

possible for two or more co-operating processes with different system IDs running on the same
physical machine to use dTET2 synchronisation facilities to synchronise with each other.

30 April 1996 Page 85
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The following table lists these stages, the sync point numbers that are used to identify
them and the timeouts that are used:

ii
Timeout

Stage in test case processing Sync point number28

(seconds)ii
At TCM startup time 1 60
Before the startup function (if any) is called 2 60
At the start of each invocable component ICno ∗ 216 60
At the start of each test purpose (ICno ∗ 216) + (TPno ∗ 2) 60
At the end of each test purpose (ICno ∗ 216) + (TPno ∗ 2) + 1 600
Before the cleanup function (if any) is called ((ICcount + 1) ∗ 216) + 2 60iicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

In this table, ICno is the number of the invocable component being processed, TPno is
the number of the test purpose being processed and ICcount is the number of invocable
components in the test case.

Normally, TCMs on each participating system specify a yes sync vote in each request.
However, if a TCM on one system is about to execute a test purpose which has been
deleted (by a previous call to tet_delete() in that test case), it instead specifies a no
sync vote in the request made at test purpose start. When all the other TCMs see this no
vote, they interpret this to mean that the test purpose is deleted and do not execute it.

In addition, if the consolidated result of a test purpose has an action code of Abort, the
TCM on the master system synchronisises to the end of the last test purpose in the test
case using a no vote. This causes all the other TCMs to perform the following actions:

i. Any remaining test purposes in the current invocable component are deleted.

ii. No further invocable components are executed, but test case cleanup processing is
performed.

G.4.3 Remote executed process synchronisation
When a test case starts a remote process by calling tet_remexec(), the remote
process synchronises with the test case that called tet_remexec(). This is to ensure
that the test case waits until the remote process has started up before continuing
execution. Sync point number 1 and a yes sync vote are used in this request and the
timeout is set to 60 seconds.

If the remote system’s tccd is unable to execute the process for some reason, it
performs the initial synchronisation operation on behalf of that remote process but
instead specifies a no vote in the request.

hhhhhhhhhhhhhhh
28. It will be seen that the way that automatic sync point numbers are calculated imposes a limit of (215 − 1)

test purposes per test case and (215 − 2) invocable components per test case.

Page 86 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

The way that synchronisation with remote executed processes is implemented makes it
possible for a test case to start more than one process on the same remote system.

G.4.4 Error handling
There are two classes of error that can occur during automatic synchronisation requests,
as follows:

— the request fails as a result of some problem that occurs in the API or in
tetsyncd; these are described below as synchronisation request failures

— some problem is detected with one of the other systems which participated (or
should have participated) in the sync event; these are described below as
synchronisation errors

If an automatic synchronisation request failure occurs, then the TCM emits a single
diagnostic indicating which automatic synchronisation request was being attempted and
the cause of the failure.

If a problem is detected with one of the other systems involved in a sync event, then the
TCM emits one diagnostic for each affected system. Each diagnostic indicates which
automatic synchronisation request was being attempted and system ID and sync state of
the affected system.

G.4.5 Example error messages
In the following examples, suppose that parts of a distributed test case are being executed
on the master system and on slave systems 1 and 2.

G.4.5.1 Example 1

Suppose that a test case could not be started on slave system 1 for some reason. The
TCM on (say) the master system will time out waiting for slave system 1 to synchronise
at TCM startup time, and will generate the following message:

system 0, reply code = ER_TIMEDOUT: initial sync error, \
sysid = 1, state = NOT-SYNCED

The TCM that started successfully on slave system 2 will generate the following
message:

system 2, reply code = ER_SYNCERR: initial sync error, \
sysid = 0, state = TIMED-OUT

system 2, reply code = ER_SYNCERR: initial sync error, \
sysid = 1, state = NOT-SYNCED

30 April 1996 Page 87
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

G.4.5.2 Example 2

If the TCMs on systems 1 and 2 synchronise to the end of (say) test purpose 4 and the
TCM on system 1 times out before the master TCM reaches the same point, the TCM on
system 1 will generate the following message:

system 1, reply code = ER_TIMEDOUT: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT-SYNCED

and the TCM on system 2 will generate the following message:

system 2, reply code = ER_SYNCERR: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT-SYNCED

system 2, reply code = ER_SYNCERR: Auto Sync error at end of TP 4, \
sysid = 1, state = TIMED-OUT

At this point, the sync event is considered to have completed.

When the master TCM finally makes its synchronisation request at the end of test
purpose 4, it will generate the following message:

system 0, reply code = ER_DONE: Auto Sync failed at end of TP 4

This indicates that the master TCM has missed the sync event because the event has
already completed.

G.5 User synchronisation requests

G.5.1 Description
A user synchronisation request is generated when a test purpose in a distributed test case
calls the tet_sync() or tet_msync() API library routines. The sync point
number, system ID list and timeout are specified in each call. The sync vote is always
yes for user synchronisation requests. In addition to these parameters, a process can
send, or indicate willingness to receive, sync message data by calling tet_msync()
instead of tet_sync(). When this is done and all participating systems use the same
sync point number, message data sent by the sending system is returned to the receiving
systems on successful completion of the event. Apart from this distinction, everything in
the description of tet_sync() that follows applies equally to tet_msync().

tetsyncd defines a separate sequence of user sync events for each distinct system ID
list specified in tet_sync() calls made by test purposes in a particular distributed test
case. Thus, a user sync event will only be successful if the test purposes on all systems
that are expected to participate in the event all specify the same system ID list in their
tet_sync() calls.

The dTET2 specification requires that all user synchronisation requests include the
master part of a distributed test case. The tet_sync() function automatically includes
the system ID of the master system in the system ID list associated with each user
synchronisation request. Therefore, when a distributed test purpose part makes a call to
tet_sync(), it does not itself have to include the system ID of the master system in
the accompanying system ID list.

Page 88 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

User sync events have lower precedence than automatic sync events. Therefore, if the
test purpose on one system returns control to the TCM while test purposes on other
systems are waiting on a user sync event that includes that system, the user sync event is
considered to have completed unsuccessfully and participating processes are notified
accordingly.

G.5.2 Error handling
Synchronisation request failures and synchronisation errors for user synchronisation
requests are defined in the same way as for automatic synchronisation requests. The API
prints a test case manager message to the journal file when a user synchronisation request
is unsuccessful.

Each diagnostic indicates the sync point number of the request that was unsuccessful and
the system IDs and sync states of the systems which failed to synchronise or timed out.
However, the formats of diagnostics printed to the journal file are different from those
generated for unsuccessful automatic synchronisation requests. Examples of the formats
that may be used to report an unsuccessful user synchronisation request are presented in
the next section.

G.5.3 Example error messages
In the following examples, suppose that parts of a distributed test case are being executed
on the master system and on slave systems 1 and 2. Suppose that sync point number 12
is being used in each case and that the timeout is set to 30 seconds.

G.5.3.1 Example 1

Suppose the test purpose on the master system (system 0) expects to synchronise with the
test purpose on slave system 1, but the test purpose on system 1 returns control to the
TCM without making a synchronisation request. The API on the master system will
generate the following messages:

system 0: tet_sync() failed, syncptno = 12, \
other system did not sync or timed out

system 0: system = 1, state = NOT-SYNCED

G.5.3.2 Example 2

Suppose that all the systems expect to synchronise with each other but that slave system
1 times out before the master system reaches the sync point. The API on system 1 will
generate the following messages:

system 1: tet_sync() failed, syncptno = 12, \
request timed out after waittime of 30 seconds

system 1: system = 0, state = NOT-SYNCED
system 1: system = 2, state = SYNC-YES

and the API on system 2 will generate the following messages:

30 April 1996 Page 89
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

system 2: tet_sync() failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 2: system = 0, state = NOT-SYNCED
system 2: system = 1, state = TIMED-OUT

At this point the event is to considered to have completed.

When the test purpose on the master system finally makes its synchronisation request, the
request will fail because the associated event has already happened. The API on the
master system will generate the following message:

system 0: tet_sync() failed, syncptno = 12, event already happened

This indicates that the master part of the test purpose has missed the sync event because
the event has already completed.

G.5.3.3 Example 3

Suppose that the test case on slave system 1 terminates unexpectedly before the sync
event completes. The API on the master system will generate the following messages:

system 0: tet_sync() failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 0: system = 1, state = DEAD
system 0: system = 2, state = SYNC-YES

and the API on slave system 2 will generate the following messages:

system 2: tet_sync() failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 2: system = 0, state = SYNC-YES
system 2: system = 1, state = DEAD

Page 90 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

H. Server interface functions

H.1 Origin
This appendix describes interface functions for use by clients when communicating with
dTET2 servers. The body of this appendix is taken from a project document which was
used by members of the original dTET2 development team.

H.2 Introduction
The functions described here are internal interfaces for use within dTET2 processes, and
are not available for use by test cases. They are not part of the API.

These descriptions are presented here to help readers understand the internal workings of
the existing dTET2 implementation. It is not guaranteed that these interfaces will exist in
any future TET implementation.

H.3 SYNCD functions

int sd_start()

Start a SYNCD process. Return 0 if successful or −1 on error.

This function must be called by the MTCC if SYNCD services are required.

int sd_logon()

Log on to the SYNCD, making a connection if necessary. Return 0 if successful or −1
on error.

int sd_logoff(stayopen)
int stayopen;

Log off from the SYNCD. Return 0 if successful or −1 on error.

This function may be called even if the caller is not currently logged on to the SYNCD
(e.g., from an error or cleanup function). If stayopen is non-zero, the existing connection
is retained so that a subsequent sd_logon() call will not need to make a new
connection.

30 April 1996 Page 91
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

long sd_snget()

Get a sync ID from the SYNCD for use in sync requests. Return the sync ID if
successful or −1 on error. The server reply code is available in sd_errno.

int sd_snsys(snid, snames, nsname)
long snid;
int *snames, nsname;

Assign a system name list to a sync ID. Return 0 if successful or −1 on error. The
server reply code is available in sd_errno.

This function specifies which systems should be expected to participate in auto-syncs
associated with a particular sync ID. snid identifies the sync ID to which the system
name list should be assigned. snames points to the start of the system name list. nsname
specifies the number of system names in the list.

int sd_masync(snid, xrid, spno, vote, timeout, synreq, nsys)
long snid, xrid, spno;
int vote, timeout, *nsys;
struct synreq *synreq;

Perform an auto sync from the MTCM. Return 0 if successful or −1 on error. The
server reply code is available in sd_errno.

snid is a sync ID obtained by the MTCC from a previous sd_snget() call. xrid is an
xres file ID obtained by the MTCC from a previous xd_xropen() call.

spno is the sync point number for this sync request; for auto-syncs at TP start and end,
this should be generated by the MK_ASPNO() macro.

vote is the sync vote that the caller wishes to register; it should be either SV_YES to sync
successfully or SV_NO to sync unsuccessfully.

timeout is the number of seconds to wait before the request times out. If timeout is zero,
the request returns immediately; if the calling process is not the last one to register a sync
vote, the effect is the same as if the request timeout had expired. If timeout is less than
zero, no timeout is specified for the request.

synreq points to the first in an array of structures which may receive details of other
processes’ sync states on return. nsys points to a location containing the number of
elements in the synreq array; on successful return, this location is updated to contain
the number of other systems actually participating in the sync. synreq and/or nsys may
be NULL if this information is not required.

Note that sd_masync() returns 0 even if the sync itself failed; the −1 error return is
used to indicate server or transport errors. However, if the sync fails because one or

Page 92 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

more processes vote SV_NO, time out or die, this is indicated by the value in
sd_errno. More precise details of which process(es) caused the sync to fail in these
ways can be obtained from information returned in the synreq array.

The MTCM should use doasync() to access this function.

int sd_sasync(snid, spno, vote, timeout, synreq, nsys, xrid)
long snid, spno, *xrid;
int vote, timeout, *nsys;
struct synreq *synreq;

Perform an auto sync from somewhere other than the MTCM. Return 0 if successful or
−1 on error. The server reply code is available in sd_errno.

This function behaves in the same way as sd_masync(), except that the xres ID
specified in the corresponding MTCM sd_masync() call is returned in the location
pointed to by xrid . This is the means by which the MTCM communicates its xres ID to
all the STCMs.

The STCM should use doasync() to access this function.

int doasync(spno, vote, timeout, synreq, nsys)
long spno;
int vote, timeout, *nsys;
struct synreq *synreq;

Perform an auto sync from a MTCM or STCM. Return 0 if successful or −1 on error.
The server reply code is available in sd_errno. The meanings of the arguments are the
same as for those used with sd_masync() and sd_sasync().

This function is the preferred interface to sd_masync() or sd_sasync() for TCM
processes, and handles the propagation of xres IDs between them. The sync ID used is
that received from the TCM’s parent process. Whether doasync() calls
sd_masync() or sd_sasync() depends on the process type of the calling process.

Appropriate versions of this function are part of the MTCM, the STCM and processes
that are started by tet_remexec().

30 April 1996 Page 93
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int sd_usync(snid, xrid, spno, vote, timeout, synreq, nsys)
long snid, xrid, spno;
int vote, timeout, nsys;
struct synreq *synreq;

Perform a user sync request. Return 0 if successful or −1 on error. The server reply
code is available in sd_errno.

This function provides support for the API tet_sync() function. The meanings of the
arguments are the same as for sd_masync() except that:

g xrid is used to help identify the sync event and is not propagated to other processes

g synreq points to an array of user details structures specifying the other processes that
are to participate in the sync event

g nsys specifies the number of elements in the synreq array

(Note that, unlike the sd_masync() nsys parameter, the nsys argument to
sd_usync() is the value itself and not a pointer to the value.)

On successful return, the synreq array is updated to contain details of the other
processes participating in the sync event.

Note that sd_usync() returns 0 even if the sync itself failed; the −1 error return is
used to indicate server or transport errors. However, if the sync fails because one or
more processes vote SV_NO, time out or die, this is indicated by the value in
sd_errno. More precise details of which process(es) caused the sync to fail in these
ways can be obtained from information returned in the synreq array.

H.4 TCCD functions

int tc_logon(sysid)
int sysid;

Connect to a TCCD on a remote system and log on to it. Return 0 if successful or −1 on
error.

sysid identifies the remote system to which the calling process wishes to connect.

Each call to tc_logon() causes a slave TCCD to be generated on the specified remote
system, to service subsequent TCCD requests from the calling process. However, a TCM
may not be logged on more than once to a particular remote system.

Page 94 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_logoff(sysid)
int sysid;

Log off from a TCCD and close the connection. Return 0 if successful or −1 on error.

sysid specifies the system ID of the remote system.

A SIGHUP signal is sent to each unterminated child process on the remote system, then
the slave TCCD exits.

This function may be called even if the caller is not currently logged on to a particular
TCCD (e.g., from an error or cleanup function).

long tc_mexec(sysid, path, argv, outfile)
int sysid;
char *path, **argv, *outfile;

Execute a non-DTET process on a remote system. Return the process ID of the exec’d
process if successful or −1 on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. path specifies the name of the file to
execute. argv points to a null-terminated list of arguments to pass to the exec’d process.

If outfile is non-null, the stdout and stderr of the exec’d process are connected to outfile ;
otherwise they are connected to the TCCD log file. stdin is connected to /dev/null.
All other file descriptors are closed.

The process is executed on the remote system by a call to execvp(), so as to allow
normal PATH searching and shell-script execution to take place.

long tc_texec(sysid, path, argv, outfile, snid, xrid)
int sysid;
char *path, **argv, *outfile;
long snid, xrid;

Execute a TCM on a remote system. Return the process ID of the exec’d process if
successful or −1 on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. path specifies the name of the file to
execute. argv points to a null-terminated list of arguments to pass to the exec’d process.
snid and xrid specify the sync ID and xres ID to pass to the exec’d process for use in
SYNCD and XRESD calls. If the exec fails, the TCCD will register a NO sync vote on
the sync ID specified by snid .

If outfile is non-null, the stdout and stderr of the exec’d process are connected to outfile ;
otherwise they are connected to the TCCD log file. stdin is connected to /dev/null.
All other file descriptors are closed.

30 April 1996 Page 95
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The process is executed on the remote system by a call to execvp(), so as to allow
normal PATH searching and shell-script execution to take place.

long tc_uexec(sysid, path, argv, snid, xrid)
int sysid;
char *path, **argv;
long snid, xrid;

Execute a user process on a remote system. Return the process ID of the exec’d process
if successful or −1 on error. The server reply code is available in tc_errno.

This function provides support for the API tet_remexec() function. sysid specifies
the system ID of the remote system. path specifies the name of the file to execute. argv
points to a null-terminated list of arguments to pass to the exec’d process. snid and xrid
specify the sync ID and xres ID to pass to the exec’d process for use in SYNCD and
XRESD calls. If the exec fails, the TCCD will register a NO sync vote on the sync ID
specified by snid .

The stdout and stderr of the exec’d process are connected to the TCCD log file. stdin is
connected to /dev/null. All other file descriptors are closed.

The TCCD changes directory to TET_EXECUTE if it is specified, otherwise to
TET_ROOT, before the exec takes place.

The process is executed on the remote system by a call to execvp(), so as to allow
normal PATH searching and shell-script execution to take place.

int tc_kill(sysid, pid, signum)
int sysid, signum;
long pid;

Send a signal to a remote process. Return 0 if successful or −1 on error. The server
reply code is available in tc_errno.

sysid specifies the system ID of the remote system. pid specifies the process ID of the
process that is to receive the signal. signum specifies the signal that is to be sent.

The symbolic signal name corresponding to signum must exist on both the local and the
remote system. The signal actually sent to the remote process is the one associated with
the same symbolic name on the remote system as that associated with signum on the
local system.

Page 96 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_wait(sysid, pid, timeout, statp)
int sysid, timeout, *statp;
long pid;

Wait for a remote process to terminate. Return 0 if successful or −1 on error. The server
reply code is available in tc_errno.

sysid specifies the system ID of the remote system. pid specifies the process ID of the
process that is to be waited for. timeout specifies how long to wait for the remote process
to terminate. If timeout is zero, the call returns immediately whether or not the remote
process has terminated. If timeout is less than zero, the call will wait until either the
process terminates or an error occurs. If the call is successful, the exit status of the
remote process is returned in the location pointed to by statp .

int tc_sysname(sysid, snames, nsname)
int sysid, *snames, nsname;

Send system name list to TCCD. Return 0 if successful or −1 on error. The server reply
code is available in tc_errno.

sysid specifies the system ID of the remote system. snames points to the start of the
system name list. nsname specifies the number of system names in the list.

int tc_cfname(sysid, cfname)
int sysid;
char *cfname;

Send a configuration file name to TCCD. Return 0 if successful or −1 on error. The
server reply code is available in tc_errno.

cfname specifies the configuration file name that is to be used in a subsequent
configuration variable exchange.

int tc_configv(sysid, lines, nline)
int sysid, nline;
char **lines;

Send merged configuration lines to TCCD. Return 0 if successful or −1 on error. The
server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. lines points to the first in a list of
pointers to configuration lines that are to be sent to TCCD. nline specifies the number of
lines in the list.

30 April 1996 Page 97
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The configuration lines are written to a temporary file on the remote system. The name
of this file is assigned to the environment variable TET_CONFIG. The file is removed
automatically when the slave TCCD exits.

This function should be called only once to send merged configuration lines to a
particular slave TCCD; it will generate as many requests as are required to send all the
lines to the server.

int tc_sndconfv(sysid, lines, nline)
int sysid, nline;
char **lines;

Send configuration lines to TCCD as part of a configuration variable exchange. Return 0
if successful or −1 on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. lines points to the first in a list of
pointers to configuration lines that are to be sent to TCCD. nline specifies the number of
lines in the list.

This function should be called only once in a particular configuration variable exchange;
it will generate as many requests as are required to send all the lines to the server.

char **tc_rcvconfv(sysid, nlines, done)
int sysid, *nlines, *done;

Receive merged configuration lines from TCCD as part of a configuration variable
exchange. Return a pointer to the first in a list of pointers to configuration lines if
successful, or NULL on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system.

If the call is successful:

g The number of lines in the list is returned in the location pointed to by nlines .

g A flag is returned in the location pointed to by done , whose value is 0 or 1 depending
on whether or not there are any more lines to be returned.

This function should be called repeatedly until *done is true or an error occurs.

The list of pointers and their associated strings are stored in memory owned by the
tc_talk subsystem, so they should be copied if required before the next request is sent
to the same TCCD.

Page 98 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_putenv(sysid, env)
int sysid;
char *env;

Add a single environment variable assignment string to the TCCD environment on a
remote system (as if putenv() had been called on the remote system). Return 0 if
successful or −1 on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. env specifies the assignment string
that is to be added to the remote environment.

int tc_putenvv(sysid, envp, nenv)
int sysid, nenv;
char **envp;

Add one or more environment variables to the TCCD environment on a remote system.
Return 0 if successful or −1 on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. envp points to the first of a list of
pointers to environment strings that are to be added to the remote environment. nenv
specifies the number of strings in the list.

int tc_access(sysid, path, mode)
int sysid, mode;
char *path;

Determine the accessibility of a file on a remote system. Return 0 if successful or −1 on
error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. The access permissions of path are
checked with respect to the server’s effective user ID and group ID. mode is a bit field
which determines which access permissions are to be checked; the meanings of each bit
is a follows:

04 check read permission
02 check write permission
01 check execute/search permission
00 check existence of file

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

30 April 1996 Page 99
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_mkdir(sysid, dir)
int sysid;
char *dir;

Make a directory on a remote system. Return 0 if successful or −1 on error.

The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the
directory that is to be created.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

int tc_rmdir(sysid, dir)
int sysid;
char *dir;

Remove a directory on a remote system. Return 0 if successful or −1 on error. The
server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the
directory that is to be removed.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

int tc_chdir(sysid, dir)
int sysid;
char *dir;

Instruct TCCD to change directory on a remote system. Return 0 if successful or −1 on
error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the new
working directory.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

Page 100 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

char *tc_mktmpdir(sysid, prefix)
int sysid;
char *prefix;

Make a unique temporary directory on a remote system. Return a pointer to the new
directory name if successful or NULL on error. The server reply code is available in
tc_errno.

sysid specifies the system ID of the remote system. prefix specifies the prefix for the
temporary directory name.

The name of the new directory created by TCCD is prefix/NNNNNx where NNNNN is
the process ID of the TCCD and x is a unique letter.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

The return value points to memory owned by the tc_talk subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

int tc_unlink(sysid, file)
int sysid;
char *file;

Unlink a file on a remote system. Return 0 if successful or −1 on error. The server reply
code is available in tc_errno.

sysid specifies the system ID of the remote system. file specifies the name of the file to
be unlinked.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

int tc_fopen(sysid, fname)
int sysid;
char *fname;

Open a file for writing on a remote system. Return the file ID if successful or −1 on
error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. fname specifies the name of the file
that is to be opened.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

30 April 1996 Page 101
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_puts(sysid, fid, line)
int sysid, fid;
char *line;

Write a single line to a file on a remote system. Return 0 if successful or −1 on error.
The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. fid is a file ID returned by a previous
call to tc_fopen(). The string pointed to by line is written to the file, followed by a
newline.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

int tc_putsv(sysid, fid, lines, nline)
int sysid, fid, nline;
char **lines;

Write one or more lines to a file on a remote system. Return 0 if successful or −1 on
error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. fid is a file ID returned by a previous
call to tc_fopen(). lines points to the first of a list of pointers to strings which are to
be written to the file, each followed by a newline. nline specifies the number of strings in
the list.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

int tc_fclose(sysid, fid)
int sysid, fid;

Close a file on a remote system. Return 0 if successful or −1 on error. The server reply
code is available in tc_errno.

sysid specifies the system ID of the remote system. fid is a file ID returned by a previous
call to tc_fopen().

Page 102 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_lockfile(sysid, file, timeout)
int sysid, timeout;
char *file;

Create an exclusive lock on a remote system. Return 0 if successful or −1 on error. The
server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. file specifies the path name of a lock
file which is to be created on the remote system. If timeout is greater than zero, repeated
attempts are made to create the lock file until either the operation is successful, the
timeout expires or an error occurs. If timeout is zero, the call will return after the first
attempt to create the file, whether or not the operation is successful. If timeout is less
than zero, the call will wait until either the lock file can be created or an error occurs.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

char *tc_sharelock(sysid, lockdir, timeout)
int sysid, timeout;
char *lockdir;

Create a non-exclusive lock on a remote system. Return a pointer to the name of the
created lock file if successful or NULL on error. The server reply code is available in
tc_errno.

sysid specifies the system ID of the remote system. lockdir specifies the path name of a
lock directory on the remote system, which is created if necessary. If lockdir can be
created or exists already, a file is created in that directory whose name is
lockdir/NNNNNx where NNNNN is the process ID of the calling process and x is a
unique letter. If timeout is greater than zero and lockdir exists but is not a directory,
repeated attempts are made to create the lock directory until either the operation is
successful, the timeout expires or an error occurs. If timeout is zero, the call will return
after the first attempt to create the lock directory, whether or not the operation is
successful. If timeout is less than zero, the call will wait until either the lock directory
can be created or an error occurs.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s errno value (if possible); otherwise, errno is set to
0.

The return value points to memory owned by the tc_talk subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

30 April 1996 Page 103
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_rxfile(sysid, fromfile, tofile)
int sysid;
char *fromfile, *tofile;

Cause TCCD to transfer a file to the master system. Return 0 if successful or −1 on
error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. TCCD transfers the file specified by
fromfile to the path specified by tofile , interpreted relative to the saved files directory on
the master system. (See the description of xd_xfile() for more details).

char *tc_mksdir(sysid, dir, suffix)
int sysid;
char *dir, *suffix;

Make a saved files directory on a remote system. Return a pointer to the directory name
if successful or NULL on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. suffix specifies the suffix for the
name of the saved files directory and should be one or more of the characters bec,
chosen in accordance with existing TCC conventions.

TCCD makes a saved files directory whose name is dir/NNNNsuffix. The directory
specified by dir should already exist. NNNN is an ascending sequence number generated
by TCCD.

The return value points to memory owned by the tc_talk subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

int tc_tslfiles(sysid, files, nfile, subdir)
int sysid, nfile;
char **files, *subdir;

Copy save files locally on a remote system. Return 0 if successful or −1 on error. The
server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. files points to the first in a list of
pointers to file or directory names. nfile specifies the number of file names in the list.

If a file matching one of these names is found, it is copied to subdir in the saved files
directory on the remote system, or directly to the saved files directory if subdir is NULL.
If a directory matching one of these names is found, this action is performed recursively
for all files below that directory.

Page 104 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_tsmfiles(sysid, files, nfile, subdir)
int sysid, nfile;
char **files, *subdir;

Copy save files from a remote system to the master system. Return 0 if successful or −1
on error. The server reply code is available in tc_errno.

sysid specifies the system ID of the remote system. files points to the first in a list of
pointers to file or directory names. nfile specifies the number of file names in the list. If
a file matching one of these names is found, it is copied (by means of an xd_xfile()
call) to subdir in the saved files directory on the master system, or directly to the saved
files directory if subdir is NULL. If a directory matching one of these names is found, this
action is performed recursively for all files below that directory.

H.5 XRESD functions

int xd_start(savedir)
char *savedir;

Start an XRESD; Return 0 if successful or −1 on error.

This function must be called by the MTCC if XRESD services are required. savedir
specifies the full path name of the directory below which saved files are to be placed.

int xd_logon()

Connect to the XRESD and log on to it. Return 0 if successful or −1 on error.

int xd_logoff()

Log off from the XRESD and close the connection. Return 0 if successful or −1 on
error.

This function may be called even if the caller is not currently logged on to the XRESD
(e.g., from an error or cleanup function).

30 April 1996 Page 105
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int xd_xfile(fromfile, tofile)
char *fromfile, *tofile;

Copy a save file to the master system. Return 0 if successful or −1 on error. The server
reply code is available in xd_errno.

The file specified by fromfile is copied to the path specified by tofile , interpreted relative
to the saved files directory on the master system. Directories below the saved files
directory will be made as necessary.

This function may be called by a TCC or a TCM.

The location of the saved files directory is specified when XRESD is started, by a
parameter to xd_start().

long xd_xropen(xfname)
char *xfname;

extern long Xrid;

Open an execution results file on the master system. Return the xres ID of the open file if
successful or −1 on error. The server reply code is available in xd_errno.

xfname specifies the name of the execution results file to be opened.

This function should be called by the MTCM, and the return value should be stored in the
global variable Xrid for subsequent use by doasync().

int xd_xrsys(xrid, snames, nsname)
long xrid;
int *snames, nsname;

Assign a system name list to an execution results file. Return 0 if successful or −1 on
error. The server reply code is available in xd_errno.

This function is called by the MTCM and informs XRESD of the systems from which
execution results are to be expected. xrid is an xres ID obtained by the MTCM from a
call to xd_xropen(). snames points to the start of the system name list. nsname
specifies the number of system names in the list.

Page 106 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int xd_icstart(xrid, icno, activity, tpcount)
long xrid, activity;
int icno, tpcount;

Signal IC start to XRESD. Return 0 if successful or −1 on error. The server reply code
is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen(). icno specifies
the number of the IC that is about to be started. activity specifies the TCC activity
number that is to appear in certain results file messages. tpcount specifies the expected
number of TPs in this IC.

This function should be called by the MTCM after all the TCMs have synced at the start
of an IC.

int xd_icend(xrid)
long xrid;

Signal IC end to XRESD. Return 0 if successful or −1 on error. The server reply code is
available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen().

This function should be called by the MTCM after all the TCMs have synced at the end
of an IC.

int xd_tpstart(xrid, tpno)
long xrid;
int tpno;

Signal TP start to XRESD. Return 0 if successful or −1 on error. The server reply code
is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen(). tpno specifies
the number of the TP that is about to be started.

This function should be called by the MTCM after all the TCMs have synced at the start
of a TP.

30 April 1996 Page 107
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int xd_tpend(xrid)
long xrid;

Signal TP end to XRESD. Return 0 if successful or −1 on error. The server reply code
is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen().

This function should be called by the MTCM after all the TCMs have synced at the end
of a TP.

int xd_xres(xrid, line)
long xrid;
char *line;

Send a single text line to the execution results file. Return 0 if successful or −1 on error.
The server reply code is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen(). line specifies
the line that is to be written to the execution results file.

int xd_xresv(xrid, lines, nlines)
long xrid;
char **lines;
int nlines;

Send one or more text lines to the execution results file. Return 0 if successful or −1 on
error. The server reply code is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen(). lines points to
the first of an array of pointers to xres lines. nlines specifies the number of xres lines in
the list.

int xd_result(xrid, result)
long xrid;
int result;

Send a TP result code to XRESD. Return 0 if successful or −1 on error. The server
reply code is available in xd_errno.

xrid is an xres ID obtained by the MTCM from a call to xd_xropen(). result specifies
the TP result code that is to be registered with XRESD.

A TCM on each participating system is expected to submit at least one such code before
the MTCM signals TP end.

Page 108 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int xd_cfname(ecfname, dcfname, ccfname)
char *ecfname, *dcfname, *ccfname;

Send the master configuration file names to XRESD. Return 0 if successful or −1 on
error. The server reply code is available in xd_errno.

ecfname specifies the name of the master execute mode configuration file. dcfname
specifies the name of the master distributed configuration file. ccfname specifies the
name of a file containing configuration variable assignments specified on the MTCC
command line.

The contents of these files will be used by TCM processes as the source of master
configuration information when performing a configuration variable exchange as part of
a tet_remexec() call.

char **xd_rcfname()

Return a pointer to the first in a list pointers to master configuration file names previously
registered with XRESD by an xd_cfname() call, or NULL on error. The server reply
code is available in xd_errno.

The list of file names pointed to by the return value contains XD_NCFNAME items.

The list of pointers and their associated strings are stored in memory owned by the
xd_talk subsystem, so they should be copied if required before the next request is sent
to XRESD.

This function is called by tet_remexec() before performing a configuration variable
exchange with the target system.

30 April 1996 Page 109
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 110 30 April 1996
X/Open Company Ltd

CONTENTS

1. Foreword . 1
1.1 Introduction 1
1.2 Background 1
1.3 Project goals 1
1.4 Conventions used in this document 2
1.5 Related documents 2
1.6 Terminology 3

2. TETware architecture options 5
2.1 Lightweight TETware 5
2.2 Master and slave systems 5

3. The Test Case Controller tcc 7
3.1 Introduction 7
3.2 Process structure 7
3.3 Local and remote procedures 7
3.4 TCM/API interface 8
3.5 Locking strategy 9
3.6 Supported features 10

3.6.1 Configuration variables 10
3.6.2 Communication variables 11
3.6.3 Scenario directives 12

4. Test case support 15
4.1 The C API 15

4.1.1 Introduction 15
4.1.2 Error reporting 15
4.1.3 Changes in API function specifications 16
4.1.4 New API functions 16
4.1.5 New API functions for use in distributed test cases 18
4.1.6 API considerations for non-Unix systems 21
4.1.7 API considerations for TETware-Lite 23

4.2 The C++ API 24
4.3 The xpg3sh API 25
4.4 The ksh API 25
4.5 The perl API 25

5. Thread support 27
5.1 Introduction 27
5.2 API issues 27

5.2.1 Changes to existing API functions 27
5.2.2 New API functions 27

5.3 TCM enhancements 29
5.4 Client/server issues 29

5.4.1 Introduction 29

- i -

5.4.2 The test case controller daemon tccd 30
5.4.3 The synchronisation daemon tetsyncd 30
5.4.4 The execution results daemon tetxresd 30

6. Portability to non-Unix platforms 31
6.1 Introduction 31
6.2 Supported platforms 32
6.3 TETware-Lite 32
6.4 Fully-featured TETware 32
6.5 Compiler subsystem issues 33

7. Documentation 35
7.1 Introduction 35
7.2 Document source format 35
7.3 Programmers Guide 35
7.4 Installation and User Guide 36
7.5 Installation and Build Notes 37
7.6 Specification document 37
7.7 Release Notes 37

7.7.1 Generic Release Notes 37
7.7.2 Supplementary Release Notes for specific platforms and

distribution types 38

8. Miscellaneous issues 39
8.1 Compatibility with existing TET implementations 39

8.1.1 Introduction 39
8.1.2 Compatibility issues 39
8.1.3 Combining test cases from existing TET

implementations 41

A. Comparison tables for configuration variables 45
A.1 Introduction 45
A.2 Support for configuration variables in different TETware

versions 45
A.3 Support for configuration variables on different platforms 46
A.4 Compatibility with configuration variables in existing TET

implementations 47

B. Comparison tables for communication variables 49
B.1 Introduction 49
B.2 Support for communication variables in different TETware

versions 50
B.3 Support for communication variables on different platforms 50
B.4 Compatibility with communication variables in existing TET

implementations 51

C. Comparison tables for scenario directives 53
C.1 Introduction 53

- ii -

C.2 Support for scenario directives in different TETware
versions 54

C.3 Support for scenario directives on different platforms 55
C.4 Compatibility with scenario directives in existing TET

implementations 56

D. Comparison tables for C API interfaces 59
D.1 Introduction 59
D.2 Support for interfaces in different TETware versions 60
D.3 Support for interfaces on different platforms 62
D.4 Compatibility with interfaces in existing TET

implementations 64

E. dTET2 architecture 67
E.1 Origin . 67
E.2 Diagram and component definitions 67

F. C language binding 69
F.1 Origin . 69
F.2 Introduction 69
F.3 Test case structure and management functions 70
F.4 Insulating from the test environment 71
F.5 Making journal entries 72
F.6 Canceling test purposes 73
F.7 Manipulating configuration variables 74
F.8 Generating and executing processes 74
F.9 Executed process functions 75
F.10 Test case synchronisation 76
F.11 Remote system designations 80
F.12 Remote process control 80

G. Test case synchronisation 83
G.1 Origin . 83
G.2 Introduction 83
G.3 Synchronisation request concepts 83

G.3.1 Request types 83
G.3.2 Request parameters 83
G.3.3 Sync events 84
G.3.4 Sync states 84
G.3.5 With what to synchronise? 85

G.4 Automatic synchronisation requests 85
G.4.1 Description 85
G.4.2 Test case manager synchronisation 85
G.4.3 Remote executed process synchronisation 86
G.4.4 Error handling 87
G.4.5 Example error messages 87

G.5 User synchronisation requests 88
G.5.1 Description 88

- iii -

G.5.2 Error handling 89
G.5.3 Example error messages 89

H. Server interface functions 91
H.1 Origin . 91
H.2 Introduction 91
H.3 SYNCD functions 91
H.4 TCCD functions 94
H.5 XRESD functions 105

- iv -

