Test Environment Toolkit

TETware Design Specification
Revision 1.0
TET3-SPEC-1.0

Released: 30 April 1996

X/Open Company Limited

The information contained within this document is subject to change without notice.

Copyright [0 1996 X/Open Company Limited

This document is produced by UniSoft Ltd. at:

150 Minories
LONDON
EC3N 1LS
United Kingdom

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

1. Foreword

1.1 Introduction

X/Open has asked UniSoft to prepare a Design Specification for enhancements to the
TET. The name of therevised TET will be TETware.

This document is being provided for review purposes, in order to encourage discussion
among X/Open member companies and other organisations considered important by
X/Open. It isnot intended to include this document in afuture TETware release.

1.2 Background

During evolution of the TET, two distinct development threads have emerged. One —
dTET2 — provides support for local, remote and distributed testing through a client/server
architecture. The other — ETET — while supporting only local testing, contains a number
of features which have become popular among certain members of the TET user
community.

Both of these developments are derived from TET release 1.10. Thisis the latest release
of the base TET and was made by X/Open during 1992.

It is proposed to re-integrate these two threads into a single standard product with the
intention of satisfying the needs of users of both of the existing toolkits.

1.3 Project goals
The goals of this project are:

1. To create a single implementation of the TET which is a superset of the features
within the existing implementations.

2. To add a number of new features to this revised implementation and to improve,
integrate, or rewrite certain features which have been implemented by third parties.

3. To ensure that the revised software provides backward compatibility with existing
TET implementations.

4. To ensure that the revised software is portable to a wide range of popular platforms
outside the traditional sphere of Unix-like and POSIX-conforming environments.

In addition to the functional requirements presented above, X/Open has the following
goals:

1. That support be available to TETware users.

2. That TETware should be suitable for use by the X/Open test suites which are being
specified (in particular the ODBC/CLI test suite) and the existing X/Open test
suites.

3. That TETware should be usable in conjunction with test cases generated by ADL
(whichis currently being developed by X/Open).

30 April 1996 Page 1
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Given the wide ranging scope of these goals, X/Open and UniSoft have agreed that the
first step should be to develop a design specification for TETware. Feedback will be
sought from X/Open and other organisations which are considered important by X/Open.
This will ensure that TETware meets all the requirements set by X/Open and the other
organisations.

The following diagram illustrates the relationship between TETware and existing TET
implementations:

TET 1.10 ETET 1.10.3

dTET2 TETware

Note that this diagram is not to scale.

1.4 Conventionsused in this document
The following typographic conventions are used throughout this document:

e Courier font isused for function, variable and program names, literals and
file names.

o The names of variable values are presented in italic font.
e Bold font isused for headings and for emphasis.
¢ In asyntax definition, an optional element is enclosed in square brackets|].

e Andlipsis... indicates that the previous element may be repeated as required.

1.5 Related documents

The following documents contain additional information about the existing TET, dTET2
and ETET implementations:

o Test Environment Toolkit: Architectural, Functional and Interface Specification
Revision 4.5

Page 2 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

¢ Distributed Test Environment Toolkit Version 2: Architectural, Functional and
Interface Specification Revision 5.2

o Distributed Test Environment Toolkit Version 2: dTET2 Programmers Guide
Revision 1.3

e Distributed Test Environment Toolkit Version 2: dTET2 Installation and User
Guide Revision 1.3

o Extended Test Environment Toolkit: Programmers Guide Revision 1.10.3

For ease of reference, portions of some of these documents are reproduced as appendices
to this document.

1.6 Terminology

Certain terms described here are used in this document to describe the different types of
test case that may be executed by TETware.

A local test case is one that executes on the local system; that is, the system on which the
Test Case Controller t cc isexecuted.

A remote test case is one that executes on a system other than the one on which t cc is
executed. tcc collects the test case’s execution results file output from the remote
system and includes it in the journal file on the local system. Although it is possible for
several remote test cases to execute concurrently on different remote systems, the test
harness does not provide for interaction between remote test cases.

A distributed test case is one that has severa parts; these parts execute concurrently on
different systems. When a distributed test case is being executed, the test harness ensures
that each test purpose part starts at the same time on each system. Thus each part of a
particular distributed test case must aways contain identical number of invocable
components and test purposes, even if this means that some of the test purpose parts do
nothing. It islikely that parts of a distributed test purpose will interact with each other in
some way during the course of their execution. In particular, the test harness provides a
means by which the different parts of a test purpose may synchronise with each other.
Each test purpose part submits a result which indicates the success or failure of that part
of the test purpose. The test harness arbitrates between the results submitted by the parts
of the test purpose that are executing on each system and enters a single consolidated
result in the journal file.

A more complete description of some of the terms and component names used when
describing dTET?2 is presented in the chapter entitled ‘* Overview of the Distributed Test
Environment Toolkit Version 2’ inthe dTET2 Installation and User Guide.

A diagram showing how the different dTET2 components relate to each other is
presented in appendix E, ‘*dTET?2 architecture’’.

30 April 1996 Page 3
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 4 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

2. TETware architecture options
2.1 Lightweight TETware

dTET2 uses a client/server architecture in order to process remote and distributed test
cases. This requires a great deal of additional code (including the network code) to be
included in dTET2 processes which is not used when processing local test cases.

In order to enable TETware to be ported to a wide range of systems, an option will be
provided which will exclude the remote and distributed test case processing facilities
from TETware. Thiswill take the form of a compile-time option. Use of this option will
affect the way in which both t cc and the API library is built. In particular, certain
scenario directives and API functions will be unavailable or have no effect when this
option is used.

The version of TETware that will result when this option is used will be known as
TETware-Lite. When this option is used, there will be no requirement for the target
system to support networking. The version of TETware that will result when this option
is not used will be referred to in this document as fully-featured TETware in a context
where it is necessary to distinguish between the two versions of TETware.

TETware-Lite will not make calls to any network functions. On Unix-like systems,
TETware-Lite will only use system interfaces specified in POSIX.1.

2.2 Master and slave systems

The architectural model presented in the current dTET2 specification describes test case
processing in terms of a master system and zero or more slave systems. The master
system isidentified by a system ID of zero and slave systems by a non-zero system ID.

dTET2 provides facilities to execute test cases in several ways as follows:

o Execution of non-distributed test cases on the local (or master) system (that is,
local test cases).

o Execution of non-distributed test cases on one or more remote (or slave) system
(that is, remote test cases).

o Execution of distributed test cases with the parts of each test case executing
simultaneously on both the local (or master) system and one or more remote (or
slave) systems.

The dTET2 specification differentiates between the master and slave systems in severa
ways as follows:

i. Themaster system isthe one on which t cc isinvoked.

30 April 1996 Page 5
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The difference between a remote and a distributed test case is determined by
whether or not the master system is specified in the r enot e directive in the
scenario file.

The master system isincluded implicitly in auser synchronisation request.

The differentiation between master and slave systems will be eliminated in TETware,
resulting in a symmetrical relationship between all the systems which participate in a
distributed test case. Advantages of this enhancement are:

The processing logic in t cc is greatly simplified, since there is no need to treat
different systems in different ways when processing test cases.

When a distributed test case is to be executed on systems where facilities or
resources are insufficient to support the execution of a fully-featured t cc, it will
be possible to control test case execution from a (more feature-rich) system which
is not participating in the test case.?

The implication that this enhancement will have on the design of t cc is expanded in the
section entitled ‘‘ Local and remote procedures’’ which appears in chapter 3.

1

2.

When the master system appears in the system list which accompanies the r enot e directive in the
scenario file, this indicates that distributed test case parts are to be executed on each of the named
systems. When the master system does not appear in the r enot e directive’s system ligt, this indicates
that remote test cases are to be executed in parallel on the named systems.

When this is done it will be possible to execute parts of a distributed test case on (say) one or more
PC-type systems under the control of at cc running on (say) a Unix-like system. In this arrangement,
the Unix-like system hosts the scenario and configuration files and provides storage for journal files,
together with test case output files transferred from the PC-type systems using
TET_QOUTPUT_CAPTURE mode or the TET_TRANSFER_SAVE_FI LES mechanism.

Page 6 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

3. TheTest Case Controller t cc

3.1 Introduction

The requirements imposed by remote and distributed testing have made demands of the
existing t cc structure far beyond those envisaged in the original t cc design. Therefore
it will be necessary to undertake a thorough overhaul of t cc in order to enable the
requirements of dTET2 and ETET to coexist and, at the same time, provide a sound basis
for future enhancement.

3.2 Process structure

When processing remote, distributed and parallel test cases, the dTET2t cc forksachild
process to supervise the execution of each test case element. A disadvantage of this
approach is that it relies on behaviour of the Unix f or k() system call which is not
always available on non-Unix systems.

The TETware t cc will not use child processes in this way, but will instead implement a
flat process structure where the progress of all test cases is monitored in a singlet cc
process. Use of this process control implementation will assist in porting t cc to non-
Unix systems.

3.3 Local and remote procedures

In the existing dTET2 architecture, t cc performs its processing on the master system
directly, while processing on slave systems is performed by a server process called
t ccd. Oncet cc has established communication with t ccd on each slave system, each
t ccd performs such actions on its slave system as may be required, on receipt of a
request from t cc on the master system. When t cc wishes to send such a request, it
does so by calling a server interface function. Descriptions of server interface functions
that are implemented in dTET2 are presented in appendix H, ‘‘Server interface
functions’’.

When t cc isinvoked, processing takes place according to which mode(s) are specified
on the command line. This processing consists of a series of actions — reading
configuration variables, building, executing or cleaning test cases, gathering results and
So on.

In TETware, each of these operations is performed by a particular function — an action
function — which will reside in a library. When the t cc processing logic wishes to
perform one of these actions, it will do so by calling an interface function. Each of these
interface functions will contain two code sections; one section will make a direct call to
the action function, while the other will make a call to the equivalent server interface
function. Only one of these sections will be selected by means of conditional
compilation, depending on whether TETware or TETware-Lite isto be built.

When TETware-Lite is built, t cc will be linked with the library containing the action
functions; thus the processing logic and the action functions will be contained in asingle

30 April 1996 Page 7
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

process. As a result, TETware-Lite will only support test case execution on a single
system (as has been noted earlier).

In TETware-Lite the flow of control throught cc isasfollows:

control
logic
v
interface
functions

v
action

functions

tcc

When fully-featured TETware is built, t cc will not be linked with the action function
library. Instead, this library will be used when building t ccd and action functions will
be called as a result of requests received from t cc. Asaresult, consistency of behaviour
between the two TETware versions will be assured. In addition, symmetry of operation
between all participating systems will be achieved because t cc actions will be
performed by t ccd on al systems, both local and remote. A further benefit isthat it will
be possible to run t cc on a system that is not participating in the test case run, thus
reducing the impact of the test harness software on the system(s) under test.

In fully-featured TETware the flow of control throught cc andt ccd isasfollows:

control
logic
v
interface
functions

tcc

]
remote
procedure
cals
T

| .
1 network connection

v
action

functions

tccd

3.4 TCM/API interface

The interface between t cc and the TCM/API is defined in the base TET specification.
Thisinterface is supported by TETware-Lite.

Page 8 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

However, this interface is insufficient to support the requirements imposed by distributed
testing, and so a different interface was introduced in dTET2.2 This interface is not
defined by a specification and so is only available for use in conjunction with the C
TCM/API that issupplied in dTET2.

TETware-Lite does not support remote and distributed testing, and so does not need to
support adTET2-stylet cc to TCM/API interface.

Fully-featured TETware will support a dTET2-like private interface in addition to the
public TET-style interface. The public interface will be provided mainly for the benefit
of APIsother than the TETware C API and may be used when local and remote test cases
are being processed. The private interface will be used only by the TETware C API and
may be used when local, remote and distributed test cases are being processed.

It is not intended to define the private interface in a specification as part of this project. If
X/Open considers that it would be beneficial to produce such a specification, it is
suggested that this should be made the subject of a separate project.

3.5 Locking strategy

The TET specification requirest cc to acquire various exclusive and non-exclusive locks
when a test case is being processed. This is done so as to guard against unwelcome
interaction between processes when a test case is being processed by more than onet cc
invocation, or when multiple instances of atest case are being executed in parallel under
the control of t cc.

In TET 1.10 and dTET2, locks are acquired both in the test case directory and possibly in
the alternate execution directory as well. In ETET 1.10.3, it is possible to prevent locks
from being acquired in this way by specifying certain communication variables.

In TETware, locking will be performed mostly as required by the TET specification.
However, failure to acquire a lock because of an inability to write to a read-only file
system will be ignored. Thus it will be possible for TETware to process a test suite
which resides on aread-only file system.

3. Note that the dTET?2 also supported the base TET t cc to TCM/API interface for non-distributed test
Cases.

30 April 1996 Page 9
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

3.6 Supported features

3.6.1 Configuration variables
3.6.1.1 Introduction

Configuration variables are variables which are defined by the user in a configuration file.
There is one file for each of t cc’s modes of operation; namely, build mode, execute
mode and clean mode. In dTET2, configuration variables may be defined both in files on
the master system and in files on each dave system. Generally speaking, a variable
defined in afile on the master system isvisible on all systems, whereas a variable defined
in a file on a slave system is visible only on the system on which it is defined.* In
addition, dTET2 uses a file on the master system which contains variables that specify
certain information about slave systems. Thisis known as the distributed configuration
file.

Certain variables whose names begin with TET_ are reserved for use by the TET
implementation. In dTET2, a variable whose name begins with the prefix
TET_REMhnn_ hasthe prefix removed before the variable is sent to system nnn.

Further information about configuration variables is presented in appendix A,
“* Comparison tables for configuration variables'’.

3.6.1.2 Configuration variablesderived from existing TET implementations

All the configuration variables which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

The following configuration variables will be supported in TETware in the same way as
in ETET 1.10.3:

TET_API _COVPLI ANT
TET_PASS_TC_NAME

3.6.1.3 New configuration variables

3.6.1.3.1 TET_COVWPAT —select TETwar e compatibility mode

During the evolution of dTET2 and ETET, certain specification differences have
emerged. An example of such a difference is the syntax of the : paral |l el : and
: repeat: scenario file directives. A new configuration variable will be provided to
enable test suite authors to select which behaviour is required.

The name of this variable is TET COWPAT. Possible values for this variable are dt et 2
to select dTET2 behaviour or et et to select ETET 1.10.3 behaviour. No default value
is defined for this variable.

4. Itispossibleto override this behaviour using the TET _REMhnn_ mechanism.

Page 10 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

t cc will inspect the value of this variable when a decision must be made whether to
provide compatibility with dTET2 or ETET 1.10.3. A diagnostic will be printed if t cc
needs to decide which compatibility mode to use and this variable is not set or set to an
invalid value.

3.6.1.3.2 TET_REMhnn_TET_RUN — specify runtimetest root directory

These variables may be set in the distributed configuration file. The effect of setting the
variable for system nnn is the same as that of setting the TET_RUN environment variable
on the master system.

3.6.2 Communication variables
3.6.2.1 Introduction

Communication variables are environment variables which are used to pass information
to TET processes. They may be set in one of the following ways:

o Environment variables which influence the behaviour of t cc are set by the user
beforet cc isrun.

e Environment variables which are used to communicate information to the
TCM/API are set by t cc before atest case is processed.

Further information about communication variables is presented in appendix B,
“* Comparison tables for communication variables'’.

3.6.2.2 Communication variablesderived from TET 1.10and dTET2

All the communication variables which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

3.6.2.3 Communication variablesderived from ETET 1.10.3

3.6.2.3.1 TET_SUl TE_ROOT —change the default test suite root directory

This variable will be supported in TETware.® Since TETware is able to process remote
and distributed test cases in addition to local test cases, the behaviour of this variable
must be extended in order to be effective on remote systems.

In TETware, the TET_SUI TE_ROOT communication variable will be mapped on to the
TET_TSROOT distributed configuration variable on the master system. When t cc is
executed, it determines the value of TET _TSROOT automatically on the master system.
However, if TET_SUlI TE_ROOT is present in the environment, its value will instead be
used for TET_TSROOT on the master system. Vaues of TET _TSROOT for other
systems will be specified in the distributed configuration file asis done in dTET2.

5. A distributed configuration variable called TET_TSROOT is implemented in dTET2 which performs a
similar function.

30 April 1996 Page 11
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

When't cc processes atest case on either alocal system or aremote system, the value of
the TET_SUI TE_ROOT environment variable made available to the test case will be
taken from the setting of the TET_TSROOT distributed configuration variable that isin
effect on that system.

3.6.2.3.2 TET_RUN - specify runtimetest suiteroot directory

This variable will be supported in TETware. Its setting will only be effective on the
master system. Similar behaviour can be specified for remote system nnn by setting the
corresponding TET_REMhnn_TET_RUN variable in the distributed configuration file on
the master system.

3.6.2.3.3 Other communication variablesin ETET 1.10.3
Given the nature of the following communication variables, it is not considered
necessary to implement these variables at this time:

TET_EXTENDED
TET_JOURNAL_PATH
TET_LOCK

However, t cc will not prevent these variables from being passed in the environment
when a test case is being processed. Thus, test cases written to an APl which requires
one of these variables to be in the environment will still work when run under the control
of the TETwaret cc.

The way that TETware performs locking when processing a test suite on a read-only file
system is described in the section entitled ** Locking strategy’’ elsewhere in this chapter.

3.6.3 Scenariodirectives
3.6.3.1 Introduction

The names of test cases to be processed by t cc are specified in a scenario file. Scenario
directives specify how these test cases are to be processed.

Further information about scenario directives is presented in appendix C, ‘* Comparison
tables for scenario directives'”’.

3.6.3.2 Directivesderived from existing TET implementations

All the scenario file directives which are implemented in TET 1.10 and dTET2 will be
supported in TETware.

The following scenario file directives will be supported in TETware in the same way as
in ETET 1.10.3:

" scenario-name
@xecutable-path
: group:
cparallel:

. repeat:
:timed | oop:
: random

Page 12 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

In addition, ETET 1.10.3 permits the use of ; to group colon-delimited directives using
the following syntax:

: group-execution[; ...]: test-list

This syntax will be supported in TETware.

3.6.3.3 Conflictsbetween dTET2 and ETET 1.10.3 scenario file syntax

There are conflicts between dTET2 and ETET 1.10.3 in the way that certain scenario
directives are interpreted as follows:

e Where ETET 1.10.3 expects a directive to be followed by a test list, dTET2
expects the directive to be followed by the name of afile which contains the list of
tests.

e Where a dTET2 directive of the form : xxx: has alist of tests associated with it,
the lists of testsis delimited by amatching : endxxx: directive.

The TETwaret cc will support both types of syntax for scenario file directives. When it
IS necessary to distinguish between dTET2 and ETET 1.10.3 syntax, the setting of the
TET_COMPAT configuration variable will determine which syntax is accepted.®

Note that dTET2-style : endxxx: delimiters will not be accepted when ; separated
directives are used. Inthiscase, only ETET-style syntax will be accepted.

An indication of which directives are affected by TET _COMPAT is given in one of the
tables presented in appendix C, ** Comparison tables for scenario directives.

3.6.3.4 New scenario directives

3.6.3.4.1 : vari abl e: —specify configuration variables
A directive will be provided to enable configuration variables to be specified in a
scenario file.

The syntax of this directive is asfollows:
:vari abl e, name=valug[, ...]: test-case

The configuration variable name is set to value while test-case is being processed
according to t cc’s current mode of operation.’

6. The behaviour of this configuration variable is described in the section entitled ‘' TET COVPAT —
select TETware compatibility mode’’ elsewhere in this chapter.

7. Thatis: build, execute or clean mode.

30 April 1996 Page 13
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

When assigning a value to avariable, valueis interpreted as a fixed string.®

In order not to confuse the test harness, attempts to use this directive to set most variables
whose name begins with TET _ will be ignored. However, when a remote or distributed
test case is being processed, it will be possible to assign a user-defined configuration
variable® on a specific system by prefixing its name with TET_RENMhnn_ in the usual
way.

The precedence of configuration variables set using the : var i abl e: directive is above
that of variables specified in configuration files but lower than that of variables specified
with a- v option on thet cc command line.

For completeness, dTET2-style syntax for this variable will be accepted by t cc when
dTET2 compatibility mode isin effect.

3.6.34.2 : di stribut ed: —specify adistributed test case
dTET2 permits the use of the :renpte: directive to specify both remote and
distributed test cases. Test cases within the scope of this directive are processed either as
remote or as distributed test cases, depending on whether or not the master system
appears in the system list which accompanies the directive.

A directive will be provided to enable atest case to be processed as a distributed test case
irrespective of whether the master system appears in the accompanying system list.

The syntax of this directive takes one of two forms, as follows:
. distributed, nnn[, ...]: file

2di stributed, nnn, ...]:
test-case

:enddi stri but ed:

In the first form, each test case listed (one per line) in file is processed on the systems
specified by nnn ... asadistributed test case. In the second form, each named test-case
is processed on the systems specified by nnn ... asadistributed test case.

For completeness, ETET-style syntax for this variable will be accepted by t cc when
ETET compatibility modeisin effect.

8. It isunderstood that in an existing unpublished extension to the base TET in which the : vari abl e:
directive is implemented, value may also be derived from another configuration variable or from the
environment. While variable substitution may be desirable in a scenario file, it is considered more
appropriate to perform this kind of processing by using a scenario file preprocessor. Such a
preprocessor can also perform macro expansion and other similar operations. It is likely that a TET
scenario file preprocessor will be the subject of a separate design specification exercise.

9. That is: avariable whose name does not begin with TET_ .

Page 14 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4. Test case support

4.1 TheC API

4.1.1 Introduction

The TETware C API will be derived from the one supplied with dTET2. Thus, local,
remote and distributed test cases may be built using this API.

Certain changes and enhancements will be made to the supported functions in order to
enable this API to be ported to non-Unix platforms. Features will be added which will
enhance the functionality available to test case writers. These are described in the
sections which follow.

In addition, support will be provided to enable test cases to operate in a multi-threaded
environment on Unix-like systems. Thisisdescribed in chapter 5, ‘* Thread support’’.

Readers may find it helpful to refer to the section entitled ** C language binding’’ in the
dTET2 Programmers Guide when reading the sections that follow. For ease of reference,
this section is reproduced in appendix F.

Further information about C API interfaces is presented in appendix D, ‘*Comparison
tablesfor C API interfaces”.

4.1.2 Error reporting

At present, some API functions which can fail report errorsin various ways, while others
don't really attempt to report errors at all. The reason for thisislargely historical.

InTET,only tet _fork() andtet exec() can fal and the reason for failure can
(presumably) be found by examining er r no (although the specification does not state
this explicitly).

In dTET2, one of the functions which can fail (t et _sync()) prints an error message to
the journal file on failure, whereas others (t et _renmexec(),tet_remmai t () and
tet _renkill ()) arerequired by the specification to set er r no to indicate some (but
not all) failure modes.

This behaviour will be retained in TETware in order to provide backward compatibility
with the existing implementation. In addition, a more comprehensive error reporting
mechanism for APl functions will be available by the provision of certain global
variables by the API.

The syntax of these variablesis as follows:

extern int tet_errno;
extern char *tet_errlist[];
extern int tet_nerr;

When an API function fails, it will store a failure code in the global variable
t et _errno. Thesefailure codeswill be defined inthefilet et _api . h.

30 April 1996 Page 15
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

An array of short message strings will be provided inthet et _errlist[] array. Test
suite authors may use tet _errno toindex tet _errlist[] in order to obtain a
string describing the reason for the failure of an API function. The number of strings will
be made available in the global variablet et _ner r ; test suite authors should check this
value in order to avoid an array subscript error when indexingt et _errlist[].

Thelist of t et _er r no values and the associated error message strings will be finalised
during the development of TETware.

4.1.3 Changesin API function specifications
4.1.3.1 Introduction

The move to a symmetrical model for distributed processing in TETware will have a
small impact on the specification of certain API functions. These changes will not affect
the portability of existing distributed test cases which usethe dTET2 API.

These changes are described in the sections which follow.

4.1.3.2 Remote system designations

At present, the function t et _renget|i st () returns the number of slave systems
participating in a distributed test case. The system name list returned indirectly through
*sysnamnes contains the (numerical) names of the slave systems.

In TETware, tet _rengetlist() will return the number of other systems
participating in a distributed test case. The system name list returned indirectly through
*sysnanes will contain the names of the other systems. The system name list will
always be zero-terminated. Iftet _renget!|i st () iscaled on system O, the zero list
entry is not counted when determining the function’s return value. If
tet _rengetlist() iscaledon systemsother than system O, the list entry for system
O will be the last entry in the list and so will be counted when determining the function’s
return value. This behaviour will ensure that existing test cases which pass the system
name list generated by tet _rengetli st () to a subsequent cal totet sync()
will continue to function correctly when linked with the TETware C API.

4.1.4 New API functions

4.1.4.1 Introduction

This section describes APl functions which will be added both to TETware and
TETware-Lite. Experience has shown that each of these functions will be of use to test
suite authors.

Prototypes for the functions described here will be included inthefilet et _api . h.

Page 16 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.1.4.2 Makingjournal entries

41421 tet _printf() —writeformatted information line
A function will be provided to write one or more formatted information lines to the
execution resultsfile.

The syntax of this function is as follows:
int tet_printf(char *format, /* [arg,] */ ...);

This function formats the string specified by format which may contain
printf()-like converson specifications. If the string contains more than one
information line, each line except the last should be delimited by a newline character.

If the formatted string contains a line that is longer than the maximum permitted for a
journal information line, the API adds extra newlines in order to break the long line into
two or more shorter lines. If possible, an added newline will replace a blank character in
the string so that the string is broken on a word boundary.

When all formatting is complete, the lines are written to the execution results file by a
cal tot et _mi nfoline().

A successful call to tet _printf() returns the number of bytes written to the
execution results file. If acal totet _printf () isunsuccessful, -1 is returned and
t et _errno issettoindicate the cause of the error.

41422 tet _vprintf() —writeformatted information line
A function will be provided to write one or more formatted information lines to the
execution results file, which takes its arguments from avar ar gs argument list.

The syntax of this function is as follows:
int tet_vprintf(char *format, va_list ap);

The operation and return value of this function are the same as for tet _printf (),
except that instead of being called with a variable number of arguments, it is called with
avar ar gs argument list.

10. Thus ensuring that in a distributed test case the lines are written to the execution results file in a single
operation.

30 April 1996 Page 17
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

4.1.5 New API functionsfor usein distributed test cases

4.15.1 Introduction

This section describes API functions which will be added to fully-featured TETware.
Experience has shown that each of these functions will be of use to test suite authors
when writing distributed test cases.

Prototypes for functions, structure declarations and symbolic constants described here
will beincluded inthefilet et _api . h.

4.1.5.2 Remote system information

41521 tet _remtine() —return system timeon remote system
A function will be provided to return the system time on a remote system.

The syntax of this function is as follows:
int tet_reminme(int sysid, time_t *tp);

A successful call tot et _renti nme() returns zero and the time on the remote system is
returned indirectly through *t p. If acall totet renti nme() is unsuccessful, -1 is
returned andt et _er r no is set to indicate the cause of the error.

41522 tet _getsyshyid() —returnsyst ens fileentry

A function will be provided to return the syst ens file entry for a specified system.
This function will enable part of a distributed test case to determine the host (or node)
names of other systems participating in the test case.

The syntax of this function is as follows:

struct tet _sysent {
int ts_sysid; [* dTET2 system |ID */
char ts_nane[TET_SNAMELEN ; /* systemis host nane */
b

int tet _getsysbyid(int sysid, struct tet_sysent *sysp);

sysi d specifies the system ID for which the syst ens file entry is required. sysp
points to a (user-supplied) area of memory in which the information is to be placed after
a successful call.

A successful cal to tet_getsysbyid() retuns zero. If a cal to
tet getsysbyid() is unsuccessful, -1 is returned and tet _errno is set to
indicate the cause of the error.

Page 18 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.1.5.3 Test case synchronisation

4.1.5.3.1 Introduction

Functions will be provided to enable authors of distributed test cases to gain access to all
of the user sync facilities provided by the dTET2 synchronisation subsystem®. These
facilities are asfollows:

o Synchronisation between distributed test case parts on two or more systems to a
particular sync point.

e The ability to sync unsuccessfully as well as successfully (that is, the ability to
specify the sync vote that is to be used in the request).?

e The ability to send and receive sync message data when making a sync request.

e The ability to access status information about other participating systems that is
available within the API after the completion of a sync event.

41532 tet_remsync() —synchronisewith other systems
A function will be provided to enable one part of a distributed test case to synchronise
with other parts of the same test case executing on other systems.

The syntax for this function is as follows:

int tet_rensync(long syncptno, int *sysnanes, int nsysnane,
int waittine, int vote, struct tet_synnsg *nsgp);

The behaviour of this function and meanings of its arguments are similar to those
described for t et _nsync() in the section entitled *‘ Test case synchronisation’” in the
dTET2 Programmers Guide. Only the differences will be described here; these are as
follows:

e Thellist of participating system names pointed to by sysnanes is not terminated
by a zero. Instead, the number of system names in the list must be specified
explicitly by the nsysnane argument.

e Since the distinction between master and slave systems is to be removed in
TETware, system zero will not automatically be added to the list of participating
systems. Instead, system zero must be included explicitly if it is to participate in
the sync event.

11. For a description of these facilities and an explanation of the terminology used in this section, please
refer to the chapter entitled ‘' Test case synchronisation’” in the dTET2 Installation and User Guide.
For ease of reference, this section is reproduced in appendix G.

12. This will enable one part of a distributed test case to indicate to other parts its intention to abandon
processing in a particular test purpose. At present the only way that this can be achieved is for a test
case part not to sync as expected, thus causing the event to fail. This results in a number of
unnecessary error messages being sent to the journal file.

30 April 1996 Page 19
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

e The vot e argument should be set to one of the defined constants TET_SV_YES
or TET_SV_NO, depending on whether the calling process wishes to sync
successfully or unsuccessfully.

A successful call totet _rensync() returns zero. If acal totet _rensync() is
unsuccessful, -1 isreturned andt et _er r no is set to indicate the cause of the error.

The tet_renmsync() function will replace the existing tet_sync() and
tet _nsync() functions in the current dTET2 API. Although tet sync() and
tet _nmsync() will continue to be supported in TETware in order to provide backwards
compatibility with previous dTET2 releases, they will be marked *‘to be withdrawn’’.
Test suite authors should uset et _rensync() when writing new test cases.

4.1.5.3.3 Control over syncerror reporting

At present, the API prints a message to the journal file when acall tot et _sync() or
tet _nsync() is unsuccessful. Although this behaviour is useful when a sync event
fails unexpectedly, in practice the failure is often because one part of a distributed test
purpose wants to abandon processing for some reason, usually after submitting an
UNRESOLVED result. The test purpose prints its own diagnostic message in this
circumstance, rendering the API-generated messages redundant. This is because the test
purpose intends the sync event to fail; indeed, the sync failure is used to indicate to other
participating systems that they should also abandon processing. Furthermore, the number
of messages generated by the APl can become quite large, particularly when more than
two systems are involved. This is because the APl on each system prints its own error
messages detailing the status of all the other participating systems.

A mechanism will be introduced to enable authors of distributed test cases to exercise
some control over the default error handling provided by the API and, optionally, provide
customised sync error reporting. When a test suite author uses the ability to specify a
sync vote in atet _renmsync() cal in conjunction with this mechanism, spurious
API-generated messages about intentional sync event failures will be eliminated from
journal files.

If acall toan API sync function is unsuccessful, the API will call the sync error handling
function pointed to by the global variablet et _syncerr.

Thisvariable is declared as follows:
extern void (*tet_syncerr)(struct tet_syncstat *statp, int nstat);

This variable will be initialised to point to the API’ s default sync error reporting function
tet _syncreport (), but may be changed by the test suite author to point to a user-
supplied sync error handling function.

When (*t et _syncerr) () iscalled by the API, st at p pointsto thefirst in alist of
structures describing the sync status of each of the other systems participating in the
event. nstat specifies the number of structures in the list. The global variable
t et _errno will be set to indicate the cause of the error before (*t et _syncerr) ()
iscalled.

Page 20 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0

The sync status structure is defined as follows:

struct tet_syncstat {

H

/* sync
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

int tsy sysid; /* systemID */
int tsy state; /* sync state */

state val ues */
TET_SS_NOTSYNCED
TET_SS_SYNCYES
TET_SS_SYNCNO
TET_SS_TI MEDOUT
TET_SS DEAD

4.1.5.4 Makingjournal entries

a b wNPRk

Test Environment Toolkit

TETware Design Specification

/*
/*
/*
/*
/*

sync request not received */
system voted YES */

system voted NO */
systemtimed out */

process exited */

41541 tet_m nfoline() —writemultipleinformation lines

A function will be provided to write multiple information lines to the execution results
file. Thiswill enable a distributed test case part to write more than one information line
to the execution results file as an atomic operation. The possibility that these lines might
be interspersed with information lines from other parts of the same test is avoided.

The syntax of this function is as follows:

int tet_mnfoline(char **|ines,

int nlines);

| i nes points to the first in a list of pointers to strings which are to be written to the
execution results file as an atomic operation. A NULL pointer in the list is ignored.

nl i nes specifies the number of string pointersin thelist.

A successful

cal to tet_mnfoline()

returns zero. If a cal to

tet_m nfoline() isunsuccessful, -1 isreturned andt et _err no is set to indicate
the cause of the error.

4.1.6 API considerationsfor non-Unix systems

4.1.6.1 Introduction

The original TET specification was intended to be implemented on Unix-like (or, more
specifically) POSIX.1-conforming systems. It will be necessary to modify the C APl in
order to enable TETware to operate on non-Unix systems.

The sections that follow describe the additions and changes that will be required. The
information presented here is summarised in atable in appendix D, ‘* Comparison tables
for C API interfaces’’.

13. This API function will enable authors of distributed test cases to access afacility to write multiple lines
atomically which already existsin the dTET2 execution results file access subsystem.

30 April 1996

X/Open Company Ltd

Page 21

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Refer to the section entitled ‘* C language binding’’ in the dTET2 Programmers Guide for
details of existing API functions. For ease of reference, this section is reproduced in
appendix F.

4.1.6.2 Test case structure and management functions

The global variablet et _nosi gr eset will be provided on all platforms. However, its
effectiveness on a non-Unix platform will be determined by the extent to which the
platform supports Unix-style signal handling.

4.1.6.3 Insulating from the test environment

On a non-Unix platform, the ability to leave signals untouched or to ignore them will
only be supported to the extent that the platform supports Unix-like signals. In
particular, it should be noted that non-Unix platforms do not necessarily support al the
POSIX.1signals.

4.1.6.4 Generating and executing processes

4.1.6.4.1 Introduction

At present, the functions in this category aretet _fork() and tet _exec(). The
specification for these functions assumes a Unix-like hierarchical process model whichis
not necessarily available on non-Unix platforms. In TETware these functions will only
be supported on Unix-like systems; thus, test cases which use these functions will not be
portable to non-Unix platforms.

New API functions for performing process control within test cases will be supported (to
the extent that is possible) on all platforms where TETware is implemented. Prototypes
for these functions will be provided in the file t et _api . h. These functions are
described in the sections that follow.

4.1.6.42 tet _spawn() —start anew process

This function will initiate a new process and will perform an operation similar to acall to
tet _fork() with a NULL parentproc argument, followed by a cal to
t et _exec() inthe child process.

The syntax of this function is asfollows:
pid_t tet_spawn(char *file, char *argv[], char *envp[]);

The meanings of the argumentsto t et _spawn() are the same as for the arguments to
tet _exec().

A successful call tot et _spawn() returns the process ID of the new process. If a call
tot et _spawn() isunsuccessful, —1isreturned andt et _er r no is set to indicate the
cause of the error.

An appropriate definition for pi d_t will be included in the file tet _api.h on
platforms on which pi d_t isnot defined inthefile<sys/ t ypes. h>.

A process that is started by t et _spawn() should be linked with the child process
controller t cnchi | d. o and will otherwise behave as if it had been launched by a call

Page 22 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

to tet _exec(), subject to any limitations imposed by the different process model
implemented on a non-Unix platform.

41643 tet _wait() —wait for aprocessstarted byt et _spawn() toterminate
This function will enable a test case to wait for a process started by t et _spawn() to
terminate and to obtain that process' s exit status.

The syntax of this function is as follows:
int tet_ wait(pid_t pid, int *statp);

tet _wait () waits for the process identified by pi d to terminate and returns that
process's exit status indirectly through * st at p. pi d is the process ID returned by a
previous successful call tot et _spawn() . A successful call totet _wait () returns
zero. Ifacall tot et _wai t () isunsuccessful, —1isreturnedandt et _errnoissetto
indicate the cause of the error.

To the extent that the concepts are supported on non-Unix platforms, the value returned
through * st at p can be examined by the macros defined in <sys/ wai t . h> on Unix-
like platforms. When these macros are not provided on a non-Unix platform, appropriate
definitions will beincluded inthefilet et _api . h.

Note that on platforms which do not support multi-tasking, acall tot et _spawn() will
block until the new process terminates. However, t et _wai t () can still be used to
obtain the exit status of the new process on such platforms.

41644 tet _kill () —terminateaprocessstarted byt et _spawn()
This function will enable a test case to terminate a process started by a previous call to
tet _spawn().

The syntax of this function is as follows:
int tet kill(pid t pid, int sig);

pi d is the process ID returned by a previous successful cal totet _spawn().sig
specifies the signal which is to be sent to the named process. si g isignored on non-
Unix platforms where signals are not supported; instead, an appropriate mechanism is
used to terminate the process if possible.

A successful cal to tet Kkill () returns zero. If a cal to tet _kill () is
unsuccessful, —1isreturned andt et _er r no is set to indicate the cause of the error.

This function is a no-op on platforms which do not support multi-tasking.

4.1.7 API considerationsfor TETware-Lite
4.1.7.1 Introduction

As has been indicated elsewhere in this document, TETware-Lite does not support
remote or distributed processing. Therefore, certain API functions and variables which
may be used in distributed test cases are not supported in TETware-Lite.

30 April 1996 Page 23
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Certain API functions which are only appropriate for use in distributed test cases cannot
operate in the environment provided by TETware-Lite. These functions will not be
present in the API library supplied with TETware-Lite. This is to enable test case
authors to identify at compile time the use of functions which are only supported in
fully-featured TETware.

This section describes the way that each TETware version will affect the availability and
behaviour of interfaces in the C API. The information presented here is summarised in a

table in appendix D, ‘* Comparison tables for C API interfaces”.

4.1.7.2 Makingjournal entries

A cal to tet_mnfoline() will be functionally equivadent to calling
tet _i nfoline() onceforeach linewhichisto be printed to the journal file.

4.1.7.3 Executed process functions
Acadltotet exit() will befunctionally equivalent to callingexi t () .
Acaltotet | ogoff () will have no effect.

4.1.7.4 Test case synchronisation

tet_sync(), tet_nsync(), tet _renmsync(), tet_syncreport() and
(*tet_syncerr) () arenot supported.

4.1.7.5 Remote system designations

Acaltotet rengetlist() will awaysreturn zero. A pointer to alist containing a
single zero value will be returned indirectly through * * sysnanes.

Acdltotet rengetsys() will dwaysreturn zero.
4.1.7.6 Remote process contr ol
tet_remexec(),tet_remmait() andtet _renkill () arenot supported.

4.1.7.7 Remote system information
tet rentine() andtet get syshbyi d() arenot supported.

4.2 The C++ API

A lightweight C++ API will be included in TETware. This will be implemented in the
same way asin ETET 1.10.3. Thefilet et _api . h which is part of the C API will be
enhanced so as to enable it to be used in this APl aswell. Local, remote and distributed
test cases may be built using this API.

Page 24 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

4.3 Thexpg3sh API

The xpg3sh API from TET 1.10is currently included in dTETZ2 and will be included in
TETware. This APl may be used in conjunction with local and remote test cases. As
with dTET2, there is no support for distributed test cases when this API is used.

It is not intended to include this API in TETware distributions for non-Unix platforms.

4.4 Theksh API

The ksh API from ETET 1.10.3 will beincluded in TETware. This APl may be used in
conjunction with local and remote test cases. There will be no support for distributed test
cases when this API is used.

It is anticipated that, after porting, this APl will be usable on PC platforms where the
MKS Toolkit isinstalled.

45 Theper| API

The per| API from ETET 1.10.3 will be included in TETware. This APl may be used
in conjunction with local and remote test cases. There will be no support for distributed
test cases when this API is used.

Whether or not this APl is useful depends on whether a per| implementation is
available on the target platform. At the time of writing, it has not been determined
whether aper | implementation is available for all of the non-Unix platforms to which it
isintended to port TETware.

30 April 1996 Page 25
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 26 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

5. Thread support

5.1 Introduction

The C Test Case Manager and API library will be enhanced in TETware so as to enable
the use of threads in test cases. The support for threads will be present in both TETware
and TETware-Lite versions which run on Unix-like platforms.

When TETware is built on a Unix-like platform, both *‘standard’’ and thread-safe
versions of the TCM and the API library will be generated. Reasons for having two
versions of these files include the following:

o The additional overhead of the thread-safe code will be avoided in the mgority of
test cases which do not require it.

e The need to link the majority of test cases which do not use threads against
additional system libraries will be avoided. Thus, compatibility with existing TET
implementations will be maintained.

If it isrequired to make use of threads in test case code, the test suite author will specify
a compile-time option and link the test case with the thread-safe versions of the TCM and
the API library.

5.2 API issues
5.2.1 Changesto existing API functions

The internal workings of certain API functions will be enhanced to include an option to
generate both ‘‘standard’” and thread-safe versions. When the thread-safe version is
built, code will be enabled to control the execution of critical code sections with the use
of mutexes, and to control access to global data with the use of data locks.

The interface to API functions will be the same, regardless of whether the standard or
thread-safe versions are used. It is not anticipated that it will be necessary to provide
specia reentrant versions of any of the existing API functions.

5.2.2 New API functions

5.2.2.1 Generating and executing processes

52211 tet_forkl1() —createanew processcontaining asinglethread

When the thread-safe APl isused, acal tot et _f or k() creates a child process which
contains all the threads which exist in the parent process. A function will be provided
which creates a child process containing only the thread of the calling process, but will
otherwise behave asdoest et _f or k().

30 April 1996 Page 27
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The syntax of this function is as follows:

int tet forkl(void (*childproc)(void), void (*parentproc)(void),
int waittinme, int validresults);

The arguments and return value of this function are the same asthose of t et _f or k() .

5.2.2.2 Thread control

52221 tet thr_create() —createanew thread

A function will be provided to create a new thread in a test purpose. When this function
is used to create a new thread, the API stores information about the newly-created thread
in order to enable the TCM to perform appropriate actions when the test purpose returns
control to the TCM, or when an unexpected signal occurs.

The syntax of this function is asfollows:

int tet thr _create(void *stack base, size t stack_size,
void (*start _routine)(void *), void *arg,
long flags, thread t *new_thread);

The arguments and return value are the same as those for thet hr _cr eat e() function.
A cal to tet_thr_create() atempts to create a new thread by calling
t hr _creat e() withthe same arguments. Thereturnvalueoft et _thr_creat e()
is the same as that of the underlying t hr _create() cal. Unlike other API cals,
tet _thr_create() doesnotsett et errno if thecal fals.

Unexpected results may occur if atest suite creates a new thread other than by using this
function.

5.2.2.3 Accessto global API variables

Functions in the thread-safe API library will maintain per-thread versions of certain
global variables that are defined in the API. Examples of such variables are
tet_errnoandtet child.

Functions will be provided to return per-thread values of these variables. The names of
the functions themselves will not be part of the API.* Instead, thefilet et _api . h will
redefine each variable when a compile-time option isin effect. When the global variable
is redefined in this way, a reference to the variable will instead access the per-thread copy
of the variable that is maintained by the API.

For example, if the name of the function to access the per-thread value of t et _chi | d
istet _thr_child(), the following definition will be visibleint et _api . h when
the compile-time option is used:

#define tet_child (*tet _thr_child())

14. Therefore an API-conforming test case should never call any of these functions directly.

Page 28 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

5.3 TCM enhancements

It is expected that, if atest purpose creates a new thread, the test purpose should take
responsibility for terminating the new thread and waiting for them before return.
However, in order to guard against the case where this does not happen, and aso to
provide for the handling of unexpected signals, the thread-safe version of the TCM will
be enhanced as follows:

e The TCM will call each test purpose using a single thread (the main thread).
When atest purpose thread returns control to the TCM:

— if the thread is not the main thread, the thread exits
— if the thread is the main thread, it waits for each of the other threads to exit
o When an unexpected signal is caught by the TCM:

— if the thread that catches the signal is not the main thread, it forwards the
signal to the main thread and exits

— if the thread that catches the signal is the main thread, it terminates each of
the other threads

o When the TCM waits for a thread to exit, it terminates the thread if the thread does
not exit after a certain time has expired.

o When the TCM terminates a thread, it does so by sending a SI GTERMsignal to the
thread. If the thread does not exit after a certain time, the TCM sendsa SI GKI LL
signal which forcibly terminates the thread.

5.4 Client/server issues

5.4.1 Introduction

In fully-featured TETware, certain APl calls result in requests being sent to TETware
servers. Examples of such calls are t et _rensync() which sends a request to the
synchronisation daemon t et syncd, andt et _i nf ol i ne() which sends arequest to
the execution results daemon t et xr esd. Although it would be possible for each thread
in a multi-threaded test purpose to make its own connection to each TETware server, in
practice thisis not considered necessary. The reasons for this are different for each type
of server and are presented in the sections that follow.

Instead, the flow-of-control for each API function that passes though a particular server
will be regarded as a critical code section. One mutex will be used to control access to
each server and its associated process table entry in the client process.

30 April 1996 Page 29
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

5.4.2 Thetest case controller daemont ccd

A test case sends arequest to at ccd running on a remote system as aresult of acall to
one of the remote process control functions.®®> One such call —tet _remnai t () —can
block when anon-zero t i meout parameter is specified. Since access to each server is
to be controlled by a mutex, a call totet _remnai t () which blocks will prevent
accessto aparticular t ccd by other threads in the same process.

However, the use of remote process control functions is deprecated in TETware; indeed,
these functions are only supported in order to provide backwards compatibility with
dTET2. Instead, if it is necessary to execute a process on another system which is
participating in a distributed test case, it is recommended that the process should be
started by the part of the test case that is executing on that system.

The limitation on the use of remote process control functions in a multi-threaded
environment will be documented (together with this recommendation) in the function
descriptions in the TETware Programmers Guide.

5.4.3 The synchronisation daemont et syncd

A test case sends a request to t et syncd as a result of a call to one of the API's
synchronisation functions. Since synchronisation is defined in terms of systems and not
processes, only one process on a particular system may represent that system in a
particular synchronisation event. A consequence of this requirement is that it is an error
for two processes on the same system to make overlapping synchronisation requests. It
follows, therefore, that in a multi-threaded environment it would be an error for two
threads on the same system to make overlapping synchronisation requests (whether or
not the threads are in the same process).

In view of this there would be no advantage to be gained by enabling individual threads
to make their own connectionstot et syncd.

5.4.4 Theexecution resultsdaemont et xr esd

A test case sendsarequest tot et xr esd asaresult of acal to one of the API functions
which process information which is to appear in the journa file. Since all file i/o
operations must be single-threaded, there would be no significant advantage to be gained
by enabling individual threads to make their own connectionstot et xr esd.

15. Thefunctionsin thiscategory are: tet _remexec(),tet_remmait() andtet _renkill ().

Page 30 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

6. Portability to non-Unix platforms

6.1 Introduction

The TET specification assumes that TET will be implemented on a Unix-like platform.
In addition, the design of existing TET and dTETZ2 implementations make use of Unix-
style operating system services and library routines which are not always available on
non-Unix platforms.

Examples of such servicesinclude:
o Multi-tasking using a preemptive scheduler.
¢ A hierarchical process structure.
« Notification of asynchronous events using POSIX.1-style signals.
e Useof f or k() toclone acopy of the calling process.

e Useof read() andwite() system cals to perform i/o using arbitrary record
Sizes.

o Useof pipesto transfer data between processes.
e Accessto network services using socket calls or XTI.

e The availability of a software development system with a user interface which is,
for the most part, the same on all systems.

In addition, it is common for compilers which run on some popular PC platforms to
require the use of extensions to the C language that are necessary in order to support
certain features of the PC’s machine architecture.

It is intended to make TETware available on a number of popular platforms outside the
traditional sphere of Unix-like and POSIX.1-conforming environments. The impact that
the non-availability of certain Unix-like system services might have on TETware
functionality and portability will vary, depending on the nature of the difference between
the Unix-like and non-Unix platform.

When considering the differences between the various platforms and how they might be
overcome, several classes of difference emerge. The first class of difference relates to
the case where there is an ANSI and a non-ANSI way of performing a particular task.
For example, the lack of Unix-style read() and write() system cals can be
overcome fairly easily by the use of their ANSI equivalents. Furthermore, if code that
uses the Unix-style calls is replaced by code that uses the ANSI calls, the modified code
isstill portable to al systems.

A second class of difference between Unix and non-Unix systemsis alittle more difficult
to accommodate. If TETware uses a system interface or header file element which is not
available on a non-Unix system, a compatibility library function or header file element
must be supplied which may be different for each affected platform. For example, on a
platform which supports the concept of a process ID but does not include a definition for

30 April 1996 Page 31
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

pid_t in <sys/types. h>, a suitable definition must be visible in one of the
TETware header files when the code is compiled on that platform.

A third class of difference involves situations where the design of the code must be
changed. For example, the lack of af or k() system call on many non-Unix systems
means that a design which makes use of the properties of f or k() must be changed.
This is one of the motivations behind the intention to re-designt cc in TETware, in the
way that is described in chapter 3, *‘ The Test Case Controllert cc’’.

A final class of difference is one where it is pragmatic ssmply to accept the limitation
imposed by the difference. An example of such a difference is the lack of multi-tasking
which uses a preemptive scheduler. In such cases TETware will still work on the
affected platform but with some loss of functionality.

The way in which differences between Unix-like and non-Unix systems will be catered
for in TETware are described in the sections which follow. It should be understood that
the information presented here refers to the part of TETware that is written in C; namely,
the Test Case Controller subsystem and the C TCM/API. Information related to the
portability of each of the other TCM/APIs is presented in the section describing the API
concerned in chapter 4, “* Test case support’”.

Comparisons of functionality between TETware on different platforms are summarised
in tables which are presented in several appendices at the end of this document.

6.2 Supported platforms

To the extent possible, it is intended to port TETware to the following non-Unix
platforms:

e DOS + Windows 3.11

o Windows 95

e Windows NT
When TETware is ported to a platform which supports a graphical user interface, it will
be compiled as a console application. It is suggested that the provision of a graphical

user interface to TETware should be undertaken as a separate project if thisis considered
important by X/Open.

6.3 TETware-Lite
TETware-Lite will be ported to all of the supported platforms.

6.4 Fully-featured TETware

Fully-featured TETware uses a client-server architecture and so the demands that are
placed on the underlying operating system are rather greater than those imposed by
TETware-Lite. In particular, the design of the Test Case Controller subsystem in fully-
featured TETware requires the underlying operating system to support multi-tasking

Page 32 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

using a preemptive scheduler.

The effect of this is that it will be possible to run t cc on a platform which supports
multi-tasking and so these platforms may operate either as a local (or master) system or
as a remote system. However, it will only be possible for a platform which does not
support multi-tasking to operate as a remote system under the control of at cc which is
running on a multi-tasking platform.

It is anticipated that the following non-Unix platforms will support TETware both as a
local and aremote system:

e Windows NT

whereas the following platforms will only support TETware as a remote system which
doesnotrunt cc:

e DOS + Windows 3.11
¢ Windows 95

It should be noted that it will only be possible for platforms that do not support multi-
tasking to participate in a single remote or distributed test case at atime.

6.5 Compiler subsystem issues

When TETware is ported to each non-Unix system, it will be ported in a form suitable
for use with a particular software development environment. The resulting code will
only be guaranteed to compile successfully if the specified environment isin place on the
target system.

Details of the environment required to compile TETware for each supported platform
will be presented in the Installation and Build Notes for the target platform.'®

In order to accommodate the differences between the environments on each of the target
platforms, conditional compilation will be used in the source code wherever it is practical
to do so. Where this is not practical, platform-specific code will be separated out into
platform-specific source files. Platform-specific nmake definition files will contain
sufficient information to enable the appropriate version of each source file to be selected
when each TETware component isto be built.

16. Refer to the section entitled *‘ Installation and Build Notes'’ in chapter 7 for further details.

30 April 1996 Page 33
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 34 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

7. Documentation

7.1 Introduction

The sections that follow describe the documents that will be supplied with the TETware
distribution. These documents will be supplied in Postscript form.

The documents included in the TETware distribution will all describe the state of the
product at the time the distribution is made. Out-of-date documents and documents
describing previous TET releases will not be included.

7.2 Document source format

The documentation in existing TET implementations is written and supplied in t r of f
source format. More recently, Postscript format documentation has also been included in
most TET releases.

It is understood that X/Open is considering as a general policy the merits of supplying
documentation in HTML format. This is in order to enable documents to be viewed
conveniently with a suitable Web browser. It will be seen from the sections that follow
that it is proposed to base the TETware guides on existing (t r of f - and Postscript-
format) TET and dTET2 documents.

If HTML format documents are to be produced for the next TET release, it will be
necessary to convert and/or re-structure the t r of f source of each document to a format
and structure more suitable for use with HTML. It is anticipated that such a conversion
will require afair amount of effort. In view of this, it is suggested that if X/Open wish to
have HTML-format documentation at this time, the conversion of TET documentation to
HTML format should be undertaken as a separate project.

7.3 Programmers Guide

Material for this guide will be taken from the Programmers Guides that are supplied with
dTET2 and ETET 1.10.3.

The structure of the TETware Programmers Guide will differ from that of previous
Programmers Guides as follows:

e Sections which consist mainly of materia copied from the origina TET
specification will be reviewed for relevance to the target audience. These sections
will be edited, relocated or removed as necessary, so that the guide's clarity and
usability is enhanced.

e A chapter describing how to write a distributed test case will be added. In
particular, programming techniques for the effective use of synchronisation
between test case parts will be described.

e A section will be added which describes how to use the (*t et _startup) ()
facility to support Internationalisation and the use of locales.

30 April 1996 Page 35
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

e A section will be added which describes how to use TETware to process a test
suite which resides on aread-only file system.

o A section will be added which describes how to write a multi-threaded test case.
o Detailed descriptions of C API functions will be presented in manpage format.
o The comparison tables contained in severa of the appendices to this document will
be included in the updated Programmers Guide.
An indication of the status of each C API function will be included in the description of
each function as follows:

— whether the function is specific to TETware implementations on Unix-like systems
or supported on all TETware implementations

— whether the function should be used in new test cases, provided only for backwards
compatibility with previous TET releases, or deprecated for some other reason

When use of a function is deprecated for any reason, the function’s description will
indicate which current function or facility should be used in order to achieve the same
effect.

7.4 Ingtallation and User Guide

This guide will be derived from the dTET2 Installation and User Guide. Sections will be
updated and/or added as necessary to describe the operation of TETware, including at
least the following areas:

e The symmetrical architecture of TETware systems.
e TETware-Litevs. fully-featured TETware.

o Using TETware on different supported platforms.

e Thedifferent TCM/APIs supplied with TETware.

o Configuration variables.

e Communication (or environment) variables.

e Scenario file directives.

e Sections describing TETware for users familiar with TET 1.10, dTET2 and
ETET 1.10.3.

Most of the information in the section describing how to install and build the test harness
will be relocated to a separate document entitled *‘ TETware Installation and Build
Notes’. Thisinformation will be replaced by a pointer to that document.

Page 36 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

7.5 Installation and Build Notes

One set of Installation and Build Notes will be produced for each platform on which
TETware is supported. These Notes will replace the section in the Installation and User
Guide which describes how to build and install the test harness.

As has been noted elsewhereg, it is intended to supply TETware in binary form on certain
platforms. The versions of the Installation and Build Notes for such platforms will make
a clear distinction between information related to the source distribution and information
relating to the binary distribution on that platform.

7.6 Specification document
It is not intended to include a specification document with TETware distributions.

The base TET was first described in a document entitled ‘* Test Environment Toolkit —
Architectural, Functional and Interface Specification’’. Although some changes have
been made to this document during the evolution of the TET, information in the
document has not always been kept in step with TET implementations. As a resullt,
existing versions of the Specification document are not really suitable for use as the basis
of a TETware Specification document and it is anticipated that a fair amount of effort
would be required to produce a definitive Specification document for TETware.

In view of this, it is suggested that if the availability of a definitive specification for
TETware is important to X/Open, this should be undertaken as a separate project. It is
anticipated that a definitive TETware Specification would include material from the base
TET Specification and also from this document.

7.7 Release Notes

7.7.1 Generic Release Notes

Each release of TETware will be accompanied by a set of generic Release Notes. It is
intended that this document will be the very first document that a user reads when
receiving the release.’” The Release Notes document will contain information about the
particular TETware release that it accompanies, together with pointers to the other
documentsin the release.

It is anticipated that the generic Release Notes will contain information under at |east the
following headings:

o New featuresin thisrelease

o Status of thisrelease

17. And, hopefully, before attempting to start work with the release!

30 April 1996 Page 37
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Problems fixed since the last release

Known problemsin this release
e Building and installing TETware
o Problem reporting

In order to maximise the clarity and usability of the Release Notes, this document will
not contain detailed instructions concerning how to install or operate TETware. Instead,
references will be provided to the chapters and sections in the main documents where this
information is presented.

7.7.2 Supplementary Release Notes for specific platforms and
distribution types

It is anticipated that there may be circumstances where it is necessary to issue a
supplement to the generic Release Notes. When a supplement is issued, it will contain
information which is relevant only to a particular platform on which a release of
TETware is made.

When it is necessary to issue such a supplement, it is anticipated that it will have atitle
similar to “* TETware Release M. N — Release Notes Supplement for type Distributions on
XXX Platforms’’, where M. N is the release number, type indicates a Source, aBinary or
a Source and Binary distribution and XXX specifies the target platform for which the
release is made.

Page 38 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

8. Miscellaneous issues

8.1 Compatibility with existing TET implementations
8.1.1 Introduction

TETware provides backwards compatibility for test cases written to run under the control
of existing TET implementations, namely, TET 1.10, dTET2 and ETET 1.10.3.

Compatibility information relating to various TETware features is summarised in the
tables presented in several appendices at the end of this document.

8.1.2 Compatibility issues
8.1.2.1 C languagetest cases

TETware provides compatibility at source code level for al existing API-conforming test
cases that are written using the C and C++ APIs. EXxisting test cases should be re-linked
with the TETware TCM and API library in order to take full advantage of the facilities
provided by the TETware API.

In addition, support is provided in TETware for al existing TET 1.10 and most
ETET 1.10.3% test case binaries. However, dTET2 test cases must be relinked with the
TETware TCM and API library in order to function correctly.

In afew casesit will be necessary to make changes to test cases which have been written
to run under the control of previous TET implementations as follows:

o If aTET or ETET test purpose makes a call to exi t (), it is desirable to replace
this with a call to tet _exit () .2 If this is not done, the test case will still
function correctly in every respect but a harmless ‘‘client closed connection’’
message will be emitted by t et syncd andt et xr esd when the test case exits.?°

18. Except test cases which rely on the behaviour associated with TET_EXTENDED,
TET_JOURNAL PATH and TET_LOCK. Refer to the section entitled ‘‘Communication variables
derived from ETET 1.10.3"" in chapter 3 for a discussion concerning these variables.

19. Refer to the section entitled ** Executed process functions'’ in the dTET2 Programmers Guide for a
description of t et _exi t () . For ease of reference the chapter containing this section is reproduced in
appendix F.

20. This behaviour will only be observed in fully-featured TETware. It will not occur in TETware-Lite
since, inthiscase, t cc does not make use of server processes.

30 April 1996 Page 39
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

e For the same reason, it is desirable to insert a call to tet | ogoff()
immediately before an explicit call to one of theexec() functions.?

o If a scenario file contains one of the directives which has different syntax in
ETET 1.10.3 and dTETZ2, it will be necessary to include a definition for the
TETware-specific TET_COWVPAT variable in the configuration file for each of
t cc’smodes of operation.??

In TET 1.10 and ETET 1.10.3 it is possible to execute a C language test case directly
from the command line without the use of t cc. However, in dTET?2 it is not possible to
execute a C language test case directly from the command line; instead, such test cases
must always be executed under the control of t cc.

When TETware-Lite is used, it is possible to execute a Clanguage test case either
independently or under the control of t cc. However, when fully-featured TETware is
used, it is not possible for the user to set up the environment that the C APl needs in
order to support remote or distributed testing. Thus a C language test case cannot be
executed independently but must always be run under the control of t cc.

8.1.2.2 Test caseswhich use other APIs

Support is provided for test cases whose APIs use the interface between t cc and the
TCM/API that is described in the base TET specification. APIs which use this interface
include the xpg3sh, ksh and per | APIs. Thissupport is present in both TETware and
TETware-Lite.

Asin existing TET implementations, it is possible to execute atest case independently in
TETware aswell as under the control of t cc when one of these APIsis used.

21. Refer to the section entitled ** Executed process functions'’ in the dTET2 Programmers Guide for a
description of t et _| ogof f () . For ease of reference the chapter containing this section is reproduced
in appendix F.

22. Thisissue is discussed in the section entitled ‘* Conflicts between dTET2 and ETET 1.10.3 scenario file
syntax’’ in chapter 3.

When the TETware t cc encounters a syntax ambiguity in a scenario file and this variable is not set, it
prints a diagnostic and does not process the scenario. Thus the user is protected from the possibility of
unexpected default behaviour when a test suite designed to run under the control of ETET 1.10.3 or
dTET2 isprocessed by TETware.

Refer to the section entitled * TET_COWPAT — select TETware compatibility mode'’ in chapter 3 for a
description of this configuration variable.

Page 40 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

8.1.3 Combining test casesfrom existing TET implementations

TETware is able to process a scenario which contains a mixture of test cases taken from
TET 1.0, dTET2 and ETET 1.10.3 test suites. However, if such a scenario uses
directives whose syntax is different in dTET2 and ETET 1.10.3, it will be necessary to
decide which syntax to use and then use the chosen syntax throughout the scenario file.

30 April 1996 Page 41
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 42 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

APPENDICES

30 April 1996 Page 43
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 44 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

A. Comparison tablesfor configuration variables

A.1 Introduction

This appendix contains tables which indicate the status of each configuration variable in
several contexts.

The meanings of symbols which appear in these tables are as follows:

v configuration variable has the effect described in the specification
0 configuration variable sometimes has effect
O configuration variable has no effect

12etc. refer to notes at the end of each table table

A.2 Support for configuration variablesin different
TETwareversions

Configuration variable name TETware | TETware-Lite

TET_API _COVPLI ANT
TET_BU LD _FAI L_TOCL
TET_BU LD_FI LE
TET_BUI LD _TOOL
TET_CLEAN_FI LE
TET_CLEAN_TOOL
TET_COWPAT
TET_EXEC _FI LE
TET_EXEC | N_PLACE
TET_EXEC _TOOL
TET_LOCALHOST
TET_OUTPUT_CAPTURE
TET_PREBUI LD_TOOL
TET_REMINN_TET_EXECUTE
TET_REMhNn_TET_ROOT
TET_REMhNN_TET_RUN
TET_REMINN_TET_TSROOT
TET_REMINN_variable
TET_RESCODES_FI LE
TET_SAVE_FI LES
TET_SIG I GN

TET_SI G_LEAVE
TET_TC_PASS_NAME
TET_TRANSFER_SAVE_FI LES
TET_XTI _MODE

TET_XTI _TPI

LU L=<
=

D000 0003200321===<<x<

Notes:

1. Only effective when nnnis000.

30 April 1996 Page 45
X/Open Company Ltd

Test Environment Toolkit
TETware Design Specification

TET3-SPEC-1.0

A.3 Support for configuration variables on different
platforms

When remote or distributed test cases are being processed, it is possible to define a
variable in a configuration file on the master system which applies to aremote system. In
addition, it is possible to define a variable in a configuration file on a remote system
which applies only to that system. When interpreting the symbols in this table it should
be understood that the symbol refers to the platform on which the variable is defined and
not necessarily to the platform to which the variable applies.

Platform
Configuration variable name Unix DOS .
POSIX1 | Windows | 'WINAOWSNT
TET_API _COVPLI ANT v v

TET_BU LD _FAI L_TOCL
TET_BU LD_FI LE
TET_BU LD_TOOL
TET_CLEAN_FI LE
TET_CLEAN_TOOL
TET_COWPAT
TET_EXEC FI LE
TET_EXEC | N_PLACE
TET_EXEC_TOOL
TET_LOCALHOST
TET_OUTPUT_CAPTURE
TET_PREBUI LD_TOOL
TET_REMINN_TET_EXECUTE
TET_REMhNn_TET_ROOT
TET_REMhNN_TET_RUN
TET_REMINN_TET_TSROOT
TET_REMINN_variable
TET_RESCCDES_FI LE
TET_SAVE_FI LES
TET_SIG I GN

TET_SI G_LEAVE
TET_TC_PASS_NAME
TET_TRANSFER_SAVE_FI LES
TET_XTI _MODE

TET_XTI _TPI

LU L L=<

OOo<oo<<i)oOoo<<o<<<<<<<<<<

OO0 L1201

1. A fully-featured TETware master system is not supported on this platform. Thus,
setting this variable is only effective when the platform acts as aremote system.

Page 46

X/Open Company Ltd

30 April 1996

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

A.4 Compatibility with configuration variablesin existing
TET implementations

TET implementation
TET 1.10 ETET 1.10.3 | dTET223 TETware

TET_API _COVPLI ANT 0 o v
TET_BUI LD_FAI L_TOOL
TET_BU LD _FI LE

TET_BU LD TOOL
TET_CLEAN FI LE
TET_CLEAN TOOL
TET_COVPAT

TET_EXEC FI LE
TET_EXEC | N_PLACE
TET_EXEC TOOL
TET_LOCALHOST
TET_OUTPUT_CAPTURE
TET_PREBUI LD _TOOL
TET_REMnn_TET_EXECUTE
TET_REMnn_TET_ROOT
TET_REMNN_TET_RUN
TET_REMnn_TET_TSROOT
TET_REMINN_variable
TET_RESCODES_FI LE
TET_SAVE_FI LES
TET_SIGIGN

TET_SI G_LEAVE
TET_TC_PASS_NAVE
TET_TRANSFER_SAVE_FI LES
TET_XTI _MODE

TET_XTI _TPI

Configuration variable name

[

0003320000000 =<k
LA L L L=l =<

[

OOOO<<<<oooooo<o<<<o<<<<<
R

Notes:

1. Thisvariableisonly effective when the XTI network transport interface is used.

30 April 1996 Page 47
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 48 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

B. Comparison tablesfor communication variables

B.1 Introduction

This appendix contains tables which indicate the status of each communication variable
in several contexts.

The meanings of symbols which appear in these tables are as follows:

v communication variable has the effect described in the specification
0 communication variable sometimes has effect
O communication variable has no effect

12etc. refer to notes at the end of each table table

When interpreting the information contained in these tables, it should be understood that
communication variables are provided for use by the test harness and are not part of the
APIl. Therefore, the effectiveness or otherwise of a particular communication variable
will not affect the portability of API-conforming test cases between different TET
implementations or supported platforms.

The following variables are part of the published interface between the user andt cc:

TET_EXECUTE
TET_EXTENDED
TET_LOCK
TET_ROOT
TET_RUN

TET_SUI TE_ROOT
TET_TMP_DIR

The following variables are part of the published interface between t cc and the
TCM/API:

TET_ACTI VI TY
TET_CODE
TET_CONFI G
TET_EXTENDED
TET_JOURNAL_PATH
TET_LOCK
TET_ROOT

TET_RUN

TET_SUI TE_ROOT

30 April 1996 Page 49
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

B.2 Support for communication variablesin different
TETwareversions

Communication variablename | TETware | TETware-Lite

TET_ACTIVI TY v
TET_CCDE

TET_COM VAR
TET_CONFI G
TET_DI ST
TET_EXECUTE
TET_EXTENDED
TET_JOURNAL_PATH
TET_LOCK
TET_ROOT

TET_RUN

TET_SUl TE_ROOT
TET_TI ARGS
TET_TMP_DIR
TET_TSARGS

L2000
000000~

B.3 Support for communication variables on different

platforms
Platform
Communication variable name Unix DOS .
POSIX1 | Windows | W/INdowsNT

TET_ACTIVI TY v v v
TET_CODE Vv v

TET_COM VAR v v v
TET_CONFI G v v v
TET_DI ST v v v
TET_EXECUTE v v v
TET_EXTENDED O O O
TET_JOURNAL_PATH 0 0 0
TET_LOCK o O O
TET_ROOT v v v
TET_RUN v v v
TET_SU TE_ROOT v v v
TET_TI ARGS v v v
TET_TMP_DIR v v v
TET_TSARGS v v v

Page 50 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

B.4 Compatibility with communication variablesin
existing TET implementations

o) TET implementation
Communication variable name
TET 1.10 ETET 1.10.3 dTET223 TETware

TET_ACTIVITY v v v v
TET_CODE v v
TET_COM VAR O O v v
TET_CONFI G v v v v
TET_DI ST O O v v
TET_EXECUTE v v v v
TET_EXTENDED O v O 01
TET_JOURNAL_PATH O v O o1
TET_LOCK O v O o1
TET_ROOT v v v v
TET_RUN O v O v
TET_SU TE_ROOT O v O v
TET_TI ARGS O O v v
TET_TMP_DI R v v v v
TET_TSARGS O O v v

Notes:

1. Itisnot considered necessary to implement this variable at present. Refer to the
section entitled ** Other communication variablesin ETET 1.10.3" in chapter 3.

30 April 1996 Page 51
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 52 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

C. Comparison tablesfor scenario directives

C.1 Introduction

This appendix contains tables which indicate the status of each scenario file directive in
several contexts.

The meanings of symbols which appear in these tables are as follows:

v scenario directive is fully supported as described in the specification
0 scenario directive is partially supported
X scenario directive is not supported

12etc. refer to notes at the end of each table table

Certain TET scenario directives consist of more than one line. This is indicated by
indenting the second and subsequent linesin a multi-line directive.

30 April 1996 Page 53
X/Open Company Ltd

Test Environment

Toolkit

TETware Design Specification

TET3-SPEC-1.0

C.2 Support for scenario directivesin different TETware

versions
Scenario directive TETware | TETware-Lite

comment v v
scenario-name v v
test-case v v
" text” v v
" scenario-name v v
@est-case v v
:incl ude: file v v
:paral |l el [, count]: test-list v v
:paral | el [, count]: file v v
:parall el [, count]: v v

test-case

cendparall el :
: groupl, count]: test-list v v
: groupl, count]: file v v
: groupl, count]: v v

test-case

[..]

: endgr oup:
: repeat, count: test-list v v
: repeat, count: file v v
: repeat, count: v v

test-case

[..]

: endr epeat :
: random test-list v v
: random file v v
:random v v

test-case

[..]

: endrandom
:tinmed_| oop, seconds: test-list v v
:tinmed_| oop, seconds: file v v
:tinmed_| oop, seconds: v v

test-case

cendtimed_| oop:
:renote, nnn, ...]: test-list v x
:renote, nnnf, .. J: file v x
cremote, nnnf, ...J: v x

test-case

[..]

: endr enot e:
di stributed, nnn, ...]: test-list v x
di stributed, nnn[, ..]: file v x
. distributed, nnn[, ..]: v x

test-case

[..]

:enddi stri but ed:
:vari abl e, name=valug], ...]: test-list v v
;vari abl e, name=valug, .. .]: file v v
:vari abl e, name=valud, ...]: v v

test-case

[..]

:endvari abl e:
: group-execution[; .. .]: test-list v v
: group-execution(; .. .]: file v v

Page 54

X/Open Company Ltd

30 April 1996

TET3-SPEC-1.0

Test Environment Toolkit
TETware Design Specification

Scenario directive

Platform

Unix
POSIX.1

DOS
Windows

Windows NT

comment

scenario-name

test-case

" text”

" scenario-name

@est-case

i ncl ude: file

cparall el [, count]: test-list

:paral | el [, count]: file

cparal |l el [, count]:
test-case

[...
:endparal |l el :

: group[, count]: test-list
: group[, count]: file
: groupl, count]:

test-case

(]

: endgr oup:

I repeat, count: test-list
: repeat, count: file
: repeat, count:

test-case

(-]

:endr epeat :

:random test-list
: random file
:random

test-case

(-]

: endrandom
:timed_| oop, seconds: test-list
:tinmed_| oop, seconds: file
1 timed_| oop, seconds:

test-case

(]

sendtimed_| oop:

:renote, nnn[, ...]: test-list
:renote, nnn, ...]: file
:renote, nnn[, ...]:

test-case

(-]

: endr enot e:
»distributed, nnn, ...]: test-list
cdistributed, nnn[, ..]: file
cdistributed, nnn[, ...]:

test-case

[...
s enddi stri buted:

:vari abl e, name=valug, ...]: test-list

:vari abl e, name=valud, .. .]: file

rvari abl e, name=valud, ...]:
test-case

[...
s endvari abl e:

: group-execution[; .. .]: test-list
: group-execution[; ..]: file

L =<

L << L << L << L << L << L <<

L <<

L=<

< < < < < <

L <<

L =<

L << L << L << L << L << L <<

L=<

30 April 1996

X/Open Company Ltd

C.3 Support for scenario directives on different platforms

Page 55

Test Environment Toolkit
TETware Design Specification

TET3-SPEC-1.0

C.4 Compatibility with scenario directivesin existing TET

Page 56

X/Open Company Ltd

implementations
Scenario directive TET implementation
TET 1.10 ETET 1.10.3 dTET223 TETware

comment v v v v
scenario-name v v v v
test-case v v v v
" text” v v v v
" scenario-name X N X NI
@est-case X N X v
. i ncl ude: file x X v v
cparall el [, count]: test-list x v X v1
:paral | el [, count]: file X X 02 V1
:parall el [, count]: x x 02 v

test-case

[...

rendparallel:
: group[, count]: test-list x N x Vi
: groupl, count]: file X x 02 Vi
: groupl, count]: X x 02 v

test-case

[.]

: endgr oup:
: repeat, count: test-list x v x Vi
. repeat, count: file X x N Vi
: repeat , count: x x N v

test-case

[.]

:endrepeat :
:random test-list x v x Vi
:random file x x x Vi
:random x x x N

test-case

[.]

: endr andom
:ti med_| oop, seconds: test-list X v x Vi
:timed_| oop, seconds: file X X x Vi
:ti med_| oop, seconds: x X x v

test-case

[...

rendti med_| oop:
;renote, nnn[, ...]: test-list x X x Vi
:renote, nnn[, ...]: file x x N Vi
:renmote, nnn[, ...]: X X N v

test-case

[.]

:endr enot e:
cdistributed, nnn[, ...]: test-list X X X Vi
»distributed, nnn[, ..]: file X X x vi
cdistributed, nnn[, ...]: x X x v

test-case

[...

cenddi stri but ed:
»vari abl e, name=valug], .. .]: test-list X X X V1
:vari abl e, name=valug, ..]: file X X x vi
:vari abl e, name=valud, .. .]: x X x v

test-case

[.]

:endvari abl e:
: group-execution(; .. .]: test-list X v x Vi
: group-execution; .. .]: file X X x Vi

30 April 1996

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Where there is a conflict between dTET2 and ETET syntax for these directives,
tcc will determine which syntax to accept by examining the value of the
TET_COMPAT configuration variable. An error will occur if TET_COMPAT is not
Set, or set to an incorrect value.

2. Theoptional count argument is not supported.

30 April 1996 Page 57
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 58 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

D. Comparison tablesfor C API interfaces

D.1 Introduction

This appendix contains tables which indicate the status of each C API function and
variable in several contexts. Some of the information in these tables is provisional and
will be finalised during the course of the development of TETware.

The meanings of symbols which appear in these tables are as follows:

v function or variable is fully supported as described in the specification
0 function or variable is partially supported

X function or variable is not supported

O function or variable is present but has no effect

12etc. refer to notes at the end of each table table

30 April 1996 Page 59
X/Open Company Ltd

Test Environment Toolkit
TETware Design Specification

TET3-SPEC-1.0

D.2 Support for interfacesin different TETware versions

Function or variablename | TETware | TETware-Lite
Test case structure and management

Page 60

tet_testlist[]
(*tet_startup)()
(*tet_cleanup)()
tet _thistest

tet _nosi greset
tet_pnane

L <

L <

Making journal entries

tet _setcontext ()
tet _setbl ock()
tet _infoline()
tet _mnfoline()
tet_printf()
tet_vprintf()
tet_result()

L <

L <<

Cancelling test purposes

tet _del ete()
tet _reason()

v
v

<<

Manipulating configuration variables

tet_getvar() ‘

v

<<

Generating and executing processes

tet_fork()
tet_forki()
tet _exec()
tet_child
tet _spawn()
tet_wait()
tet_kill()

L

[EY

L <<

Executed process functions

tet_main()
tet_exit()
tet _logoff()
tet _thistest
tet_pnane

L <

<L o<
N

Test case synchronisation

tet_sync()

tet _nsync()

tet _remsync()
(*tet_syncerr)()
tet_syncreport ()

L <X

X X X X X

Remote system designations

tet _rengetlist()
tet _rengetsys()

<<

Remote process control

tet _remexec()
tet _remmait()
tet _renkill ()

v5
V56
v5

Error reporting

tet_errno
tet_errlist[]
tet_nerr

L <<

L <<

Remote system information

tet _rentinme()
tet _get sysbyi d()

Thread control

tet_thr_create() \

V1

X/Open Company Ltd

30 April 1996

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:
1. Only present in the thread-safe API library on Unix-like systems.
2. Equivalent to callingexi t ().
3. Alwaysreturns zero.
4. System name list dways contains a single entry for system zero.
5

The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

6. A cal to this function may have undesirable side effects in a multi-threaded
environment.
30 April 1996 Page 61

X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

D.3 Support for interfaces on different platforms

Platform
Function or variable name Unix DOS .
POSIX.1 Windows | WindowsNT
Test case structure and management
tet testlist[] v v v
(*tet_startup)() v v v
(*tet_cl eanup) () v v v
tet thistest v v v
tet_nosigreset v ©) v
tet_pnane v v v
Making journal entries
tet_setcontext () v v v
tet_setbl ock() v v v
tet_infoline() v v v
tet_minfoline() v v v
tet_printf() v v v
tet _vprintf() v v v
tet_result() v v v
Cancelling test purposes
tet _delete() v v v
tet_reason() v v v
Manipulating configuration variables
tet_getvar() R | v \ Vv
Generating and executing processes
tet _fork() v X X
tet_forkl() V1 x x
tet_exec() v X X
tet _child v @) v
tet _spawn() v v2 v
tet_wait() v 02 v
tet _kill() v O a3
Executed process functions
tet _main() v 04 v
tet_exit() v v v
tet | ogoff() v v v
tet _thistest v v v
tet _pnane v v v
Test case synchronisation
tet _sync() v v v
tet _msync() v v v
tet _rensync() v v v
(*tet_syncerr) () v v v
tet_syncreport() v v v
Remote system designations
tet _rengetlist() v v v
tet _rengetsys() v v v
Remote process control
tet_remexec() V56 V56 V56
tet_remmait () v567 V56 V56
tet_renkill () V56 V56 V56
Error reporting
tet_errno v v v
tet _errlist[] v v v
tet_nerr v v v
Remote system information
tet_rentine() V5 V5 V5
tet _getsysbyid() v v v
Thread control
tet_thr_create() IR HE ‘ x
Page 62 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:
1. Only present in the thread-safe AP library.
Execution of the calling processis suspended until the new process terminates.
The si g parameter isignored.
Processes launched by t et _r emexec() arenot supported.

A call to thisfunction will fail if the remote system does not support multi-tasking.

o g~ W D

The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

7. A cdl to this function may have undesirable side effects in a multi-threaded
environment.

30 April 1996 Page 63
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

D.4 Compatibility with interfacesin existing TET
implementations

Function or variable name TET implementation
TET110 [ETET 1103 | dTET223 | TETware
Test case structure and management
tet_testlist[] v v v v
(*tet_startup)() v v v v
(*tet_cl eanup) () v v v v
tet _thistest v v v v
t et _nosi greset v v v v
tet _pnane v v v v
Making journal entries
tet_setcontext() v v v v
tet _set bl ock() v v v v
tet_infoline() v v v v
tet_mnfoline() x x x N
tet_printf() x x x v
tet_vprintf() x X x N
tet_result() v v v v
Cancelling test purposes
tet _delete() v v v v
tet _reason() v v v v
Manipulating configuration variables
tet_getvar () \ v \ Vv \ v |V
Generating and executing processes
tet_fork() v v v V1
tet_forkl1() X x x V2
tet _exec() v v v V1
tet _child v v v v
tet _spawn() x x x v
tet_wait() x x x v
tet_kill() x x x v
Executed process functions
tet_main() v v v v
tet_exit() x x v v
tet_l ogoff() x x Ni N
tet _thistest v v v v
tet _pnane v v v v
Test case synchronisation
tet_sync() x x v V3
tet _msync() x x v V3
tet_renmsync() x x x v
(*tet_syncerr)() x x x N
tet_syncreport() x x x v
Remote system designations
tet _rengetlist() x x v v
tet _rengetsys() x x v v
Remote process control
tet_renmexec() x X va V4
tet_remwait () x x va V45
tet_renkill () x x V4 va
Error reporting
tet_errno x x x v
tet _errlist[] x x x v
tet_nerr x x x v
Remote system information
tet _rentime() x x x v
tet _get sysbyid() x x x v
Thread control
tet_thr_create() \ x x x | V2
Page 64 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Notes:

1. Only supported on Unix-like systems. Use t et _spawn() in order to ensure
portability to all systems.

Only present in the thread-safe API library on Unix-like systems.

3. Provided for backwards compatibility with existing dTET2 test cases. New test
casesshould uset et _renmsync() instead.

4. The use of these functions is discouraged. The required processing should instead
be performed by the part of the test case that is executing on the remote system.

5. A cdl to this function may have undesirable side effects in a multi-threaded
environment.

30 April 1996 Page 65
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 66 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

E. dTET2 architecture

E.1 Origin

The diagram in this appendix is reproduced from the dTET2 Installation and User Guide.
It is presented here in order to assist readers in understanding the architecture and
component names used in the current dTET2 implementation.

E.2 Diagram and component definitions

The following diagram provides a smplified view of how the different dTET2
components relate to each other:

Master System E Slave System(s)
scenario E
file !
tcc : tccd

/ tet syncd \\
MTCM | STCM
\ t et xresd /:/
l
results |
file :
tcc — dTET2 Test Case Controller
tccd — Test Case Controller daemon
tetsyncd — Synchronisation daemon
tetxresd — Execution results daemon
MTCM — Master Test Case Manager + master test case parts
STCM — Slave Test Case Manager + slave test case parts
30 April 1996 Page 67

X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 68 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

F. C language binding

F.1 Origin

The body of this appendix is taken from the section entitled ‘* C language binding’’ in the
dTET2 Programmers Guide. It is reproduced here for ease of reference and for use in
conjunction with the section entitled ** The C API"" elsewhere in this document.

Please note that references in this appendix to other sections and chapters refer to
sections and chapters in the dTET2 Programmers Guide and not to parts of this
document.

F.2 Introduction

Applications written to this language binding attach themselves to it through the
following files:

o tet-root/ | i b/ dt et 2/ | i bapi . a contains the support routines for test purposes.

o tet-root/ | i b/ dt et 2/tcm o contains the routine mai n() and associated
support routines for the sequencing and control of invocable components and test
pUrposes.

o tet-root/ | i b/ dt et 2/t cnthil d. o contains a nai n() routine which can be
used by test suites when building processes which test purposes will launch using
thet et _exec() interface.

o tet-root/ | i b/ dt et 2/t cnr em o containsanmai n() routine which can be used
by test suites when building processes which test purposes will launch using the
tet _remexec() interface.

o tet-root/ i nc/dtet2/tet _api.h contains a definition of
struct tet _testlist, values for use as arguments to tet _result()
(i.,e, TET_PASS, TET _FAIL, TET_UNRESOLVED, TET_NOTI NUSE,
TET_UNSUPPORTED, TET_UNTESTED, TET_UNI NI TI ATED and
TET_NORESULT) plus declarations and prototypes for all the‘C’ API interfaces.

Each of these files should be accessed by test suites via their build tool in away whichis
appropriate given the available ‘C’ language translation system. Test suite authors are
advised to alow easy specification of alternate path names for these files (possibly
through dTET2 configuration variables), thus improving the flexibility of their suites.

Note that test cases built to this API require the TCCs to execute. This is because the
amount of effort required to establish an environment in which test cases could execute
without the TCCs is substantial. This applies especially to the requirement for test
purpose synchronisation and result arbitration.

If the communication variables normally set by the MTCC are unset when the test caseis
executed, TET _ACTI VI TY defaultsto O, TET_CODEtot et _code and TET _CONFI G
tonone. If thefilet et _code doesnot exist in the current directory, then the default set

30 April 1996 Page 69
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

of result codes are used. If the test case requires configuration variables or additional
result codes, those communication variables should be set accordingly.

F.3 Test case structure and management functions

These functions support functionality used in initialising and cleaning up test cases, and
in selecting invocable components and test purposes (described in the chapter entitled
“*Writing a C language API-conforming test suite’” elsewhere in this guide).

Synopsis
struct tet testlist {
void (*testfunc)(void);
int icref;
b
struct tet testlist tet testlist[];
void (*tet_startup)(void);
void (*tet_cl eanup)(void);
int tet_thistest;
int tet_nosigreset;

char *tet_pnane;

Description

Thetet testlist[] aray declares, inthet est f unc element of the structure, the
pointer to the function that is associated with each test purpose and, in the i cr ef
element of the structure, the relationship of the test purpose to an invocable component.
Thetet testlist[] arrayisterminated by a structure with thet est f unc element
set to NULL. No other element of the array will use the value NULL for this element.

For each requested invocable component, the TCM scansthet et _testlist[] aray
and executes, in order, each test purpose that is associated with that invocable
component. When al | invocable components are requested, the TCM executes all ICs
for which entries are defined inthet et _testlist[] array, in ascending order. In
both cases the TCM will calculate the number of test purposes that are to be executed for
each requested invocable component.

The TCM does not perform any error checking on the contents of the
tet testlist[] array. It is the test author's responsibility to ensure that the
contents of the array is correctly specified. In particular, it should be noted that in a
distributed test casethet et _test|i st[] structure must be exactly replicated on each
system that is to participate in the test and, therefore, contain the same number of
members. This may require the inclusion of test purposes on some systems that do
nothing except register aresult of PASS.

The function pointerst et _startup andt et _cl eanup are set to the functions to be
used for test case specific start up and clean up procedures respectively. The start up
procedure is executed before the first requested invocable component and the clean up
procedure is executed on completion of the last requested invocable component. These

Page 70 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

routines are executed irrespective of which invocable components are requested. Note
that if either of these pointers is set to NULL, the TCM will not attempt to call the
respective function.

The TCM is provided as the mai n() routine to the test case program and contains an
external declaration of thet et _startup andt et cl eanup function pointers and of
thetet _testlist[] aray.

The tet _thi stest variable contains the sequence number (starting at 1) of the
element inthet et _testlist[] array that is associated with the currently executing
test purpose. During execution of the start up and clean up functions, t et _t hi st est
IS set to zero.

Thet et _nosi greset variable controls whether the TCM reinstates signal handlers
for unexpected signals before each test purpose. The default value of zero means that
signa handlers will be reinstated before each test purpose, to ensure that unexpected
signals do not go unnoticed if an earlier test purpose installed alocal handler but did not
restore the original handler. If t et _nosi greset is set to a non-zero value in the
start-up function called via (*t et _startup) (), then signal handlers will be Ieft in
place between test purposes. In test cases where stray signals constitute a test failure, it
is recommended that t et _nosi gr eset is left with its default value of zero. Thisis
because, even if test purposes contain code to restore the signal handling, this code will
not be executed if an unexpected signal arrives and the TCM skips to the start of the next
test purpose.

Thet et _pnane variable contains the process name as given on the test case command
line.

F.4 Insulating from the test environment

The following configuration variables are used by the ‘C’ language TCM to help
determine which events should be handled for the test case, and which should be passed
through. They are used by the TCM to support functionality to insulate test cases from
the test environment.

TET_SI G I GN defines (by comma separated number) the set of signals that are to
be ignored during test purpose execution. Any signal that is not set
to be ignored or to be left (see TET_SI G_LEAVE below) with its
current disposition, will be caught when raised and the result of the
test purpose will be set to UNRESOLVED because of the receipt of
an unexpected signal. A test purpose may undertake its own signal
handling as required for the execution of that test purpose. The
disposition of signals will be reset after the test purpose has
completed, unless the global variable t et _nosi greset is non-
zero. The TCM needs to know how many signals the
implementation supports in order to set up catching functions for
these signals.

30 April 1996 Page 71
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

TET_SI G_LEAVE defines (by number) the set of signals that are to be left unchanged
during test execution. In most cases this will mean that the signal
takes its default action. However, the user can change the
disposition of the signal (to ignore) before executing the TCC if this
signal isto remain ignored during the execution of the test purposes.

The implementation does not alow the signals defined by POSIX.1 (1SO 9945-1) to be
set to be ignored or left unchanged, as this may pervert test results.

F.5 Makingjournal entries

These functions support functionality used in creating journal entries.

Synopsis
voi d tet_setcontext(void);
void tet_setbl ock(void);
void tet_infoline(char *data);

void tet_result(int result);

Description

Thet et _setcont ext () function sets the current context to the value of the current
process ID. A cal tot et _set cont ext () should be made by any application which
executes af or k() to create a new process and which wishes to write entries from both
processes. Thecall tot et _set cont ext () must be made from the child process, not
from the parent.

The t et _set bl ock() function increments the current block ID. The value of the
current block ID is reset to one at the start of every test purpose or after a call to
tet _set cont ext () which atered the current context. The sequence ID of the next
entry, a number which is automatically incremented as each entry is output to the
execution resultsfile, is set to one at the start of each new block.

Thetet i nfoline() function outputs an information line to the execution results
file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call to tet i nfoline()
causes the current context to be set to the value of the calling process ID and the current
block ID to be set to one.

Thetet _result() function sets the result to r esul t . This result is output to the
execution results file by the TCM upon test purpose completion. This ensures that all
informational messages are written out before the test purpose result, and that there is
one (and only one) result generated per test purpose. If the result code is one for which
the action specified in the result codes file is to abort testing, then the TCM will exit after
the test purpose has completed. If an immediate abort is desired, then the test purpose
should execute ar et ur n statement immediately after thecall tot et _resul t ().

If a test purpose does not call tet result(), the TCM will generate a result of
NORESULT. If more than one call to tet _result () is made with different result

Page 72 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

codes, the TCM determines the final result code by use of precedence rules. The
precedence order (highest first) is:

FAI L

UNRESCOLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPORTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t ()
with one of those codes are ignored except the first such call.

F.6 Cancelingtest purposes

These functions support functionality used to cancel test purposes.
Synopsis

void tet _delete(int testno, char *reason);

char *tet _reason(int testno);

Description

Thefunctiont et _del et e() marks the test purpose specified by t est no as canceled
on the local system and will output r eason as the reason for cancellation on the
information line which is output whenever the TCM attempts to execute this test purpose.
The argument t est no is the sequence number (starting at 1) of the corresponding
element inthetet testlist[] aray. If the requested t est no does not exist, no
action is taken. If the requested t est no is already marked as canceled, the reason is
changed to r eason and the test purpose remains marked as canceled. If ther eason is
set to (char *) NULL then the requested t est no is marked as active; this enables
previously canceled test purposesto be re-activated.

Note that the string pointed to by r eason isnot copied by t et _del et e(), so it must
point to static data, as the calling function will have terminated when the reason string is
accessed by the TCM. Also, care should be taken not to re-use a buffer that has
previously been passedtot et _del et e() . Thisfunction cannot be called from a child
process.

If tet_delete() is caled in a distributed test case, the APl notifies other
participating TCMs of the cancellation. This notification occurs when the TCMs
synchronise with each other before attempting to execute the cancelled test purpose.
Thus, none of the TCMs execute a distributed test purpose which has been cancelled on
any of the participating systems.

The function t et _reason() returns a pointer to a string which contains the reason
why the test purpose specified by t est no has been canceled on the local system. If this
test purpose does not exist or is not marked as canceled on the local system, a value of
(char *) NULL is returned. It is not possible to use tet _reason() in a
distributed test case to determine whether or not a remote test purpose part has been
cancelled.

30 April 1996 Page 73

X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

F.7 Manipulating configuration variables

The functions in this section support functionality used for manipulating configuration
variables.

Synopsis
char *tet _getvar(char *nane);

Description

The function t et _get var () retrieves the setting of the configuration variable nane
and returns a pointer to that setting. This pointer will remain valid for the life of the
process, regardless of subsequent callstot et _get var ().

Note that if a variable has no setting, t et _get var () returns a pointer to an empty
string. If arequested variable isundefined, t et _get var () returnsaNULL pointer.

F.8 Generating and executing processes

These functions support forking new child processes.

Synopsis

int tet_fork(void (*childproc)(void), void (*parentproc)(void),
int waittinme, int validresults);

int tet_exec(char *file, char *argv[], char *envp[]);

extern pid_t tet_child;

Description

Thet et fork() function creates a new process which is a copy of the calling process
and modifies the signal disposition in the newly created process such that any signals that
were being caught in the parent process are set to their default values in the child process.
The child process will then commence execution of the routine chi | dproc() and,
upon completion of this routine, will terminate with an exit code that indicates to the
parent the correctness of execution of thisroutine. If the routine par ent pr oc() isnot
set to NULL, this routine will be executed by the parent process before the exit code of
the child processiswaited for.

On completion of the optional par ent proc() routine, the exit code returned by the
child process will be examined by masking off the bits which are set in
val i dresul ts. If theresult is zero, t et _f or k() assumes that this was a legal (or
expected) termination code. If not, it assumes that the child process completed with an
unexpected result and an error has occurred. This unexpected result is reported to the
execution resultsfile. Thet et for k() function will return =1 if the result of the child
process was invalid, or the valid result code if the result of the child process was one of
the valid results. Whent et fork() returns -1 it reports the nature of the error using
tet _infoline() and sets the test purpose result code to UNRESCOLVED by calling
tet _result().Ifwaittinmeisnotsetto zero, the parent process will ensure that the
child process does not continue to execute for more than wai t t i me seconds after the
completion of the routine par ent proc() .

Page 74 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

The t et _exec() function may be caled from a chi | dproc() routine of a child
process generated by acall totet _fork().Thetet _exec() function will pass the
argument data as specified by ar gv[] and the environment data specified by envp to
the process specified by fi | e. The usage of thet et _exec() isequivalent to that of
the ISO 9945-1 execve() function, except that the APl adds arguments and
environment data that are to be interpreted by the driver of the executed f i | e. Also, the
new process should be built witht cnchi | d. o if that process is expected to make use
of APl cdls. If t et _exec() iscaled without first callingt et for k() , the results
are undefined. This is because the tet fork() function makes cals to
tet _setcontext() inthechildandt et _set bl ock() in the parent to distinguish
output from the child and from the parent before, during and after execution of the
par ent proc() routine.

The global variable t et _chi | d is provided for use in the par ent proc() routine
called fromt et _fork() .ItissettotheprocessID of the child.

F.9 Executed process functions

These functions are to be used by processes executed through the t et _exec() and
tet _remexec() functions.

Synopsis
int tet_main(int argc, char *argv[]);
void tet_exit(int status);
void tet | ogoff(void);
int tet_thistest;

char *tet_ pnane;

Description

The function t et _mai n(), supplied by the test suite developer, is caled by the
mai n() function of the dTET2-supplied child process controllers t cnchi | d. o and
tcnrem o. Priortocallingtet _main(),tcnchild. oandtcnrem o both set the
tet _thistest variable to the number associated with the test purpose in the process
that caled t et _exec() ortet _renmexec(). Thisvaue should not be changed by
the executed process.

The current context is preserved from the calling process and the current block is
incremented by one beforet et _mai n() iscalled.

If tet _mai n() returns, its return value becomes the child process's exit status. If the
child process was started by acall tot et _exec(), the child process's exit status will
be returned to the process which called the t et _for k() function; in this case, the
value returned from t et _mai n() will usually match one of the valid result values
specified in the call to tet fork(). If the child process was started by a call to
tet _renexec(), thechild process's exit status may be returned to the parent by a call
totet _remmait().

30 April 1996 Page 75
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The function t et _exi t () should be used instead of exi t () by child processes that
are started by callstot et _exec() ortet _renexec(). This function logs off all
dTET2 servers, then calls exit() with the specified status as argument.
tet _exit() should only be caled from the child process that is started by
tet _exec() ortet_renexec() andnot by any of its children.

The functiont et | ogof f () may be caled by child processes that are started by calls
totet _exec() ortet_renexec(), which do not need to make any further dTET2
APl callsand are not ableto call t et _exi t () at process termination time (e.g., if one
of the flavours of exec () isabout to be called in the child process). t et | ogof f ()

should only be called once from the child process. The results are undefined if a process
or any of its descendents makes any dTET2 API cals aftert et | ogof f () iscaled.

Thet et _pnane variable in the child process contains the process name as given in the
ar gv[0] parametertotet rmain().

F.10 Test case synchronisation

These functions enable parts of a distributed test purpose or a user-supplied startup or
cleanup function that are running on different systems to synchronise to an agreed point
in the executing code. They are only available for use in distributed test cases.

Synopsis
int tet_sync(long syncptno, int *syncnames, int waittinme);

int tet_msync(long syncptno, int *syncnanes, int waittine,
struct tet_synnsg *nsgp);

Description

A cal totet _sync() causes the calling process's system to synchronise with one or
more of the other systems that are participating in a particular distributed test case. The
call can only succeed if each of the systems specified in the call aso expect to
synchronise with each other and with the calling process.

Whent et _sync() iscalled from a process executing on a slave system, this indicates
that the process wishes to synchronise with the master system as well as the other
systems listed in the zero-terminated array of system IDs pointed to by syncnanes. If
syncnanes isNULL, thisisinterpreted to mean an empty list of slave system IDs.

When t et _sync() is caled from a process executing on the master system, this
indicates that the process wishes to synchronise with the systems listed in the zero-
terminated array of slave system IDs pointed to by syncnanes. syncnanes cannot
be NULL or point to an empty array in this case since the master system must synchronise
with at least one lave system.

syncpt no specifies the sync point number to which the calling process wishes to
synchronise. If syncpt no is zero, a successful call to tet _sync() will return as
soon as al participating systems have synchronised to the next sync point. If
syncpt no isgreater than zero, asuccessful call tot et _sync() will return as soon as
all participating systems have synchronised using a sync point number which is not less

Page 76 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

than syncpt no. When syncpt no is greater than zero, the call will fail if a sync point
has already occurred during the lifetime of the current test case whose number is greater
than or equal to syncpt no. The results are undefined if a negative syncpt no is
specified.

wai tti me specifies the number of seconds that may elapse between synchronisation
requests from other participating systems before the calling process times out. |If
wai tti ne is greater than zero, a cal totet _sync() will be successful if al the
participating systems synchronise to the specified sync point with no more than
wai ttime seconds between each request. If waittine is zero, a cal to
tet _sync() will return immediately, whether or not it is successful. If wai tti me is
negative, a call totet _sync() will wait indefinitely for the specified sync point to
occur or until the request fails for some reason. Test suite authors should be aware of the
potential for deadlock if anegativewai t t i ne is specified.

The cdl to tet_sync() returns zero as soon as all the participating systems
synchronise at least as far as the specified sync point without timing ouit.

Thecal tot et _sync() returns—1 when one of the following conditions occur:

e More than wai tti me seconds elapse between synchronisation requests from
participating systems.

e A related synchronisation request times out on one of the other participating
systems.

e The user-supplied function in a test case on one of the other participating systems
returns control to its TCM before synchronising.

e The sync point specified by syncpt no has already occurred.

e The calling process is running on the master system and syncnanes is NULL or
points to an empty system ID list.

o A system ID appears more than once in the array pointed to by syncnanes.

e Aninvalid parameter is specified in the call.

e The API encounters a problem while processing the request.
tet _nsync() operates in the same way as doest et _sync(), with the additional
facility of enabling systems to exchange sync message data during a successful call. One

participating system may send sync message data which will be made available to the
other systems when the call returns.

tet _nmsync() takes an additional nsgp argument which pointsto atet synmnsg
structure (as defined in <dt et 2/ t et _api . h>). This structure contains the following
elements:

30 April 1996 Page 77
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

struct tet _synnsg {
char *tsm data;
int tsmdlen;
int tsmsysid;
int tsmflags;

b

When t et _nmsync() is called by a distributed test purpose part on each system, one
system sends data which may be received by other systems. The APl associates the sync
message data with the particular sync point specified by the syncpt no parameter used
inthet et _nmsync() cal on the sending system. In order to receive the message data,
the syncpt no parameter in calls to tet _nsync() on receiving systems must
reference this sync point exactly, either by specifying the same value for syncpt no as
that used on the sending system, or by specifying azero syncpt no.

The test purpose part on the sending system should indicate a desire to send sync
message data by initialising members of the t et _synnsg structure as follows before
tet _nsync() iscaled:

e t sm _dat a pointsto the message to be sent.
e t sm dl en isset to the number of bytes of message data to be sent.
etsmflagsissetto TET SMSNDVSG

The test purpose part(s) on the receiving system(s) should indicate their willingness to
receive sync message data by initialising members of the t et _synnsg structure as
follows beforet et _nsync() iscaled:

e t sm dat a pointsto a buffer in which the message data is to be received.
e t sm dl en isset to the length of the receiving buffer.
e tsmflagsissetto TET SMRCVNVSG.

If thecall totet _nsync() issuccessful, then on return the APl modifies members of
thet et _synnsg structure on the receiving systems(s) as follows:

e Up to t sm dl en bytes of sync message data are copied to the receiving buffer
pointed to by t sm dat a.

e t sm dl en isset to the number of bytes of sync message data actually copied.

e t sm sysi d is set to the system ID of the system that sent the data, or to -1 if
there is no message data associated with the sync point specified by syncpt no.

o If the APl must truncate the message because the receiving buffer is not big
enough, the TET_SMIRUNC bitissetint sm f | ags.

If more than one system tries to send sync message data for a particular sync point, the
API performs the following operations:

i. Decide from which system to accept data and redesignate the other sending
systems as receiving systems.

Page 78 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

ii. Processthe redesignated systems as described above.

iii. Clear the TET_SMSNDVSG bit and set the TET_SMRCVMSG hit int sm f | ags
on the redesignated systems.

iv. Setthe TET_SMDUP bitint sm f | ags on all systems.

If asystem tries to send a message which is larger than the maximum permitted message
size (as defined by the value TET _SMVBGVAX in <dt et 2/ t et _api . h>), the AP
perform the following actions:

i. Truncate the message to the maximum size before accepting it.
ii. Setthe TET_SMITRUNCbitint sm f | ags on all systems.

If the call to tet_mnsync() is unsuccessful, the values of members of the
t et _synnsg structure are undefined when the call returns.

If asystemcallst et _nsync() withanmsgp of NULL, the API regardsit asareceiving
system but does not return any message datatoit. Thusacal totet _nmsync() witha
nmsgp of NULL isfunctionally equivalent to callingt et _sync() .

The API treats sync message data as opague and does not perform byte-swapping or
other processing when data is exchanged between machines with different architectures.
So it is best only to send ASCII strings in messages that are to be exchanged between
systems which might run on different machines.

When cdlstotet _sync() ortet _nsync() are unsuccessful, the APl places an
entry in the journa file indicating the cause of the failure. If the call was unsuccessful
because one or more of the participating systems failed to synchronise, or the related
process timed out or terminated before the specified sync point occurred, this message
identifies the systems that failed to synchronise successfully.

Since synchronisation with other systems is defined in terms of system IDs (rather than
individual process IDs), it is the responsibility of the test suite author to ensure that only
one process running on a particular (logical) system cals tet_sync() or
tet _nsync() at onetime. The results are undefined if processes running on the same
system make overlappingt et _sync() ortet _nsync() cals.

For an overview of dTET2 synchronisation and a description of how to interpret
tet _sync() and tet _nsync() journal messages, see the chapter entitled ‘‘Test
case synchronisation’” in the dTET2 Installation and User Guide.

30 April 1996 Page 79
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

F.11 Remote system designations

These functions enable a dTET2 test purpose to retrieve information about system
designations.

Synopsis
int tet_rengetlist(int **sysnanes);

int tet_rengetsys (void);

Description

The tet _rengetlist() function returns the number of save systems which are
participating in a distributed test case. If there is at least one dave system available, a
pointer to a zero-terminated array containing the names of the available slave systemsiis
returned indirectly through * sysnanes.

Thetet rengetsys() function returns the system ID of the system on which the
calling processis executing.

F.12 Remote process control

These functions enable a part of a distributed test case running on one system to generate
aremote process on another system.

Synopsis
int tet_renexec(int sysnane, char *file, char *argv[]);
int tet_ remmait(int renoteid, int waittine, int *statloc);

int tet renkill(int renoteid);

Description

Thet et _renmexec() function may be called from a distributed test case. The calling
process will wait until the requested process has been started and has synchronised with
it.

Upon successful synchronisation the call tot et _r enexec() returns the r enot ei d

of the remote executed process as a value greater than zero. If the call to
tet _remexec() fails, avaueof -1 isreturned.

The sysnane argument is the system ID of one of the other systemsthat is participating
in the current distributed test case and the corresponding STCC is requested to initiate the
process specified by fil e. The location of fil e is relative to the remote system’'s
TET_EXECUTE directory if set, otherwise, it isrelative to tet-root on the remote system.
Since the request is performed by a STCC, it is not necessary for a process to call
tet _fork() beforecalingtet remexec().

Thet et _remexec() function passes the argument data as specified by ar gv[] to
the process specified by fil e. The usage of tet renexec() is similar to the
SO 9945-1 execv() function.

Page 80 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

Note that the environment is not passed in at et _renmexec() cal because it is not
expected that there will be any correlation of the environment information on the remote
machine to that of the calling process. Any datathat is need by the remote process must
be passed as an argument.

Thecall tot et _renexec() returns—1and setser r no to EINVAL if sysnane does
not refer to a known remote system.

Thecal tot et _renexec() returns—1and setser r no to ENOEXEC if fi | e cannot
be executed on the remote system, or if synchronisation with the remote process was not
successful.

The call tot et _renexec() returns —1 and setserrno to EFAULT if thefil e or
ar gv parameters are invalid.

Thecal totet _renexec() returns—1 and setser r no to EIO if the connection with
the remote system is broken.

Thetet _remnait () function waits for the termination of a remote process initiated
by tet renexec(). The renot ei d argument is the remote execution identifier
returned from a successful call tot et _r enexec() .

The call totet_remnait () provides the exit status of the remote process in the
integer pointed to by st at | oc and returns zero if the call has completed successfully.
The exit status value returned indirectly through *st at| oc represents the vaue
returned by the wai t () system call on the remote system. Thus, when interpreting a
signa number extracted from *st at| oc on the local system, the test suite author
should bear in mind that it is possible for the meanings of signal numbers on the remote
system to be different from meanings defined (e.g., in <si gnal . h>) on the local
system.

If thecall totet _remnai t () failsto complete after wai t t i me seconds or fails for
any other reason a value of -1 is returned and *st at| oc is not updated. When
wai ttine issettozero, thecal totet _remnai t () will return immediately, either
with an error if the requested process has not yet terminated or with the exit status if the
requested process has already terminated.

Thecal totet _remnai t () returns -1 and sets errno to EINVAL if renotei d
does not refer to a processinitiated fromacall tot et _renmexec() .

The call totet _remnai t () returns -1 and sets er rno to ECHILD if renotei d
refers to a process which is already the subject of a successful call tot et _remnai t () .

The call totet_remnai t () returns -1 and sets err no to EAGAIN if t i meout
elapses.

The call totet _remnai t () returns —1 and sets errno to EINTR if the cal is
interrupted.

Thecalltotet _remnai t () returns—1and setser r no to EIO if the connection to the
remote system is broken.

30 April 1996 Page 81
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Thetet _renkill () function causes the STCC which controls the remote process
designated by r enot ei d to terminate the process. Thetet renkil | () cal returns
immediately without awaiting confirmation that the process has terminated. (This
information can be obtained from a subsequent call tot et _remnai t () if required).

Thecal totet _renkill () returns —1 and sets er r no to EINVAL if renot ei d
does not refer to aprocessinitiated fromacall tot et _renexec() .

Thecaltotet _renkill () returns—1and setser r no to EIO if the connection to the
remote system is broken.

Page 82 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

G. Test case synchronisation

G.1 Origin

The body of this appendix is taken from the chapter entitled ‘* Test case synchronisation’’
in the dTET2 Installation and User Guide. It isreproduced here in order to assist readers
in understanding the concepts and processing involved when parts of a distributed test
case synchronise with each other.

G.2 Introduction

This chapter describes how systems synchronise with each other and explains how to
interpret diagnostic messages which are generated when synchronisation requests do not
complete successfully.

G.3 Synchronisation request concepts
G.3.1 Request types

There are two types of synchronisation performed by dTET2 processes. Automatic
synchronisation requests are generated when Test Case Managers synchronise with each
other at certain pre-defined points during test case execution. User synchronisation
requests are generated when different parts of a distributed test purpose call the
tet _sync() ortet_nsync() API library routines.

G.3.2 Request parameters

Each synchronisation request is accompanied by a sync point number, asystem ID list,
a sync vote and an optional timeout. In addition, a request may include an indication
that the requesting process wishes to send or receive sync message data during the
synchronisation operation.

Processes on systems which want to synchronise with each other send requests to the
dTET2 Synchronisation daemon (t et syncd). t et syncd waits until al systems have
submitted their requests and then notifies each participating process of the result.

The value of the sync vote specified in a synchronisation request can be either yes or
no. t et syncd notifies all participating processes of how each system voted in each
request.

If a process specifies a timeout when making a request, then t et syncd starts a per-
process timeout as soon as the request is received. Each per-process timeout is reset to
its initial value as each subsequent request is received from other participating systems;
however, if the timeout for any process expires before all systems have submitted their
reguests then the synchronisation is considered to have failed.

It is possible for one system making a synchronisation request to send sync message
data with the request. If the synchronisation is successful, thent et syncd returns this
data to other participating systems which have indicated willingness to receive such data

30 April 1996 Page 83
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

when synchronisation is complete.

G.3.3 Syncevents

tetsyncd defines a new sync event when the first system makes a request to
synchronise to a particular sync point with a group of other systems. A sync event is
considered to have completed as soon as one of the following conditions are met:

1. All of the systems that are expected to synchronise have done so.
2. One of the systems that has synchronised times out after having done so.

3. A process that has made a synchronisation request disconnects from t et syncd
before all the other systems that are expected to synchronise have done so.

When the event completes, all processes that have participated in the event are notified of
the result. An event is considered to have succeeded if all systems that are expected to
participate in the event submit requests with a yes vote. If a process on any of the
participating systems submits a no vote, times out or disconnects from t et syncd
before the event completes, then the event is considered to have failed.

G.3.4 Syncstates

t et syncd maintains a set of sync states for each sync event. One sync state in this set
ismaintained for each system that is expected to participate in a sync event.

The sync state of a system isindicated by one of the following mnemonics:
SYNC- YES The system has synchronised with ayes sync vote.
SYNC- NO The system has synchronised with ano vote.

NOT- SYNCED The system has not yet participated in this sync event.

TI MED- OUT The system has synchronised but the associated timeout has expired
before the sync event completed.

DEAD The system has synchronised but the participating process has
disconnected fromt et syncd before the sync event compl eted.

These mnemonics are used in diagnostic messages that relate to synchronisation request
failures and other unexpected synchronisation conditions.

Page 84 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

G.3.5 With what to synchronise?

As indicated above, when a dTET2 process makes a synchronisation request, it specifies
a list of system IDs with which is wishes to synchronise. This means that any one
dTET2 process running on a particular system can participate in a sync event on behalf
of that system. It is not possible for a process to use dTET2 synchronisation facilities to
synchronise with a particular process on a named system, or for processes on the same
system to use these facilities to synchronise with each other.?’

G.4 Automatic synchronisation requests

G.4.1 Description

Automatic synchronisation requests are generated by the dTET2 Test Case Manager, and
by the APl when a remote executed process is started. The list of systems that are
expected to participate in automatic sync events for each distributed test case is defined
before the first request is made. Each automatic synchronisation request is accompanied
by a sync ID which identifies this list of systems. Processes which make automatic
synchronisation requests do not send or receive sync message data.

The following subsections describe the circumstances under which automatic
synchronisation requests are made, and the parameters that are used in each type of
request.

G.4.2 Test case manager synchronisation

When a distributed test case is executed, the TCMs on each participating system
synchronise with each other during certain stages of test case processing. The sync point
number associated with each request is used to identify which stage is about to begin.
The timeout specified with each request depends on which stage is about to begin.

27. Note that the term system refers to a logical system ID, not to a physical machine. Therefore, it is
possible for two or more co-operating processes with different system IDs running on the same
physical machine to use dTET?2 synchronisation facilities to synchronise with each other.

30 April 1996 Page 85
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The following table lists these stages, the sync point numbers that are used to identify
them and the timeouts that are used:

Stagein test case processing Sync point number? (Ee';noioéjst)
At TCM startup time 1 60
Before the startup function (if any) is called 2 60
At the start of each invocable component [Cno 02t 60
At the start of each test purpose (ICno J21%) + (TPno [02) 60
At the end of each test purpose (ICno J2%) + (TPno 0J2) + 1 600
Before the cleanup function (if any) is called ((ICcount + 1) (1216) + 2 60

In this table, 1Cno is the number of the invocable component being processed, TPno is
the number of the test purpose being processed and ICcount is the number of invocable
components in the test case.

Normally, TCMs on each participating system specify ayes sync vote in each request.
However, if a TCM on one system is about to execute a test purpose which has been
deleted (by apreviouscall tot et _del et e() inthat test case), it instead specifiesano
sync vote in the request made at test purpose start. When all the other TCMs see thisno
vote, they interpret this to mean that the test purpose is deleted and do not execute it.

In addition, if the consolidated result of atest purpose has an action code of Abort , the
TCM on the master system synchronisises to the end of the last test purpose in the test
case using ano vote. This causes all the other TCMs to perform the following actions:

i. Any remaining test purposesin the current invocable component are deleted.

ii. No further invocable components are executed, but test case cleanup processing is
performed.

G.4.3 Remote executed process synchronisation

When a test case starts a remote process by calling t et _r enmexec(), the remote
process synchronises with the test case that called t et _r emexec() . Thisisto ensure
that the test case waits until the remote process has started up before continuing
execution. Sync point number 1 and a yes sync vote are used in this request and the
timeout is set to 60 seconds.

If the remote system’'s t ccd is unable to execute the process for some reason, it
performs the initial synchronisation operation on behalf of that remote process but
instead specifiesano vote in the request.

28. 1t will be seen that the way that automatic sync point numbers are cal culated imposes alimit of (215 - 1)
test purposes per test case and (25 — 2) invocable components per test case.

Page 86 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

The way that synchronisation with remote executed processes is implemented makes it
possible for atest case to start more than one process on the same remote system.

G.4.4 Error handling

There are two classes of error that can occur during automatic synchronisation requests,
asfollows:

— the request fails as a result of some problem that occurs in the API or in
t et syncd; these are described below as synchronisation request failures

— some problem is detected with one of the other systems which participated (or
should have participated) in the sync event; these are described below as
synchronisation errors

If an automatic synchronisation request failure occurs, then the TCM emits a single
diagnostic indicating which automatic synchronisation request was being attempted and
the cause of the failure.

If a problem is detected with one of the other systems involved in a sync event, then the
TCM emits one diagnostic for each affected system. Each diagnostic indicates which
automatic synchronisation request was being attempted and system ID and sync state of
the affected system.

G.4.5 Example error messages

In the following examples, suppose that parts of a distributed test case are being executed
on the master system and on slave systems 1 and 2.

G.4.5.1 Examplel

Suppose that a test case could not be started on slave system 1 for some reason. The
TCM on (say) the master system will time out waiting for slave system 1 to synchronise
at TCM startup time, and will generate the following message:

system 0, reply code = ER TI MEDQUT: initial sync error, \
sysid = 1, state = NOT- SYNCED
The TCM that started successfully on slave system 2 will generate the following
message:
system 2, reply code = ER SYNCERR: initial sync error, \
sysid = 0, state = TIMED QUT

system 2, reply code = ER SYNCERR: initial sync error, \
sysid = 1, state = NOT- SYNCED

30 April 1996 Page 87
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

G.45.2 Example?2

If the TCMs on systems 1 and 2 synchronise to the end of (say) test purpose 4 and the
TCM on system 1 times out before the master TCM reaches the same point, the TCM on
system 1 will generate the following message:

system 1, reply code = ER TI MEDOUT: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT- SYNCED

and the TCM on system 2 will generate the following message:

system 2, reply code = ER SYNCERR. Auto Sync error at end of TP 4, \
sysid = 0, state = NOT- SYNCED

system 2, reply code = ER SYNCERR. Auto Sync error at end of TP 4, \
sysid = 1, state = TIMED- QUT

At this point, the sync event is considered to have completed.

When the master TCM finaly makes its synchronisation request at the end of test
purpose 4, it will generate the following message:

system 0, reply code = ER DONE: Auto Sync failed at end of TP 4

This indicates that the master TCM has missed the sync event because the event has
already completed.

G.5 User synchronisation requests

G.5.1 Description

A user synchronisation request is generated when atest purpose in a distributed test case
calls the tet _sync() or tet_nsync() APl library routines. The sync point
number, system ID list and timeout are specified in each call. The sync vote is always
yes for user synchronisation requests. In addition to these parameters, a process can
send, or indicate willingness to receive, sync message data by calling t et _nsync()

instead of t et _sync() . When this is done and all participating systems use the same
sync point number, message data sent by the sending system is returned to the receiving
systems on successful completion of the event. Apart from this distinction, everything in
the description of t et _sync() that follows appliesequally tot et _nsync().

t et syncd defines a separate sequence of user sync events for each distinct system ID
list specifiedint et _sync() cals made by test purposes in a particular distributed test
case. Thus, a user sync event will only be successful if the test purposes on al systems
that are expected to participate in the event all specify the same system ID list in their
tet _sync() cdls

The dTET2 specification requires that all user synchronisation requests include the
master part of adistributed test case. Thet et _sync() function automatically includes
the system ID of the master system in the system ID list associated with each user
synchronisation request. Therefore, when a distributed test purpose part makes a call to
tet _sync(), it does not itself have to include the system ID of the master system in
the accompanying system ID list.

Page 88 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

User sync events have lower precedence than automatic sync events. Therefore, if the
test purpose on one system returns control to the TCM while test purposes on other
systems are waiting on a user sync event that includes that system, the user sync event is
considered to have completed unsuccessfully and participating processes are notified
accordingly.

G.5.2 Error handling

Synchronisation request failures and synchronisation errors for user synchronisation
requests are defined in the same way as for automatic synchronisation requests. The API
prints a test case manager message to the journal file when a user synchronisation request
IS unsuccessful.

Each diagnostic indicates the sync point number of the request that was unsuccessful and
the system IDs and sync states of the systems which failed to synchronise or timed oui.
However, the formats of diagnostics printed to the journal file are different from those
generated for unsuccessful automatic synchronisation requests. Examples of the formats
that may be used to report an unsuccessful user synchronisation request are presented in
the next section.

G.5.3 Example error messages

In the following examples, suppose that parts of a distributed test case are being executed
on the master system and on slave systems 1 and 2. Suppose that sync point number 12
Is being used in each case and that the timeout is set to 30 seconds.

G.5.3.1 Examplel

Suppose the test purpose on the master system (system 0) expects to synchronise with the
test purpose on slave system 1, but the test purpose on system 1 returns control to the
TCM without making a synchronisation request. The APl on the master system will
generate the following messages:

system 0: tet _sync() failed, syncptno = 12, \
ot her systemdid not sync or tined out
system 0: system = 1, state = NOT- SYNCED

G.5.3.2 Example2

Suppose that all the systems expect to synchronise with each other but that slave system
1 times out before the master system reaches the sync point. The API on system 1 will
generate the following messages:

system 1. tet _sync() failed, syncptno = 12, \

request timed out after waittine of 30 seconds
system 1: system= 0, state NOT- SYNCED
system 1: system= 2, state SYNC- YES

and the API on system 2 will generate the following messages.

30 April 1996 Page 89
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

system 2: tet _sync() failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out
system 2: system= 0, state
system 2: system= 1, state

NOT- SYNCED
TI MED- QUT

At this point the event is to considered to have completed.

When the test purpose on the master system finally makes its synchronisation request, the
request will fail because the associated event has aready happened. The API on the
master system will generate the following message:

system 0: tet_sync() failed, syncptno = 12, event already happened

This indicates that the master part of the test purpose has missed the sync event because
the event has already completed.

G.5.3.3 Example 3

Suppose that the test case on slave system 1 terminates unexpectedly before the sync
event completes. The API on the master system will generate the following messages:

system 0: tet _sync() failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out
system 0: system= 1, state
system 0: system= 2, state

DEAD
SYNC- YES

and the API on slave system 2 will generate the following messages:

system 2: tet_sync() failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out

system 2: system = 0, state = SYNC YES
system 2: system = 1, state = DEAD
Page 90 30 April 1996

X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

H. Server interface functions
H.1 Origin

This appendix describes interface functions for use by clients when communicating with
dTET2 servers. The body of this appendix is taken from a project document which was
used by members of the original dTETZ2 development team.

H.2 Introduction

The functions described here are internal interfaces for use within dTET2 processes, and
are not available for use by test cases. They are not part of the API.

These descriptions are presented here to help readers understand the internal workings of
the existing dTET2 implementation. It is not guaranteed that these interfaces will exist in
any future TET implementation.

H.3 SYNCD functions

int sd_start()

Start a SYNCD process. Return O if successful or =1 on error.
This function must be called by the MTCC if SYNCD services are required.

int sd_I ogon()

Log on to the SYNCD, making a connection if necessary. Return O if successful or —1
on error.

int sd_| ogoff(stayopen)
I nt stayopen;

Log off from the SYNCD. Return O if successful or =1 on error.

This function may be called even if the caller is not currently logged on to the SYNCD
(e.g., from an error or cleanup function). If stayopen is non-zero, the existing connection
is retained so that a subsequent sd_| ogon() cal will not need to make a new
connection.

30 April 1996 Page 91
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

| ong sd_snget ()

Get a sync ID from the SYNCD for use in sync requests. Return the sync ID if
successful or —1 on error. The server reply codeisavailableinsd_er r no.

int sd_snsys(snid, snanmes, nsnane)
| ong sni d;
i nt *snpames, nsnane,

Assign a system name list to a sync ID. Return O if successful or —1 on error. The
server reply codeisavailableinsd_err no.

This function specifies which systems should be expected to participate in auto-syncs
associated with a particular sync ID. snid identifies the sync ID to which the system
name list should be assigned. snames points to the start of the system name list. nsname
specifies the number of system namesin the list.

int sd_masync(snid, xrid, spno, vote, timeout, synreq, nsys)
| ong snid, xrid, spno;

int vote, tinmeout, *nsys;

struct synreq *synreq;

Perform an auto sync from the MTCM. Return O if successful or =1 on error. The
server reply codeisavailableinsd_err no.

snid isa sync ID obtained by the MTCC from aprevioussd_snget () cal. xridisan
xresfile ID obtained by the MTCC from apreviousxd_xr open() call.

spno is the sync point number for this sync request; for auto-syncs at TP start and end,
this should be generated by the MK_ASPNQ() macro.

vote is the sync vote that the caller wishes to register; it should be either SV_YES to sync
successfully or SV_NOto sync unsuccessfully.

timeout is the number of seconds to wait before the request times out. If timeout is zero,
the request returns immediately; if the calling processis not the last one to register a sync
vote, the effect is the same as if the request timeout had expired. If timeout is less than
zero, no timeout is specified for the request.

synreq points to the first in an array of structures which may receive details of other
processes sync states on return. nsys points to a location containing the number of
elements in the synr eq array; on successful return, this location is updated to contain
the number of other systems actually participating in the sync. synreq and/or nsys may
be NULL if thisinformation is not required.

Note that sd_nmasync() returns O even if the sync itself failed; the —1 error return is
used to indicate server or transport errors. However, if the sync fails because one or

Page 92 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

more processes vote SV_NO, time out or die, this is indicated by the value in
sd_errno. More precise details of which process(es) caused the sync to fail in these
ways can be obtained from information returned in the synr eq array.

The MTCM should usedoasync() to access this function.

i nt sd_sasync(snid, spno, vote, tineout, synreq, nsys, Xxrid)
| ong snid, spno, *xrid;

int vote, tinmeout, *nsys;

struct synreq *synreq;

Perform an auto sync from somewhere other than the MTCM. Return O if successful or
-1 onerror. The server reply codeisavailableinsd_errno.

This function behaves in the same way as sd_nasync(), except that the xres ID
specified in the corresponding MTCM sd_masync() cal is returned in the location
pointed to by xrid. This isthe means by which the MTCM communicates its xres ID to
all the STCMs,

The STCM should usedoasync() to access thisfunction.

i nt doasync(spno, vote, tineout, synreq, nsys)
| ong spno;

int vote, tinmeout, *nsys;

struct synreq *synreq;

Perform an auto sync from a MTCM or STCM. Return O if successful or —1 on error.
The server reply code isavailablein sd_er r no. The meanings of the arguments are the
same as for those used with sd_masync() andsd_sasync().

This function is the preferred interface to sd_rmasync() or sd_sasync() for TCM
processes, and handles the propagation of xres IDs between them. The sync ID used is
that received from the TCM’s parent process. Whether doasync() cals
sd_masync() orsd_sasync() dependson the process type of the calling process.

Appropriate versions of this function are part of the MTCM, the STCM and processes
that are started by t et _r enmexec() .

30 April 1996 Page 93
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int sd _usync(snid, xrid, spno, vote, tinmeout, synreq, nsys)
l ong snid, xrid, spno;

int vote, tineout, nsys;

struct synreq *synreq;

Perform a user sync request. Return O if successful or —1 on error. The server reply
codeisavalableinsd_errno.

This function provides support for the API t et _sync() function. The meanings of the
arguments are the same asfor sd_nasync() except that:

o xridisused to help identify the sync event and is not propagated to other processes

e Synreq points to an array of user details structures specifying the other processes that
are to participate in the sync event

¢ nsys specifies the number of elementsinthesynr eq array

(Note that, unlike the sd_masync() nsys parameter, the nsys argument to
sd_usync() isthevalueitself and not a pointer to the value.)

On successful return, the synreq array is updated to contain details of the other
processes participating in the sync event.

Note that sd_usync() returns O even if the sync itself failed; the —1 error return is
used to indicate server or transport errors. However, if the sync fails because one or
more processes vote SV_NO, time out or die, this is indicated by the value in
sd_errno. More precise details of which process(es) caused the sync to fail in these
ways can be obtained from information returned in the synr eq array.

H.4 TCCD functions

int tc_l ogon(sysid)
i nt sysid,

Connect to a TCCD on aremote system and log on to it. Return O if successful or =1 on
error.
sysid identifies the remote system to which the calling process wishes to connect.

Each call tot ¢c_| ogon() causesadave TCCD to be generated on the specified remote
system, to service subsequent TCCD requests from the calling process. However, a TCM
may not be logged on more than once to a particular remote system.

Page 94 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_|ogoff(sysid)
i nt sysid,

Log off from a TCCD and close the connection. Return O if successful or —1 on error.
sysid specifies the system ID of the remote system.

A SI GHUP signal is sent to each unterminated child process on the remote system, then
the lave TCCD exits.

This function may be called even if the caler is not currently logged on to a particular
TCCD (e.g., from an error or cleanup function).

| ong tc_nexec(sysid, path, argv, outfile)
i nt sysid,
char *path, **argv, *outfile;

Execute a non-DTET process on a remote system. Return the process ID of the exec’d
process if successful or =1 on error. The server reply codeisavailableint ¢_err no.

sysid specifies the system ID of the remote system. path specifies the name of the file to
execute. argv pointsto a null-terminated list of arguments to pass to the exec’ d process.

If outfile is non-null, the stdout and stderr of the exec’d process are connected to outfile;
otherwise they are connected to the TCCD log file. stdin is connected to / dev/ nul | .
All other file descriptors are closed.

The process is executed on the remote system by a call to execvp(), so as to alow
normal PATH searching and shell-script execution to take place.

| ong tc_texec(sysid, path, argv, outfile, snid, xrid)
i nt sysid,

char *path, **argv, *outfile;

| ong snid, xrid;

Execute a TCM on a remote system. Return the process ID of the exec’d process if
successful or =1 on error. The server reply codeisavailableint c_err no.

sysid specifies the system ID of the remote system. path specifies the name of the file to
execute. argv points to a null-terminated list of arguments to pass to the exec’d process.
snid and xrid specify the sync ID and xres ID to pass to the exec’d process for use in
SYNCD and XRESD calls. If the exec fails, the TCCD will register a NO sync vote on
the sync ID specified by snid.

If outfile is non-null, the stdout and stderr of the exec’d process are connected to outfile;
otherwise they are connected to the TCCD log file. stdin is connected to / dev/ nul | .
All other file descriptors are closed.

30 April 1996 Page 95
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The process is executed on the remote system by a cal to execvp(), so as to alow
normal PATH searching and shell-script execution to take place.

| ong tc_uexec(sysid, path, argv, snid, xrid)
i nt sysid,

char *path, **argv;

| ong snid, xrid;

Execute a user process on a remote system. Return the process ID of the exec’d process
if successful or —1 on error. The server reply codeisavailableint c_errno.

This function provides support for the APl t et _renmexec() function. sysid specifies
the system ID of the remote system. path specifies the name of the file to execute. argv
points to a null-terminated list of arguments to pass to the exec’d process. snid and xrid
specify the sync ID and xres ID to pass to the exec’d process for use in SYNCD and
XRESD calls. If the exec fails, the TCCD will register a NO sync vote on the sync ID
specified by snid.

The stdout and stderr of the exec’d process are connected to the TCCD log file. stdinis
connected to/ dev/ nul | . All other file descriptors are closed.

The TCCD changes directory to TET _EXECUTE if it is specified, otherwise to
TET_ROOT, before the exec takes place.

The process is executed on the remote system by a call to execvp(), so asto alow
normal PATH searching and shell-script execution to take place.

int tc_kill(sysid, pid, signum
int sysid, signum
| ong pi d;

Send a signal to a remote process. Return O if successful or =1 on error. The server
reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. pid specifies the process ID of the
process that isto receive the signal. signum specifies the signal that is to be sent.

The symbolic signal name corresponding to signum must exist on both the local and the
remote system. The signal actually sent to the remote process is the one associated with
the same symbolic name on the remote system as that associated with signum on the
local system.

Page 96 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_wait(sysid, pid, tinmeout, statp)
int sysid, tinmeout, *statp;
| ong pi d;

Wait for aremote process to terminate. Return O if successful or =1 on error. The server
reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system. pid specifies the process ID of the
process that isto be waited for. timeout specifies how long to wait for the remote process
to terminate. If timeout is zero, the call returns immediately whether or not the remote
process has terminated. If timeout is less than zero, the call will wait until either the
process terminates or an error occurs. If the call is successful, the exit status of the
remote processis returned in the location pointed to by statp.

int tc_sysnane(sysid, snanmes, nsnane)
i nt sysid, *snanes, nsnane;

Send system name list to TCCD. Return O if successful or —1 on error. The server reply
codeisavalableint c_errno.

sysid specifies the system ID of the remote system. snames points to the start of the
system name list. nsname specifies the number of system names in the list.

int tc_cfnanme(sysid, cfnane)
i nt sysid,
char *cf nane;

Send a configuration file name to TCCD. Return O if successful or =1 on error. The
server reply codeisavailableint c_errno.

cfname specifies the configuration file name that is to be used in a subsequent
configuration variable exchange.

int tc_configv(sysid, lines, nline)
I nt sysid, nline;
char **1|ines;

Send merged configuration lines to TCCD. Return O if successful or =1 on error. The
server reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system. lines points to the first in a list of
pointers to configuration lines that are to be sent to TCCD. nline specifies the number of
linesin thelist.

30 April 1996 Page 97
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

The configuration lines are written to a temporary file on the remote system. The name
of this file is assigned to the environment variable TET_CONFI G. The file is removed
automatically when the slave TCCD exits.

This function should be called only once to send merged configuration lines to a
particular slave TCCD; it will generate as many requests as are required to send all the
lines to the server.

int tc_sndconfv(sysid, lines, nline)
int sysid, nline;
char **lines;

Send configuration lines to TCCD as part of a configuration variable exchange. Return O
if successful or —1 on error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. lines points to the first in a list of
pointers to configuration lines that are to be sent to TCCD. nline specifies the number of
linesinthelist.

This function should be called only once in a particular configuration variable exchange;
it will generate as many requests as are required to send al the lines to the server.

char **tc_rcvconfv(sysid, nlines, done)
Int sysid, *nlines, *done;

Receive merged configuration lines from TCCD as part of a configuration variable
exchange. Return a pointer to the first in a list of pointers to configuration lines if
successful, or NULL on error. The server reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system.
If the call is successful:
o The number of linesin thelist isreturned in the location pointed to by nlines.

e A flag isreturned in the location pointed to by done, whose valueis 0 or 1 depending
on whether or not there are any more lines to be returned.

This function should be called repeatedly until *done is true or an error occurs.

The list of pointers and their associated strings are stored in memory owned by the
t c_t al k subsystem, so they should be copied if required before the next request is sent
to the same TCCD.

Page 98 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_putenv(sysid, env)
i nt sysid,
char *env;

Add a single environment variable assignment string to the TCCD environment on a
remote system (as if put env() had been called on the remote system). Return O if
successful or —1 on error. The server reply codeisavailableint ¢c_err no.

sysid specifies the system ID of the remote system. env specifies the assignment string
that is to be added to the remote environment.

int tc_putenvv(sysid, envp, nenv)
int sysid, nenv;
char **envp;

Add one or more environment variables to the TCCD environment on a remote system.
Return O if successful or =1 on error. The server reply codeisavailableint c_err no.

sysid specifies the system ID of the remote system. envp points to the first of a list of
pointers to environment strings that are to be added to the remote environment. nenv
specifies the number of stringsin the list.

int tc_access(sysid, path, nopde)
i nt sysid, node;
char *path;

Determine the accessibility of afile on aremote system. Return O if successful or —1 on
error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. The access permissions of path are
checked with respect to the server’s effective user 1D and group ID. mode is a bit field
which determines which access permissions are to be checked; the meanings of each bit
isafollows:

04 check read permission

02 check write permission

01 check execute/search permission
00 check existence of file

If the call falls because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

30 April 1996 Page 99
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_nkdir(sysid, dir)
i nt sysid,
char *dir;

Make a directory on aremote system. Return O if successful or —1 on error.
The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the
directory that isto be created.

If the call falls because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, err no is set to
0.

int tc_rndir(sysid, dir)
i nt sysid,
char *dir;

Remove a directory on a remote system. Return O if successful or =1 on error. The
server reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the
directory that isto be removed.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

int tc_chdir(sysid, dir)
int sysid;
char *dir;

Instruct TCCD to change directory on a remote system. Return O if successful or —1 on
error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. dir specifies the name of the new
working directory.

If the call fails because the remote system call failed, errno is set to the loca
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

Page 100 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

char *tc_nktnpdir(sysid, prefix)
i nt sysid,
char *prefix;

Make a unique temporary directory on a remote system. Return a pointer to the new
directory name if successful or NULL on error. The server reply code is available in
tc_errno.

sysid specifies the system ID of the remote system. prefix specifies the prefix for the
temporary directory name.

The name of the new directory created by TCCD is prefix/ NNNNNx where NNNNN is
the process ID of the TCCD and x is a unique letter.

If the call fails because the remote system call failed, errno is set to the loca
equivalent of the remote system’s er r no value (if possible); otherwise, err no is set to
0.

The return value points to memory owned by thet ¢_t al k subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

int tc_unlink(sysid, file)
i nt sysid,
char *file;

Unlink afile on aremote system. Return O if successful or —1 on error. The server reply
codeisavalableint c_errno.

sysid specifies the system ID of the remote system. file specifies the name of the file to
be unlinked.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

int tc_fopen(sysid, fnane)
int sysid,
char *fnane;

Open a file for writing on a remote system. Return the file ID if successful or =1 on
error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. fname specifies the name of the file
that is to be opened.

If the call fails because the remote system call failed, errno is set to the loca
equivalent of the remote system’s er r no vaue (if possible); otherwise, er r no is set to
0.

30 April 1996 Page 101
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_puts(sysid, fid, line)
int sysid, fid;
char *li ne;

Write a single line to a file on a remote system. Return O if successful or —1 on error.
The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. fid isafile ID returned by a previous
cal tot c_fopen(). The string pointed to by line is written to the file, followed by a
newline.

If the call fails because the remote system call failed, errno is set to the loca
equivalent of the remote system’s er r no value (if possible); otherwise, err no is set to
0.

int tc_putsv(sysid, fid, lines, nline)
int sysid, fid, nline;
char **|i nes;

Write one or more lines to a file on a remote system. Return O if successful or =1 on
error. The server reply codeisavailableint c_err no.

sysid specifies the system ID of the remote system. fid isafile ID returned by a previous
cal tot c_f open() . lines points to the first of alist of pointers to strings which are to
be written to the file, each followed by a newline. nline specifies the number of stringsin
thelist.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

int tc_fclose(sysid, fid)
int sysid, fid;

Close afile on aremote system. Return O if successful or —1 on error. The server reply
codeisavalableint c_errno.

sysid specifies the system ID of the remote system. fid isafile ID returned by a previous
caltotc_fopen().

Page 102 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_lockfile(sysid, file, timnmeout)
int sysid, tinmeout;
char *file;

Create an exclusive lock on aremote system. Return O if successful or —1 on error. The
server reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system. file specifies the path name of alock
file which is to be created on the remote system. If timeout is greater than zero, repeated
attempts are made to create the lock file until either the operation is successful, the
timeout expires or an error occurs. If timeout is zero, the call will return after the first
attempt to create the file, whether or not the operation is successful. If timeout is less
than zero, the call will wait until either the lock file can be created or an error occurs.

If the call fails because the remote system call failed, errno is set to the local
equivalent of the remote system’s er r no value (if possible); otherwise, er r no is set to
0.

char *tc_sharel ock(sysid, |ockdir, tinmeout)
int sysid, tinmeout;
char *| ockdir;

Create a non-exclusive lock on a remote system. Return a pointer to the name of the
created lock file if successful or NULL on error. The server reply code is available in
tc_errno.

sysid specifies the system ID of the remote system. lockdir specifies the path name of a
lock directory on the remote system, which is created if necessary. If lockdir can be
created or exists aready, a file is created in that directory whose name is
lockdir/ NNNNNx where NNNNN is the process ID of the calling process and X is a
unique letter. If timeout is greater than zero and lockdir exists but is not a directory,
repeated attempts are made to create the lock directory until either the operation is
successful, the timeout expires or an error occurs. If timeout is zero, the call will return
after the first attempt to create the lock directory, whether or not the operation is
successful. If timeout is less than zero, the call will wait until either the lock directory
can be created or an error occurs.

If the call fails because the remote system call failed, errno is set to the loca
equivalent of the remote system’s er r no value (if possible); otherwise, err no is set to
0.

The return value points to memory owned by thet ¢_t al k subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

30 April 1996 Page 103
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int tc_rxfile(sysid, fronfile, tofile)
i nt sysid,
char *fronfile, *tofile;

Cause TCCD to transfer a file to the master system. Return O if successful or —1 on
error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. TCCD transfers the file specified by
fromfile to the path specified by tofile, interpreted relative to the saved files directory on
the master system. (Seethe description of xd_xfi | e() for more details).

char *tc_nksdir(sysid, dir, suffix)
i nt sysid,
char *dir, *suffix;

Make a saved files directory on a remote system. Return a pointer to the directory name
if successful or NULL on error. The server reply codeisavailableint c_err no.

sysid specifies the system ID of the remote system. suffix specifies the suffix for the
name of the saved files directory and should be one or more of the characters bec,
chosen in accordance with existing TCC conventions.

TCCD makes a saved files directory whose name is dir/ NNNNsuffix. The directory
specified by dir should already exist. NNNN is an ascending sequence number generated
by TCCD.

The return value points to memory owned by thet ¢_t al k subsystem whose contents
should be copied if required before the next request is sent to the same TCCD.

int tc_tslfiles(sysid, files, nfile, subdir)
int sysid, nfile;
char **files, *subdir;

Copy save files locally on a remote system. Return O if successful or =1 on error. The
server reply codeisavailableint ¢_errno.

sysid specifies the system ID of the remote system. files points to the first in a list of
pointersto file or directory names. nfile specifies the number of file namesin thelist.

If a file matching one of these names is found, it is copied to subdir in the saved files
directory on the remote system, or directly to the saved files directory if subdir is NULL.
If a directory matching one of these names is found, this action is performed recursively
for al files below that directory.

Page 104 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int tc_tsnfiles(sysid, files, nfile, subdir)
int sysid, nfile;
char **files, *subdir;

Copy save files from a remote system to the master system. Return O if successful or -1
on error. The server reply codeisavailableint c_errno.

sysid specifies the system ID of the remote system. files points to the first in a list of
pointers to file or directory names. nfile specifies the number of file namesin the list. If
a file matching one of these names is found, it is copied (by means of an xd_xfi |l e()

call) to subdir in the saved files directory on the master system, or directly to the saved
files directory if subdir is NULL. If adirectory matching one of these namesis found, this
action is performed recursively for al files below that directory.

H.5 XRESD functions

int xd _start(savedir)
char *savedir;

Start an XRESD; Return O if successful or =1 on error.
This function must be caled by the MTCC if XRESD services are required. savedir

specifies the full path name of the directory below which saved files are to be placed.
int xd_I ogon()

Connect to the XRESD and log ontoit. Return O if successful or =1 on error.

i nt xd_l ogoff()
Log off from the XRESD and close the connection. Return O if successful or -1 on
error.

This function may be called even if the caler is not currently logged on to the XRESD
(e.g., from an error or cleanup function).

30 April 1996 Page 105
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

int xd xfile(fronfile, tofile)
char *fronfile, *tofile;

Copy a save file to the master system. Return O if successful or —1 on error. The server
reply code isavailableinxd_err no.

The file specified by fromfile is copied to the path specified by tofile, interpreted relative
to the saved files directory on the master system. Directories below the saved files
directory will be made as necessary.

This function may be called by aTCC or aTCM.

The location of the saved files directory is specified when XRESD is started, by a
parameter toxd_start ().

| ong xd_xropen(xfnanme)
char *xf nane;

extern long Xrid;

Open an execution results file on the master system. Return the xres 1D of the open file if
successful or —1 on error. The server reply codeisavailableinxd_err no.

xfname specifies the name of the execution results file to be opened.

This function should be called by the MTCM, and the return value should be stored in the
global variable Xr i d for subsequent use by doasync() .

i nt xd_xrsys(xrid, snanes, nsnane)
| ong xrid;
I nt *snanmes, nsnane;

Assign a system name list to an execution results file. Return O if successful or =1 on
error. The server reply codeisavailablein xd_err no.

This function is called by the MTCM and informs XRESD of the systems from which
execution results are to be expected. xrid is an xres ID obtained by the MTCM from a
cal to xd_xropen() . snames points to the start of the system name list. nsname
specifies the number of system namesin the list.

Page 106 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

int xd_icstart(xrid, icno, activity, tpcount)
long xrid, activity;
int icno, tpcount;

Signal IC start to XRESD. Return O if successful or —1 on error. The server reply code
isavailableinxd_err no.

xrid is an xres ID obtained by the MTCM from a call to xd_xr open() . icno specifies
the number of the IC that is about to be started. activity specifies the TCC activity
number that is to appear in certain results file messages. tpcount specifies the expected
number of TPsin thisIC.

This function should be called by the MTCM after all the TCMs have synced at the start
of anIC.

int xd_icend(xrid)
| ong xrid;

Signal 1C end to XRESD. Return O if successful or =1 on error. The server reply codeis
availableinxd_errno.
xrid isan xres ID obtained by the MTCM from acall toxd_xr open() .

This function should be called by the MTCM after all the TCMs have synced at the end
of anlIC.

int xd tpstart(xrid, tpno)
| ong xrid;
int tpno;

Signal TP start to XRESD. Return O if successful or =1 on error. The server reply code
isavailableinxd_err no.

xrid is an xres ID obtained by the MTCM from a call to xd_xr open() . tpno specifies
the number of the TP that is about to be started.

This function should be called by the MTCM éafter all the TCMs have synced at the start
of aTP.

30 April 1996 Page 107
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

I nt xd_t pend(xrid)
| ong xrid;

Signal TP end to XRESD. Return O if successful or —1 on error. The server reply code
isavailableinxd_err no.

xrid isan xres ID obtained by the MTCM from acall toxd_xr open() .

This function should be called by the MTCM after all the TCMs have synced at the end
of aTP.

int xd xres(xrid, line)
| ong xrid;
char *line;

Send a single text line to the execution results file. Return O if successful or —1 on error.
The server reply codeisavailable in xd_er r no.

xrid is an xres ID obtained by the MTCM from a call to xd_xr open() . line specifies
the line that isto be written to the execution resultsfile.

int xd _xresv(xrid, lines, nlines)
| ong xrid;

char **|i nes;

int nlines;

Send one or more text lines to the execution results file. Return O if successful or =1 on
error. The server reply codeisavailableinxd_err no.

xrid is an xres ID obtained by the MTCM from acall to xd_xr open() . lines points to
the first of an array of pointers to xres lines. nlines specifies the number of xreslinesin
the list.

int xd result(xrid, result)
| ong xrid;
int result;

Send a TP result code to XRESD. Return O if successful or =1 on error. The server
reply codeisavailablein xd_errno.

xrid is an xres ID obtained by the MTCM from acall to xd_xr open() . result specifies
the TP result code that is to be registered with XRESD.

A TCM on each participating system is expected to submit at least one such code before
the MTCM signals TP end.

Page 108 30 April 1996
X/Open Company Ltd

TET3-SPEC-1.0 Test Environment Toolkit
TETware Design Specification

I nt xd_cfname(ecfnane, dcfnane, ccfnane)
char *ecfnane, *dcfname, *ccfnane;

Send the master configuration file names to XRESD. Return O if successful or =1 on
error. The server reply codeisavailableinxd_err no.

ecfname specifies the name of the master execute mode configuration file. dcfname
specifies the name of the master distributed configuration file. ccfname specifies the
name of a file containing configuration variable assignments specified on the MTCC
command line.

The contents of these files will be used by TCM processes as the source of master
configuration information when performing a configuration variable exchange as part of
atet _remexec() call.

char **xd_rcfname()

Return a pointer to the first in alist pointers to master configuration file names previously
registered with XRESD by an xd_cf name() call, or NULL on error. The server reply
codeisavalableinxd_err no.

The list of file names pointed to by the return value contains XD _NCFNAME items.

The list of pointers and their associated strings are stored in memory owned by the
xd_t al k subsystem, so they should be copied if required before the next request is sent
to XRESD.

This functioniscaled by t et _renexec() before performing a configuration variable
exchange with the target system.

30 April 1996 Page 109
X/Open Company Ltd

Test Environment Toolkit TET3-SPEC-1.0
TETware Design Specification

Page 110 30 April 1996
X/Open Company Ltd

CONTENTS

1. Foreword .

11
1.2
1.3
14
15
1.6

Introduction

Background

Project goals

Conventions used in this document
Related documents

Terminology

2. TETware architecture options .

21
22

Lightweight TETware
Master and slave systems

3. TheTest Case Controllert cc

31
3.2
3.3
34
3.5
3.6

41

4.2
4.3
4.4
4.5

Introduction

Process structure .

Local and remote procedures
TCM/API interface

Locking strategy

Supported features :
3.6.1 Configuration varlables)
3.6.2 Communication variables
3.6.3 Scenario directives

Test case support

TheCAPI . . .

4.1.1 Introduction

4.1.2 Error reporting

4.1.3 Changesin API function speC|f| catl ons
4.1.4 New API functions

415 New API functionsfor usein dlstrlbuted t&st cases .

4.1.6 API considerations for non-Unix systems
4.1.7 API considerations for TETware-Lite
The C++ AP

Thexpg3sh API

Theksh AP

Theper| API

5. Thread support

5.1
5.2

5.3
5.4

Introduction

API issues .

5.2.1 Changesto eX|st| ng API functl ons
5.2.2 New API functions .
TCM enhancements .

Client/server issues

5.4.1 Introduction

OCONNNN OO0l WNDNEFPE R PR

5.4.2 Thetest case controller daemont ccd
5.4.3 The synchronisation daemont et syncd
5.4.4 The execution resultsdaemont et xr esd

6. Portability to non-Unix platforms
6.1 Introduction . . .
6.2 Supported platforms .
6.3 TETware-Lite .o
6.4 Fully-featured TETware
6.5 Compiler subsystem issues .

7. Documentation
7.1 Introduction :
7.2 Document source format
7.3 ProgrammersGuide . . .
7.4 Installation and User Guide .
7.5 Installation and Build Notes
7.6 Specification document
7.7 Release Notes .
7.7.1 Generic Release Notes .o
7.7.2 Supplementary Release Notes for specmc pI atforms and
distribution types . Ce e

8. Miscellaneousissues . .
8.1 Compatibility with existi ng TET |mpI ementatlons
8.1.1 Introduction Ce e
8.1.2 Compatibility issues
8.1.3 Combining test cases from eX|st| ng TET
implementations

A. Comparison tables for configuration variables
A.1l Introduction :
A.2 Support for conflguratl on varlables in dlfferent TETware
versions
A.3 Support for conflguratl on varlables on dlfferent pI atforms
A.4 Compatibility with configuration variablesin existing TET
implementations .

B. Comparison tables for communication variables
B.1 Introduction
B.2 Support for communlcatlon varlableﬁ in dlfferent TETware
versions
B.3 Support for communlcatlon varlables on dlfferent pl atforms .
B.4 Compatibility with communication variablesin existing TET
implementations Ce

C. Comparison tables for scenario directives
C.1 Introduction

30
30
30

31
31
32
32
32
33

35
35
35
35
36
37
37
37
37

38

39
39
39
39
41
45
45

45
46
47
49
49

50
50
51

53
53

C2

C3
C4

Support for scenario directivesin different TETware
versions

Support for scenario d| rectlves on dlfferent pl atforms
Compatibility with scenario directivesin existing TET

implementations

D. Comparison tablesfor C APl interfaces .

D.1
D.2
D.3
D4

Introduction

Support for i nterfacas in dlfferent TETware versions
Support for interfaces on different platforms
Compatibility with interfaces in existing TET
implementations Ce e

E. dTET2 architecture .

E.l
E.2

Origin
Diagram and component defl n|t|ons

F. Clanguage binding .

F.1
F.2
F.3
F.4
F.5
F.6
F.7
F.8
F.9

Origin

Introduction

Test case structure and management funct| ons
Insulating from the test environment

Making journal entries

Canceling test purposes . .
Manipulating configuration vanables .
Generating and executing processes

Executed process functions .

F.10 Test case synchronisation
F.11 Remote system designations
F.12 Remote process control

G. Test case synchronisation

G1
G2
G.3

G4

G5

Origin

Introduction .
Synchronisation request concepts .
G.3.1 Request types .

G.3.2 Request parameters

G.3.3 Sync events

G.34 Sync states . . .
G.3.5 With what to synchronl se’? .
Automatic synchronisation requests
G.4.1 Description

G.4.2 Test case manager synchronlsatlon
G.4.3 Remote executed process synchronisation
G.4.4 Error handling .

G.4.5 Example error messages

User synchronisation requests

G.5.1 Description

54
55

56

59
59
60
62

64

67
67
67

69
69
69
70
71
72
73
74
74
75
76
80
80

83
83
83
83
83
83
84
84
85
85
85
85
86
87
87
88
88

G.5.2 Error handling

G.5.3 Example error messages

H. Server interface functions .

H.1
H.2
H.3
H.4
H.5

Origin
Introduction .
SYNCD functions
TCCD functions
XRESD functions

-V -

89
89

91
91
91
91
94
105

