Test Environment Toolkit

TETware Programmers Guide
Revision 1.6
TET3-PG-1.6

Released: May 2000

The Open Group

The information contained within this document is subject to change without notice.

Copyright [0 1999 The Open Group

Copyright [0 1992, 1993, 1996, 1997 X/Open Company Limited
Copyright [0 1992 Open Software Foundation

Copyright [0 1992 Unix I nter national

Copyright [0 1993 I nfor mation-Technology Promotion Agency, Japan
Copyright [0 1994, 1995 UniSoft L td.

All rights reserved. No part of this source code or documentation may be reproduced, stored in aretrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user licence agreement, without the prior permission of the copyright
owners. The text of the end-user licence agreement appears in Appendix A of this document. In addition,
a copy of the end-user licence agreement is contained in the file Li cence which accompanies the
TETware distribution.

Motif, OSF/1, UNIX" and the ‘X’ device are registered trademarks and I T Dial Tone and The Open Group
are trademarks of The Open Group in the US and other countries.

X/Open is atrademark of X/Open Company Limited in the UK and other countries.

Win32™, Windows NT™ and Windows 95™ are registered trademarks of Microsoft Corporation.

This document is produced by UniSoft Ltd. at:

150 Minories
LONDON
EC3N 1LS
United Kingdom

CONTENTS

1. Introduction

11
12
13
14
15
16

Preface . . .

Product definition

Audience :
Conventions used in thls gw de
Related documents

Problem reporting

2. Testing structure

21
22
2.3
24

2.5

Introduction

Test suite processing

Directory structure

Test case structure

24.1 Introduction

242 Test Case Manager .
24.3 API-conforming test cases

24.4 Non API-conforming test cases .

Test suite structure

2.5.1 Introduction .o .
252 Required filesand ut|I|t|&s
25.3 Optional filesand utilities

3. The Test Case Controller

3.7.2.2 Processing apar al | eI dlrectlveln resume

3.7.2.3 Processing ar andomdlrectlve in resume mode
3.7.24 Processingati med_| oop directivein resume

3.7.3.2 Processingar andomdlrectlve in rerun mode
3.7.3.3 Processingati med_| oop directivein rerun

3.1 Introduction
3.2 Modes of operation
3.3 Initia processing .
3.4 Build mode processing
3.5 Execute mode processing
3.6 Clean mode processing
3.7 Rerun and resume processing
3.7.1 Introduction
3.7.2 Resume processing
3.7.2.1 Description
mode .
mode .
3.7.3 Rerun processing
3.7.3.1 Description
mode .
3.8 Communication variables
3.9 Journa entries
3.10 Locking

3.11 Usingt cc to process atest sur[e on aread onIy fllesystem

4. The scenario file

COOOURDMDRMDWWWW NNNRRBRBRE

NNNNNRPRRRRRERR
PRPOOOVOWRRRER

22
22

22
22
22
23

23
23
24
24
25

27

4.1
4.2

4.3
4.4

Introduction :
The scenario language

4.2.1
4.2.2
4.2.3
424

4.2.5

4.2.6
4.2.7

Introduction

Scenario lines

The scenario name

Simple scenario elements

4.2.4.1 |Introduction . .
4.2.4.2 Scenario information I|ne .
4243 Test casename .

4.2.4.4 Referenced scenario name
4245 Filename

Scenario directives

4251 Introduction .

4252 repeat — processscenario elements aspeC|f|ed number of

times .

4253 timed_ | oop - proceﬁsscenano elementsuntll aspecmed

period of time expires . :
4254 random- processatest case selected at random
4255 parall el —processscenario elementsin
paralel .
4.25.6 group — processscenario elements in parallel
4257 renot e — processtest cases on remote systems
4258 distributed - processdistributed test cases

4259 include - processscenanoelementsllstedmanmclude

file
Directive groups
Directive nesting rules

Scenario file inclusion
Example scenarios

5. Configuration files

Introduction :

Use of conﬂguratlon vari ables :

Configuration file format

Configuration variable processing in TETwarethe
Configuration variable processing in Distributed TETware
Configuration variables which modify TETware's operation
Distributed configuration variables used by Distributed TETware
Configuration variable expansion Coe

51
5.2
5.3
54
5.5
5.6
5.7
5.8

581
582
5.8.3
584

585
5.8.6
58.7
5.8.8

Introduction

Variable expansion syntax

Variables on whose values expansion may be performed :
Variables whose values may be interpolated in another variable's
vaue . . .

Special vanabl& defl ned in TETwarethe .
Configuration variable expansion in Distributed TETware .
Special variables defined in Distributed TETware

Using specia variablesin Distributed TETware

6. Other test suite files
Introduction

6.1

27
27
27
27
28
28
28
28
28
29
30
30
30

31

32
33

34
37
37
38

39
39
40
41
41

53
53
53
53

57
60
63
63
63
63

64
64
65
66
68

71
71

6.2 Result codes .
6.21 Description . .
6.2.2 Result code defi n|t|ons
6.2.3 Fileformat .
6.24 Exampleresultscodeflle .
6.3 System definitions
6.3.1 Description .
6.3.2 Fileformat . . .
6.3.3 Examplesyst ens fllec .
. The Test Case Manager .
7.1 Introduction
7.2 TCM flow of control
7.3 TCM options .
7.4 TCMsthat support dlstnbuted testl ng
7.5 Portability . Coe
. TheCAPI .
8.1 Introduction .
8.2 Clanguage binding
8.3 TCC dependencies
8.4 Test case structure and management
84.1 Introduction
84.2 Static test caselnterface—thet et test I [st [] array
8.4.3 Dynamictest caseinterface—t et _get maxi c(),
tet_getnminic(),tet _isdefic(),tet_gettpcount(),
tet _gettestnum() andtet i nvoketp() .o
844 tet _startupandtet cl eanup
845 tet thistest,tet _nosigreset and
tet _pnane
8.5 Insulating from the test envi ronment
8.6 Error handling and reporting
8.6.1 Introduction
862 tet_errno
863 tet errllst[]andtet nerr
8.7 Making journa entries .
8.7.1 Introduction
872 tet setcontext() andtet set bI ock() .o :
873 tet_infoline(),tet_mnfoline(),tet _pri ntf() and
tet_vprlntf() e e
874 tet result()
8.8 Cancelling test purposes
8.8.1 Introduction
882 tet _delete()
883 tet_reason() .
8.9 Accessing configuration variables .
8.9.1 Introduction
89.2 tet_getvar()
8.10 Generating and executing processes

8.10.1 Introduction :
8102 tet fork(),tet exec() andtet Chl|d

71
71
71
72
73
73
73
73
74

77
77
77
79
80
81

83
83
83
84
85
85
85

86
89

89
91
92
92
92
93
94
94
94

95
96
97
97
97
98
99
99
99

100
100
100

10.

8.11

8.12

8.13

8.14

8.10.3 tet_spawn()

8104 tet wait()

8105 tet _kill()

Executed process functions .

8.11.1 Introduction

8112 tet_main() : e
8113 tet eX|t()andtet _logoff ()
Test case synchronisation .o
8.12.1 Introduction

8122 tet _remsync()

8123 tet_sync() andtet m;ync()
8.12.4 Control over sync error reporting
Remote system information .
8.13.1 Introduction

8132 tet rengetlist ()

8.13.3 tet rengetsys()

8.13.4 tet_getsysbyid()

8135 tet_rentime()

Remote process control

8.14.1 Introduction

8.14.2 tet _renexec()

8143 tet _remnait ()

8144 tet_renkill()

The C++ API

9.1
9.2
9.3

Introduction
C++ language bindi ng
Using the C++ language bindi ng

The Thread-safe C and C++ APIs .

10.1
10.2
10.3
104

105
10.6
10.7

10.8

Introduction .
C language binding
C++ language binding .
Functions that are specific to the Thread %feAPIs .
10.4.1 Introduction e
104.2 tet_thr create() and

tet _pthread_create()
10.4.3 tet_begi nt hr eadex()

1044 tet _thr_join() andtet _pthread_joi n()

1045 tet _pthread detach() .
1046 tet fork() andtet forkl()
Unavailable interfaces :

Use of API functionsin child procwa&s

API differences

10.7.1 Introduction . .

10.7.2 Thread-specific data

10.7.3 Block and sequence numbers
10.74 tet_exec()

10.75 tet_spawn()

10.76 tet_fork()

TCM differences .

-iv -

102
103
103
104
104
104
105
106
106
106
109
110
111
111
111
111
112
112
114
114
114
115
117

119
119
119
120

121
121
121
122
122
122

122
123
124
125
125
126
126
127
127
127
127
127
127
128
128

11.

12.

13.

10.8.1 Introduction

10.8.2 Clean-up of left-over threads on UNIX systerns

10.8.3 Dealing with left-over threads on Win32 systems

10.8.4 Signa handling . .
10.9 Synchronisation requests in multi threaded test cases

The Shell and Korn Shell APIs .
11.1 Introduction
11.2 Shell language blndlng
11.3 Korn Shell language binding
11.4 TCC dependencies
11.5 Test case structure and management
11.5.1 Introduction
1152 iclist,icn,tet start up andtet C| eanup
1153 tet thistest
11.6 Insulating from the test environment
11.7 Making journal entries
11.7.1 Introduction
11.7.2 tet_setcontext andtet set bI ock
11.7.3 tet_infoline
11.74 tet _result
11.8 Canceling test purposes .
11.8.1 Introduction :
1182 tet delete .
11.8.3 tet reason .
11.9 Accessing configuration variables .
11.10 Generation and execution of processes
11.11 Executed process support

The Perl API
12.1 Introduction
12.2 Description

The Java API
13.1 Introduction . .
13.2 Javalanguage bindi ng
13.3 TCC dependencies
13.4 Processing Javatest cases
13.4.1 Introduction
13.4.2 Thescenariofile . . .
13.4.3 Building aJavatest case .
13.4.4 Executing aJavatest case
1345 Cleaning aJavatest case .
13.5 Test case structure and management
13.5.1 Introduction .
13.5.2 Defining atest case class .o .
13.5.3 Defining Invocable Components and Test Purposes .
1354 startup() andcl eanup() . . .
1355 tet_thistest() andtet pnane()
13.6 Insulating from the environment .o
13.7 Error handling and reporting

128
128
129
129
129

131
131
131
131
132
133
133
133
134
135
136
136
136
137
137
138
138
138
138
139
139
139

141
141
141

143
143
143
144
144
144
144
145
145
146
148
148
148
148
149
150
151
152

138

139

13.10

1311

13.12

13.13

13.14

13.15
13.16

13.7.1 Introduction

1372 tet _errno .

1373 tet _errlist()

Making journal entries

13.8.1 Introduction .o

13.8.2 tet_setcontext () andt et set bI ock()
1383 tet_infoline() andtet _m nfoline()
1384 tet result() e
Cancelling test purposes

13.9.1 Introduction :

139.2 tet_delete()

1393 tet_reason() .

Accessing configuration variables .

13.10.1 Introduction .

13.10.2 tet _getvar ()

Generating and executing processes

13.11.1 Introduction .
13.11.2 tet _spawn() andtet_J spawn()
13113 tet _wait() .

13114 tet _Kkill ()

Executed process methods

13.12.1 Introduction

13.12.2 tet _mai n() : o

13123 tet _exit() andtet _logoff ()

Test case synchronization .o

13.13.1 Introduction .

13.13.2 tet _rensync()

Remote system information

13.14.1 Introduction .o

13142 tet _rengetli st ()

13.14.3 tet _renget sys()

13.14.4 tet _get syshyi d()

13145 tet _rentinme()

Remote process control

Using threads . :

13.16.1 Thread creatlon .o

13.16.2 Dedling with left-over threads .
13.16.3 Synchronisation requestsin multi plethreads .

14. Test reporting and journaling

141

14.2

14.3

Making journal entries . .

1411 Entriesfrom the AP

14.1.2 Entriesfrom test purposes

Journal files Coe

14.2.1 Description .

14.2.2 Journa line parameters

14.2.3 Journal line descriptions

Result file processing

14.3.1 Execution r&ultsfrom an API conforml ng test case .
14.3.2 Processing results from anon API-conforming test case

-Vi -

152
152
153
155
155
155
155
156
157
157
157
158
159
159
159
160
160
160
161
161
162
162
162
163
164
164
164
168
168
168
168
169
169
171
171
171
171
171

173
173
173
174
174
174
174
176
176
176
176

14.3.3 Processing results from a non-distributed API-conforming test

14.3.4 Processing results from adistributed API-conforming test
14.4 Support for user-supplied report writers 178
15. Writing aC language API-conforming test suite 179
151 Introduction . 11
15.2 Defining atest suite e
15.3 Defining common test casefunctl ons and varlables P £ S 24
15.4 Initialising test cases . e 22
15.5 Controlling and recording test case executlon results 183
15.6 Resultsthat must be verified by theuser 185
15.7 Child processesand subprograms 186
158 Cleaninguptestcases 18
16. Writing a Shell language API-conforming test suite 191
16.1 Introduction . 191
16.2 Defining atest suite Lo X
16.3 Defining common test casefunctl ons and vanabl&s« 193
16.4 Initidising test cases 19
16.5 Controlling and recording t&st case executlon results 19
16.6 Resultsthat must beverifiedby theuser 199
16.7 Cleaninguptestcases 19
17. Thedistributed demonstration test suite 201
17.1 Introduction . 21
17.2 Testsuitefiles . . . -0
17.21 Thesystens f|Ie . 0 24
1722 Thetet codefile 203
1723 Thetet_scenfile 203
1724 Thetetbuild.cfgfile 204
1725 Thetetclean.cfgfile 205
17.2.6 Thetetexec.cfgfile 205
1727 Thetetdist.cfgfile 206
17.28 Themakefilefile 207
1729 Thetcl.cfile 208
17.2.10 Thetc2.cfile 208
17.2.11 Thetc3.cfile 208
18. Writing aJava API-conforming test suite 211
181 Introduction . 211
18.2 Definingatestsuite 211
18.3 Definingatestcase . . 2
18.4 Controlling and recording teﬂ case executlon results 213
185 Subprograms . . . 2 L)
18.6 Packages and test case cI asseS a2
19. Using shared APl libraries 219
19.1 Introduction . 219
19.2 Supportedsystems 219

- Vii -

19.3 Advantages and disadvantages of linking test cases with shared AP

libraries . . Ce e e e 29
19.4 Shared API I|brary components .o 220
19.5 API component names when shared I|brar|es are used i !
19.5.1 Introduction ek
1952 UNIXsystems . . . e e .. 222
19.5.2.1 Systems that usethe SVR4 dynarnlc I|nk| ng
scheme 222
19522 HP-UX 223
19523 AIX 224
1953 Win32systems . . . e 225
19.6 Building test casesto use shared API I|brar|es e 226
19.6.1 Introduction C e e e s s e s .. 226
196.2 UNIXsystems 22
19.6.3 Win32systems . . . e e e e ... 228
19.7 Locating ashared API library at runtlme e e e s 29
19.7.1 Introduction s |
1972 UNIXsystems 229
19.7.3 Win32systems . . . i
19.7.4 Considerations for remote executed processes -
A. TheTETwareend-user licence 235
B. Example C language API test suite sourcefiles 237
B.1 Introduction . 237
B2 tet _code23
B3 install . 23
B4 cleantool . 23
B5 tet scen . 23
B6 tetbuild.cfg 23
B.7 tetexec.cfg 23
B.8 tetclean.cfg . A s
B.9 Makefilefor chnmod- tc cC 233
B.10 chnod-tc.c . . Ce e e e e s 2D
B.11 Makefileforfil eno- tc C . .« .. 242
B.12 fileno-tc.c 242
B.13 fileno-t4.c 24
B.14 Makefileforstat-tc.c 248
B.15 stat-tc.c . . Coe e oo ..., 248
B.16 Makefile for unane- tc C 25
B.17 unane-tc.c 255
C. Example Shell API test suite sourcefiles 257
C1 Introduction . 25
C2 tet_code 25
c3 install . 258
c4 buildtool . 258
c5 cleantool . 258
C6 tet_scen . 258
C7 tetbuild.cfg 25
C8 tetexec.cfg 25

- Viii -

C.9

C.10
cl1
C.12
C.13
cC14

tetclean.cfg

shf uncs — common functlons uwd in the Shell API test sune

Makefile for chnpbd-t c. sh
chnod-tc. sh .
Makefilefor uname-t c. sh
uname-tc. sh

. Example distributed test case source files

D.1
D.2

D.3

D.4

Introduction

Files supplied on the master system
D.21 tet _code .

D.22 tet_scen . .

D.23 tetbuild.cfg

D.24 tetclean.cfg

D.25 tetdist.cfg

D.26 tetexec.cfg

D.27 ts/makefile

D.28 ts/tcl.c .

D.29 ts/tc2.c .

D.210 ts/tc3.c . : .
Files supplied on the slave wstem
D.31 tetbuild.cfg

D.32 tetclean.cfg

D.3.3 tetexec.cfg

D.34 ts/nmakefile

D35 ts/tcl.c .

D.36 ts/tc2.c .

D.37 ts/tc3.c . oo
Files supplied on both systems .
D41 systens . .

D.42 ts/ntbuild. ksh
D.43 ts/ntclean. ksh

. Example Java API test suite sourcefiles

E.1l
E.2
E.3
E.4
E.5
E.6
E.7
E.8

Introduction
tet_scen .
tetbuild.cfg
tetexec.cfg
tetcl ean. cfg

I nteger TC. j ava
St ackTC. j ava
SystenTC. j ava

. Scenario language syntax summary
. Conceptual models used by TETware .

Gl
G.2
G.3

G4

Introduction
TETware-Lite conceptual model

Distributed TETware conceptual model — local system with test

cases

cases

-iX -

Distributed TETware conceptual model local system without test

259
259
261
261
263
263

265
265
265
265
265
266
266
267
267
267
268
268
269
270
270
271
271
271
272
272
273
274
274
274
275

277
277
277
277
277
278
278
280
285

289

293
293
294
295

296

G.5 Distributed TETware conceptual model — remote system as master .

G.6 Distributed TETware conceptual model — remote system as slave

H. Background and goals
H.1 Introduction Coe
H.2 Previous TET implementations .
H.2.1 The Test Environment Toolkit .o
H.2.2 The Distributed Test Environment Toolkit
H.2.3 The Extended Test Environment Toolkit
H.2.4 The Distributed Test Environment Toolkit Version 2
H.3 TETware
H.4 Relationship between TETware and its predecessors

I. Terminology
.1 Test casetypes
.2 Glossary

297
298

299
299
299
299
299
300
300
300
301

303
303
303

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.
Figure 23.

Figure 24.

Figure 25.
Figure 26.

LIST OF FIGURES

Relationship between TCM, test purpose function and API
Test case processing in build mode

Test case processing in execute mode

Test case processing in clean mode

Processing test casesin sequence .

Processing test casesin paralléel

Processing multiple instances of asingletest casein paralel

Processing referenced scenario elementsin parallel when in dTET2
mode

Processing referenced scenario elementsin paralel whenin ETET
mode

Processing ar epeat directive in execute mode

Processing r epeat directivesin parallel

Processing randomly selected test casesin paralel for a specified period of
time
Processing remote and distributed test cases

Configuration variable processing in TETware-Lite

Configuration variable processing in Distributed TETware

Precedence of result code definitions .

Directory structure for the example C language test suite .

Directory structure for the example Shell language test suite .
Directory structure for the distributed demonstration test suite
Directory structure for the Java demonstration test suite

Relationship between the API components and the user-supplied code when a
shared API library is used e e e

TETware-Lite conceptual model
Distributed TETware conceptual model — local system with test

Distributed TETware conceptual model — local system without test

Distributed TETware conceptual model — remote system as master .
Distributed TETware conceptual model — remote system as ave

-Xi -

15
18

&

46

47
48
49

51
52

56
72
180
192
202
211

221
294

295

296
297
298

Figure 27. Relationship between TETwareand itspredecessors 301

- Xii -

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

1. Introduction
1.1 Preface

This document is the TETware Programmers Guide.

TETware is implemented on UNIX operating systems and also on the WindowsNT and
Windows 95 operating systems. It includes al of the functionality of the Test Environment
Toolkit Release 1.10 (TET), the Distributed Test Environment Toolkit Version 2 Release 2.3
(dTET2) and the Extended Test Environment Toolkit Release 1.10.3 (ETET), together with a
number of new features.

Throughout this document, the Windows NT and Windows 95 operating systems are referred to
collectively as Win32 systems. The individual system names are only used when it is necessary
to distinguish between them.

1.2 Product definition

TETware is a set of tools for the development and execution of system and unit tests. The goal
behind creating TETware and its predecessors is to produce a test driver that accommodates
present and future testing needs of the test development community. To achieve this goal, input
from a wide sample of the test development community has been used for the specification and
development of TETware's functionality and interfaces. A short account of the history of
TETware and its predecessors is presented in the appendix entitled ‘* Background and goals'’ at
the end of this guide.

TETware is available in one of two versions. One version iscalled TETware-Lite and is able to
process non-distributed test cases on a single computer system. The other version is called
Distributed TETware and is able to process both distributed and non-distributed test cases on
thelocal system and on one or more remote systems.

An overview of TETware, some simple architecture diagrams, and a description of what
constitutes a distributed or a non-distributed test case, are presented in the chapter entitled
““TETware overview’’ in the TETware User Guide. Diagrams illustrating the conceptual models
used by TETware are presented in the appendix entitled ‘* Conceptual models used by TETware’’
at the end of this guide.

TETware-Lite is supported on UNIX systems and on the WindowsNT and Windows 95
operating systems. Distributed TETware is supported on UNIX systems and on the Windows NT
operating system.

1.3 Audience

This document is intended to be read by test suite authors who will write or adapt test programs
to run under the control of TETware.

Software testing engineers and system administrators should refer to the TETware User Guide for
information about how to run TETware and to the TETware Installation Guide for information
about how to install TETware on their computer systems.

May 2000 Page 1
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

1.4 Conventionsused in thisguide
The following typographic conventions are used throughout this guide;

e Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

o The names of variables are presented in italic font. You should substitute the variable's
value when typing a command that contains aword in this font.

« Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a\ character
for formatting purposes. If you type such an example, you should type it in al on one line and
omit the\ character.

1.5 Related documents

Refer to the following documents for additional information about TETware:

o Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
isimplemented.

e Test Environment Toolkit: TETware User Guide

o Test Environment Toolkit: TETware Knowledge Base

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use
each new release of TETware.

1.6 Problem reporting

If you have subscribed to TETware support and you encounter a problem while installing and
using TETware, you can send a support request by electronic mail to the address given in the
TETware Release Notes. Please follow the instructions contained in the release notes about how
to submit such arequest; in particular, please be sure to include al the information asked for by
these instructions when submitting the request.

Page 2 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

2. Testing structure

2.1 Introduction

This chapter introduces the structure of atest suite that isto be processed by TETware. Examples
of practical test suites which use this structure are presented in the chapters entitled **Writing a

C language API-conforming test suite’’, **Writing a Shell language API-conforming test suite’’
and ‘‘ The distributed demonstration test suite’’ later in this guide.

2.2 Test suite processing
A test suite is made up of one or more test cases. Each test caseis an executable program.

Thetest casesin atest suite are processed by the TETware Test Case Controller (t cc), according
to one or more chosen modes of operation. The available modes of operation are: build mode,
execute mode and clean mode. For each test case that isto be processed, t cc builds the test case
(if build mode has been specified), then executes the test case (if execute mode has been
specified), then cleans up the test case (if clean mode has been specified).

The list of test cases that are to be processed by t cc is specified in the test scenario. The
scenario may also contain directives which influence the way in which test cases are to be
processed. The way in which the scenario is specified is described in the chapter entitled *‘ The
scenario file'’ later in this guide.

The way in which t cc processes a test suite may be influenced by the values of certain
configuration variables. There is a set of configuration variables for each of t cc’s selected
modes of operation. These variables are described in the chapter entitled ‘‘ Configuration files'”
later in this guide.

As tcc processes a test suite it records information about the processing in a journal.
Information generated by each test caseis also recorded in the journal. Further information about
the journal is presented in the chapter entitled ** Test reporting and journaling’’ later in this guide.

The operation of t cc is described in the chapter entitled ** The Test Case Controller’” later in this
guide.

2.3 Directory structure

TETware expects to operate within a defined directory structure. This structure includes the tet
root directory, the test suite root directory, one or more test case directories and (optionally)
the alter nate execution directory hierarchy. Details of the function and purpose of each of these
directories is presented in the section entitled ** TETware directory layout’” and in the appendix
entitled ** TETware directory structure’’, both in the TETware User Guide.

All the filesin the test suite reside below the test suiteroot directory. The name of this directory
is the same as the name of the test suite. The test suite root directory is usually located
immediately below the tet root directory, although it is possible to locate it elsewhere if so
required.

May 2000 Page 3
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

2.4 Test case structure
2.4.1 Introduction

t cc is able to execute test cases and tools that either use, or do not use, one of the TETware APIs
(but not both types in a particular mode of operation).

A test case which uses one of the TETware APIsis known as an API-conforming test case, and a
test case which does not use a TETware API is known as a non API-conforming test case.
Likewise, a build tool or a clean tool can either be an API-conforming tool or a non API-
conf(lering tool, whereas a prebuild tool or a build fail tool is always a non API-conforming
tool.

A build tool or a clean tool may be either API-conforming or non API-conforming, depending on
the requirements of the test suite. However, execution of non API-conforming test cases is
supported for compatibility only; new test cases should always use one of the TETware APIs.

2.4.2 Test Case Manager

When a test case uses one of the TETware APIs, its execution is supervised by a Test Case
Manager (TCM).

The TCM is not a separate program, but instead is linked with user-supplied test code and the
API library to produce an executable test case. There is a separate TCM module for each API
that is supported by TETware. Each API is described in a separate chapter in this guide.
Instructions for linking a test cases with an API and its TCM are presented in the chapter which
describes the API.

The common functionality provided by each TCM is described in the chapter entitled *‘ The Test
Case Manager’’ later in this guide.

2.4.3 APIl-conforming test cases

An API-conforming test case is constructed by grouping together test functions (called test
purposes) that test specific system features. These test purposes take advantage of support
functions provided by the TETware APIs and are invoked by the TETware TCMs.

When you write atest case which uses a TETware API, you only need to supply the test purpose
code that actually performs the required test operation. When a test case is executed, the
TETware TCM calls each test purpose function that you write and ensures that each test purpose
registers exactly one test result. A test purpose function may call one or more API functions
during its execution and, when execution is finished, it returns control to the TCM.

1. The purposes of the various types of tool are described in alater section of this chapter.

Page 4 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

This relationship isillustrated through the following picture:

TCM calls
Test
purpose
AP calls
supplied by TETware supplied by the

test suite author

Figure 1. Relationship between TCM, test purpose function and API

The picture shows that the TCM calls test purpose functions, and that these functions in turn may
call APl functions. The API performs functions such as fetching configuration variable settings
and writing messages into the journal .

Test purposes within a test case can be grouped together into invocable components. This
grouping ensures that a set of test purposes is always executed together and in the correct
sequence. In most cases there is no practical limit to the number of test purposes that can be
grouped in an invocable component and there is no practical limit to the number of invocable
components that can be grouped within a single test case. However, there are (substantial) limits
for these numbers when an APl which supports distributed testing is used. These limits are a
byproduct of the synchronisation between parts of a distributed test case which must be
performed by the API; details of this synchronisation are presented in the chapter entitled *‘ Test
case synchronisation’’ in the TETware User Guide.

Descriptions of the functionality provided by each APl can be found in later chapters of this
guide.

2.4.4 Non API-conforming test cases

This section describes how t cc processes a non APl-conforming test case or tool. The
processing described here applies equally to build, exec and clean tools as well asto test cases.

When executing a non API-conforming test case, t cc assumes that the test case writes journal
output to st dout and st der r and regards the whole execution as if it were a single invocable
component containing a single test purpose. When t cc executes the test case, it redirects test
case st dout and st derr toafilethat it creates. When processing atest case in execute mode,
t cc generates the TCM start line that would be emitted by an API-conforming test case, and a
result code based on the exit status of the test case. A zero exit status produces a result of PASS
and any other value produces aresult of FAI L. When processing of the test caseisfinished, t cc
copies the captured output to the journal file.

t cc uses the values of certain configuration variables to determine whether it should execute test
cases as API-conforming or non API-conforming test cases. The same variablesareused by t cc
to determine how it should execute the build tool and the clean tool. Different values for these

May 2000 Page 5
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

variables can be specified in each of t cc’s selected modes of operation if required.

The value of the TET_API _COVPLI ANT configuration variable specifies whether or not a test
case or tool uses the API. The value of the TET_OUTPUT_CAPTURE configuration variable
specifies whether or not t cc should capture test case output and record this output in the journa
file.

For convenience, when TET_API _COMPLI ANT is not defined, it defaults to the inverse of
TET_OUTPUT_CAPTURE. So, to indicate that you are executing non API-conforming test
cases, or are using a non API-conforming build tool or clean tool, you should set
TET _OUTPUT _CAPTURE to True and leave TET_API _COVPLI ANT undefined. For more
infformation on the use of this these configuration variables, see the section entitled
‘* Configuration variables which modify TETware's operation’’ later in this guide.

2.5 Test suite structure
2.5.1 Introduction

TETware imposes minimum structural requirements on test suites. However, some specific files
and utilities must be present. The formats of the data files described in the following sections are
described in later chaptersin this guide.

2.5.2 Required filesand utilities
The following files and utilities must be included with each test suite:

Build tool
Thistool isrequired when atest suite isto be processed in build mode.

The build tool is invoked when t cc processes a test case in build mode. In Distributed
TETwareit isinvoked on every system on which the test caseisto be processed. The build
tool may either be an API-conforming or a non-API conforming tool.

This tooal is used to perform the functions that are required to build the test case and, if the
test suite makes use of an alternate execution directory, install the test case in its location
below that directory. It is common to use nake for this purpose. Since make is a non-
API conforming build tool, it is necessary to set the TET_OUTPUT_CAPTURE variable to
Tr ue in the build mode configuration.

If a build tool is required to access configuration variables for any reason, it must be an
API-conforming tool since non-API conforming tools cannot access configuration
variables.

Clean tool
Thistool isrequired when atest suiteis to be processed in clean mode.

The clean tool is invoked when t cc processes a test case in clean mode. In Distributed
TETwareit isinvoked on every system on which the test case is to be processed. The clean
tool may either be an API-conforming or a non-API conforming tool.

This tool is used to perform the functions that are required to clean up after atest case has
been built and/or executed. In the trivia case where it is only required to remove the
executable file that is created during the build stage, it is common to use r mas the clean
tool. When this is done, it is necessary to set TET _CLEAN FILE to —f and

Page 6 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

TET_OUTPUT_CAPTURE to Tr ue in the clean mode configuration.

If a clean tool is required to access configuration variables for any reason, it must be an
APl-conforming tool since non-APl conforming tools cannot access configuration
variables.

Configuration variable settings

There is one configuration file for each of t cc’s modes of operation. When Distributed
TETware s used, there is one of these files on the local system? and on each remote system
on which test cases are to be processed. Each configuration file contains zero or more
configuration variable assignments. Some of these variables affect the way in which t cc
processes test cases, whereas other variables are meaningful to the test cases being
processed. The API provides a mechanism by which variables defined in the configuration
file for the current mode of operation may be accessed by test cases and tools.

By default the names of these files are tetbuild.cfg, tetexec.cfg and
t et cl ean. cf g, corresponding to build, execute and clean modes, respectively. These
files are located in the test suite root directory on each system. If an aternate execution
directory is specified, the execute mode configuration file may (optionally) be located in
that directory instead.

The format of configuration files and the meanings of the significant configuration variables
are described in the chapter entitled ** Configuration files” later in this guide.

Distributed configuration variable settings

When Distributed TETware is used, there is afile on the local system containing variables
which specify the locations of test suite files and directories on remote systems. In
addition, this file may be used to specify variables that are required by the network
transport that is used for interprocess communication. Variables in the distributed
configuration file cannot be accessed by test cases and tools.

The name of this file is tetdi st. cfg and the file is located in the test suite root
directory on the local system.

The format of the distributed configuration file is described in the chapter entitled
‘“*Configuration files'’ later in this guide.

Thisfileis not required when TETware-Lite is used.

Test scenario definitions

Each test suite must provide at least one test scenario file. This file contains the definitions
of one or more test scenarios. Many scenario files provide a scenario called al | which
typically causes all test cases and invocable components in atest suite to be processed. By
default, the name of this file ist et _scen and the file is located in the test suite root
directory on the local system.

The format of the scenario file is described in the chapter entitled ** The scenario file'” later
in this guide.

2. That is: the system on which t cc isinvoked.

May 2000 Page 7
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Systems definitionsfile

In Digtributed TETware, this file is used to define the mappings of logical system
identifiers to physical machines. The name of thefileissyst ens and thefileislocated in
the tet-root on each system.

The format of the systems definitions file is described in the section entitled ‘*System

definitions”’ later in this guide.

Thisfileis not required when TETware-Lite is used.

Results directory

Each test suite has a directory called r esul t s which is located in the test suite root
directory. This directory is created by t cc if it does not exist. t cc creates a unique
subdirectory in this directory on each run, into which it places the journa file and a
hierarchy of files requested to be saved by the user.

2.5.3 Optional filesand utilities
Test suite authors may provide optional files and utilities for use with test suites as follows:

Prebuild tool

When this tool is specified, it isinvoked beforet cc processesatest casein build mode. In
Distributed TETware it is invoked only on the master system® when a test case is to be
processed on more than one system. The prebuild tool should always be a non-API
conforming tool.

When files for aremote or distributed test case are maintained only on one system, this tool
might be used to propagate these files to the other participating systems before the test case
is built.

Build fail tool

When this tool is specified, it is invoked after a prebuild or build tool fails* when t cc
processes a test case in build mode. In Distributed TETware it is invoked on every system
on which the test case is to be processed. The build fail tool should always be a non-API
conforming tool.

One possible use for this tool might be to provide a skeleton test case that indicates that the
rea test case was not built successfully by returning a result of UNI NI TI ATED for each
test purpose that isto be executed.

Exec tool

When this tool is specified, it is is invoked when t cc processes a test case in execute
mode. In Distributed TETwareit isinvoked on every system on which the test case isto be
processed.

3. A test case that is to be processed on more than one system is specified in the scenario file within the scope of a
renot e or di st ri but ed directive. The first system which appears in the system list which is associated with
this directive is known as the master system.

4. That is: the tool cannot be executed, the tool is timed out or returns non-zero exit status, or an API-conforming
build tool does not report PASS.

Page 8 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Possible uses for this tool include:
— setting up environment variables before atest case isinvoked
— running a compiled test case under the control of a debugger
— specifying which command interpreter® to use
— in Distributed TETware, attaching the test case to a controlling terminal.

Result codesfile

TETware utilities which perform result code processing use code definitions which are
contained in an internal table. Initially this table contains entries for the result codes which
are defined in |EEE Standard 1003.3-1991. Test suite authors may provide files containing
additional result codes which are to be added to the table. By default the name of these
files is tet _code and the files may be located in the tet-root and test suite root
directories.

The format of the result codes file is described in the section entitled ‘ Result codes'’ later
in this guide.

Treatment filtersand report writers

TETware produces a journd file in a well defined format that has been designed so as to
enable easy processing by treatment filters and report writers. Test suite authors may wish
to provide treatment filters that produce reports in formats which are appropriate for the
type of testing that is to be undertaken. The format of the journa file is described in the
chapter entitled *‘ Test reporting and journaling’* later in this guide.

5. Such asper| or one of the shells; useful when the Shell, Korn Shell or Perl APIs are used on Win32 systems and
other systemswherethe #! script interpreter convention is not implemented.

May 2000 Page 9
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 10 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

3. TheTest Case Controller

3.1 Introduction

This chapter describes the operation of the TETware Test Case Controller t cc. A manual page
for thet cc command is presented in the TETware User Guide.

t cc accepts user-specific and test suite-specific configuration options and enables the user
control of test sessions. This control includes the building, execution, and clean up of test cases.
In addition to the control of test sessions, t cc includes functionality to support internal
mechanisms essential to the operation of TETware. These include managing interaction with the
TCM, processing of results and the removal of temporary files.

The TETware-Lite version of t cc performs all of these operations itself on asingle system. The
Distributed version of t cc does not perform these operations itself; instead it sends requests to
server (or daemon) processes which perform the required operations on each system on which
test cases are to be processed. Unless stated to the contrary, the information presented in this
chapter applies equally to botht cc versions.

3.2 Modes of operation

t cc processestest casesin one or more of the following modes of operation:
Build mode trandates source test casesinto executables.

Execute mode loads and executes test cases.

Clean mode removes unwanted files.

These modes of operation are selected by using options on thet cc command line.

The way in which t cc processes test cases in each mode of operation is affected by the settings
of certain variables in the configuration for that mode. Readers should be aware that there is
some interaction between the settings of certain variables in each mode. For example, if
TET_PASS TC NAME is not defined, it takes its default value from the value of
TET_OUTPUT_CAPTURE. Refer to the chapter entitled ** Configuration variables’ elsewhere in
this guide for full details of the meanings of each configuration variable, their default values and
the interactions between them.

3.3 Initial processing
Regardless of the mode selected, t cc performs the following actions before processing any test
cases.

1. tcc records the value of the TET _ROOT environment variable, and also those of the
TET_SUl TE_ROOT, TET_EXECUTE, TET _TMP_DIR and TET_RUN environment
variables if present.

2. 't cc processes options specified on the command line.

3. tcc determines the name and location of the test suite to be processed. The top of the
directory subtree in which the test suite resides becomes the test suite root directory for
the current t cc invocation.

May 2000 Page 11
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

10.

11.

12.

13.

14.

15.

16.

t cc determines the location of the alternate execution directory if one has been
specified, either by means of the —-a command-line option or by setting the
TET _EXECUTE environment variable.

t cc readsin the configuration variables that are specified for each of the selected modes of
operation. In Distributed TETware, this stage reads variables from the configuration files
on the local system and establishes the master configurations for each of the selected modes
of operation.

t cc reads in the scenario file (if one has been specified), checks the syntax of all the
scenario specifications and identifies the chosen scenario.

In Distributed TETware, t cc identifies all the system IDs mentioned in the chosen
scenario.

If aruntime directory has been specified using the TET _RUN environment variable, t cc
copies the test suite root directory hierarchy to a position below the runtime directory. The
directory subtree thus created becomes the new test suite root directory. In Distributed
TETware this processing in only performed on the local system.

In Distributed TETware, when remote systems are mentioned in the chosen scenario or the
network transport makes use of distributed configuration variables, t cc reads in variables
from the distributed configuration file on the local system.

t cc creates the directory that is to contain the journa file and any saved files. In
Distributed TETware this directory is only created on the local system.

t cc installs signal traps to ensure that an orderly shutdown is performed in the event that
an unexpected signal is received.

In Distributed TETware, t cc starts up the synchronisation daemon and execution results
daemon on the local system, and establishes a connection with the TCC daemon on each
system mentioned in the chosen scenario.

In Didgtributed TETware, if a runtime directory has been specified using a
TET_REMhnn_TET_RUN distributed configuration variable for a particular system, t cc
copies the test suite root directory hierarchy on that system to a position below the runtime
directory. The directory subtree thus created becomes the new test suite root directory for
that system.

In Distributed TETware, t cc creates a saved files directory on each remote system that is
mentioned in the chosen scenario.

t cc readsin any user-supplied result codes files, adds the user-defined results codes to the
internal table containing standard results codes and makes the table available to other
TETware components that need it. In Distributed TETware, user-supplied result codes files
are only provided on the local system; t cc propagates the complete results code table to
each remote system that is mentioned in the chosen scenario after any user-defined result
codes have been added to the table.

If rerun or resume mode have been selected, t cc processes the old journa file that was
produced by the previoust cc invocation and modifies the chosen scenario accordingly.

Page 12 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

17. If the -y and/or —-n command-line options have been specified, t cc prunes the chosen
scenario to remove test cases not selected by these options.

18. t cc checks that each timed loop specified in the chosen scenario contains at least one test
case to process.

19. If execute mode has been selected and TET_EXEC | N PLACE isfase, t cc creates the
temporary directory below which test case execution will take place. In Distributed
TETware the temporary directory is created on each remote system that is mentioned in the
chosen scenario.

20. If ajournal file has been specified on the command-line, t cc verifiesthat it does not exist.

21. tcc telsthe user the name of the journa file being used and writes a start-up message to
the journal.

22. In Distributed TETware, t cc performs a configuration variable exchange for each of the
selected modes of operation with each remote system mentioned in the chosen scenario.
This stage establishes the per-system configurations for each of the selected modes of
operation.

23. t cc reports the configuration variables for each of the selected modes of operation to the
journal file. In Distributed TETware, t cc reports the per-system configurations for each of
the systems mentioned in the chosen scenario, together with the distributed configuration
variables.

24. In Distributed TETware, t cc sends certain communication variables to each system
mentioned in the chosen scenario. These variables are put in the environment that is
inherited by test cases and tools on that system.

If any of these operations should fail, t cc prints a diagnostic message and exits with non-zero
status. When tcc encounters a non-fatal error while it is processing scenario lines or
configuration variable assignments it does not exit immediately the first such error is identified.
Instead, t cc attempts to perform a reasonable amount of additional processing in order to enable
any further non-fatal scenario or configuration errors to be reported as well.

Diagnostic messages which are generated before the journa file has been opened are printed on
the standard error stream. A few diagnostic messages which are generated after the journal file
has been opened may be printed to the journal file; however, most messages are printed on the
standard error stream.

If al of these operations are successful, t cc processes the chosen scenario according to the
selected modes of operation. The following sections describe this processing in further detail.

3.4 Build mode processing

When atest suite is provided in source form, t cc is able to build executable files from the source
code of each test case. There is no requirement that test suites be provided in source form.
Therefore, use of build functionality is optional.

In build mode, t cc builds each test case in the specified scenario. In Distributed TETware it is
possible to specify that processing takes place on more than one system at once.

May 2000 Page 13
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The processing is as follows:

1
2.

t cc deliversaBuild Start message to the journal.

t cc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

If a TET_PREBUI LD _TOCL is specified in the build mode configuration, t cc executes
the prebuild tool in the test case source directory with arguments of
TET_PREBUI LD _FI LE and the name of the test case, with output capture mode enabled.
If the prebuild tool cannot be executed or returns a non-zero exit status, subsequent actions
are not performed and processing resumes with the execution of the build fail tool as
described below. In Distributed TETware, when more than one system is specified, the
prebuild tool is only executed on the master system (that is: the first system mentioned in
the system list).

t cc executes the build tool in the source directory of the test case with arguments of
TET_BUI LD_FI LE and, if TET_PASS_TC_NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the build tool is executed with output capture mode
enabled. If the build tool cannot be executed, subsequent actions are not performed and
processing resumes with the execution of the build fail tool as described below. In
Distributed TETware the build tool is executed on each participating system.

If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-ordersand copies the contents of the results file to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

If the exit status of the build tool is non-zero or TET_API _COMPLI ANT is true and the
build tool did not report a PASS result, the build is considered to have failed and, if
execute mode has been selected, arrangements are made not to process the test case in
execute mode. If the build failed and a TET_BUI LD FAI L_TOOL is specified in the
build mode configuration, t cc executes the build fail tool in the test case source directory
with arguments of TET_BUI LD _FAI L_FI LE and the name of the test case, with output
capture mode enabled. In Distributed TETware the build fail tool is executed on each
system if the build operation failed on any of the participating systems.

t cc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

t cc writesaBuild End message to the journal.

Page 14 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in build mode:

Start

Lock

TET_PREBUI LD TOOL?
Not defined Defined

Prebuild

: Yes Prebuild
Build QK?
No
Build No
exec OK?
Yes
Journal
Build No
)
Yes
Notdefined —=r"py (b FAIL TOOL?
Defined
Build Fail

Unlock

End

Figure 2. Test case processing in build mode

If the user has specified an alternate execution directory, t cc provides that information to the
build tool via a communication variable. The test suite author should ensure that the build tool

May 2000 Page 15
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

copies al thefilesthat are required for test case execution to the alternate execution directory.

3.5 Execute mode processing

In execute mode, t cc executes each test casein the specified scenario.

In Distributed TETware it is possible to execute instances of a non-distributed test case on more
than one system at once, or co-operating parts of a distributed test cases on more than one system
at once.

The processing is as follows:

1
2.

t cc writesa Test Case Start message to the journal.

t cc obtains a lock in the test case execution directory. If TET_EXEC | N_PLACE is
false, the lock is shared; otherwise, the lock is exclusive. In Distributed TETware locks are
obtained on each participating system.

If TET_EXEC | N PLACE isfalse t cc creates atemporary directory in which execution
can safely be performed, and copies the test case execution directory subtree to the location
below the temporary directory. In Distributed TETware temporary directories are created
and test case files are copied on each participating system.

If TET_EXEC | N _PLACE isfalse, t cc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

If TET_API _COWPLI ANT is fase, t cc writes the TCM Start, IC Start and TP Start
messages to the journal that would have been written by an API-conforming test case or
tool.

If TET_EXEC TOOL is defined, t cc executes the exec tool with TET_EXEC FI LE, the
test case name and the numbers of the invocable components to be executed as arguments,
otherwise, tcc executes the test case directly with the numbers of the invocable
components to execute as arguments. If TET_EXEC | N_PLACE is true, this execution
takes place in the test case execution directory; otherwise, execution takes place in the
temporary directory. If TET_OUTPUT_CAPTURE is true, execution takes place with
output capture mode enabled. In Distributed TETware execution takes place on each
participating system.

If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-orders and copies the contents of the resultsfile to
the journal. If any test purpose has not generated a result, t cc supplies a result of
NORESULT. If TET_API _COMPLI ANT isfalse, t cc generates a TP Result line based on
the exit status of the test case or exec tool, together with the IC End line that would have
been generated by an API-conforming test case or tool.

In Distributed TETware, captured output and the results file contents are gathered from
each participating system and entered in the journal on the local system. When Distributed
TETware executes a non-distributed test case on more than one system, results file contents
from each system are re-ordered separately and entered in the journal file in turn. When
Distributed TETware executes an API-conforming distributed test case, results file contents
are not re-ordered; instead, results file contents other than results lines are entered in the
journal file in chronological order. A single consolidated result line is generated for each
test purpose by arbitrating between the partial result lines gathered from each system and is
entered in the journal.

Page 16 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8. tcc copies each of the files specified by TET _SAVE FI LES to the saved files directory
hierarchy. In Distributed TETware, if TET_TRANSFER _SAVE_FI LES is fasg, files are
copied to the saved files directory hierarchy on each participating system. However, if
TET_TRANSFER_SAVE_FI LES is true, files are copied from each system to a per-
system saved files directory hierarchy on the local system. Different values of
TET_TRANSFER SAVE_FI LES may be specified for each remote system if required.

9. If TET_EXEC | N PLACE istrue, t cc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

10. If TET_EXEC | N_PLACE isfase t cc removesthe temporary execution directory.
11. t cc writesaTest Case End message to the journal.

May 2000 Page 17
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in execute mode:

Start

Lock

TET_EXEC | N _PLACE?
True False

Copy

Unlock

Yes No

Journal

Savefiles

TET_EXEC | N_PLACE? True

False

Unlock

End

Figure 3. Test case processing in execute mode

Page 18 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit

TETware Programmers Guide

3.6 Clean mode processing

Users can request t cc to remove unwanted files following test processing sessions. Clean mode
processing does not affect the results of previous test runs.

In clean mode, t cc cleans up each test case in the chosen scenario. In Distributed TETwareit is
possible to specify that processing takes place on more than one system at once.

The processing is as follows:

1. tcc writesaClean Start message to the journal.

2. tcc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

3. tcc executes the clean tool in the source directory of the test case with arguments of
TET_CLEAN FI LE and, if TET_PASS_TC NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the clean tool is executed with output capture mode
enabled. In Distributed TETware the clean tool is executed on each participating system.

4. |If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-ordersand copies the contents of the results file to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

5. tcc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

6. t cc writesaClean End message to the journal.

May 2000 Page 19

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in clean mode:

Start

Lock

Clean

Clean
exec OK?

Yes No

Journal

Unlock

End

Figure 4. Test case processing in clean mode

3.7 Rerun and resume processing
3.7.1 Introduction

In addition to the normal processing described previously, t cc can rerun or resume processing of
a previous test run. When you invoke t cc with the rerun or resume options, you specify the
name of the scenario and journal file from the previous run, and alist of operation modes and/or
test purpose result codes which are used to select test cases for reprocessing.

When either of these options are specified, t cc uses the list of operation modes specified with
the option to select test cases for reprocessing. However, the selected test cases are always
reprocessed according to the modes of operation selected for the current test run.

Whent cc isinvoked in rerun or resume mode, it extracts the command-line options used for the
previous test run that were recorded in the old journal file. If the -y or —n options were used to
select or reject particular test cases during the previous run, test cases that were not selected are
removed from the scenario before the processing described below is performed. Then, after this
processing is performed, test cases that are not selected as a result of any —y or —n options
specified for the current test run are removed from the scenario before it is processed.

Page 20 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

3.7.2 Resume processing
3.7.2.1 Description

When t cc isinvoked with the resume option it analyses the old journal file, searching for result
codes and/or completion statuses that match one of a user supplied set. The first such result code
or completion status that is found identifies the resume point in the scenario.

When t cc finds the resume point as a result of searching the old journal file, it stores certain
parameters which are used to identify the resume point when t cc processes the scenario, as
follows:

1. Theresume point isidentified by a particular test case that is to be processed in a particular
mode in the chosen scenario.

2. If the scenario is to be resumed at a particular test case in execute mode, the resume point
is further identified by a particular IC number within that test case.

3. If the scenario is to be resumed at a particular I1C in execute mode and the test case which
contains this IC is within the scope of one or more looping directives,® the resume point is
further identified by the iteration counts of each of the enclosing looping directives.

When t cc isinvoked in resume mode, it steps through the scenario without processing any test
cases until the resume point is found. Once the resume point is found, t cc processes the rest of
the scenario according to the selected modes of operation in the usual way.

When you invoke t cc with the resume option, you specify the search criteria as a (comma-
separated) list of result code names and operation mode key letters which select test cases as
follows:

List element Journal lines matched

result-code-name | Test Purpose Result lines giving execution results (not build or clean
results) with the equivalent result code number.

b Build End lines which contain a non-zero completion status; and, Test
Purpose Result lines giving build results with any non-zero result code
number.

e Test Case End lines which contain a non-zero completion status; and,

Test Purpose Result lines giving execution results with any non-zero
result code number.

c Clean End lines which contain a non-zero completion status; and, Test
Purpose Result lines giving clean results with any non-zero result code
number.

The names of test cases which occur before the resume point (and are therefore no longer
required) are removed from the scenario once the resume point has been identified.

6. Thesedirectivesare: ther epeat andti ned_| oop directives.

May 2000 Page 21
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

When you invoke t cc with the resume option, you must select the same modes of operation that
were selected for the previous test run. It is not possible to resume processing of a scenario using
an old journa file that was itself produced by a previous invocation of t cc with the resume
option.

3.7.2.2 Processing apar al | el directivein resume mode

If the resume point is found within the scope of a par al | el directive, the resume point is
moved back to the start of the par al | el directive. When ETET compatibility mode isin effect
it is possible for a resume point to be within the scope of several par al | el directives; in this
case the resume point is moved to the start of the outermost enclosing par al | el directive. It
follows, therefore, that if an entire scenario consists of sequences of test casesthat are executed in
paralel, there is no benefit to be gained by processing the scenario in resume mode since any
resume point that isidentified is moved back to the start of the scenario.

3.7.2.3 Processing ar andomdirective in resume mode

If the resume point is found within the scope of ar andomdirective, the resume point is moved
back to the start of that r andomdirective. However, it should be understood that the test case
selection which takes place when t cc processes a r andom directive in execute mode is, by
definition, random. Thus it is unlikely that t cc will make the same selections after the resume
point has been found as the selections that were made during the previous test run.

3.7.2.4 Processingat i med_| oop directive in resume mode

When t cc analyses the old journal file in resume mode, it records the number of times that a
timed loop starts in execute mode before the resume point is found.

When t cc processes ati ned_| oop directive in execute mode, it performs a test before the
start of each loop iteration to determine whether or not the loop should be restarted. Ordinarily
thistest only compares the loop processing time against the time specified with the directive.

However, if thisisthe only test that is performed before the resume point is found, the possibility
exists that a timed loop might iterate a very large number of times before the specified time
expires, causing the system to thrash and creating a huge volume of unnecessary journa output.
In order to prevent this, the test that is performed before the start of each loop iteration when the
resume option is selected and the resume point has not yet been found also checks to ensure that
the loop iteration count is less than the count which is derived from the old journal file.

3.7.3 Rerun processing
3.7.3.1 Description

The operation of t cc when the rerun option is specified is similar to that of the resume option
with the exception that only invocable components with result codes matching one of the user
supplied set will be processed according to the selected mode of operation.

The names of test cases which are not selected by the rerun option are removed from the scenario
once al the test cases which are to be rerun have been identified.

When you invoke t cc with the rerun option, you need not select the same modes of operation
that were selected for the previous test run. It is possible to rerun a scenario using an old journal
file that was itself produced by a previous invocation of t cc with the resume or rerun option.

Page 22 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

3.7.3.2 Processing ar andomdirective in rerun mode

As indicated previoudly, after t cc has identified the test cases that must be reprocessed in rerun
mode, it removes al the other test case names from the chosen scenario. This means that only
test cases that match the rerun selection criteria remain within the scope of ar andomdirective.

Thus, when t cc chooses atest case for processing in execute mode from the test cases within the
scope of a random directive, the choice is made from the set of test cases that match the
selection criteria. However, because the choice is made at random, it should be understood that it
is unlikely that t cc will choose the same test case when processing a particular instance of the
r andomdirective as was chosen in the previous test run.

3.7.3.3 Processingat i med_| oop directivein rerun mode

Whent cc analysesthe old journal file in rerun mode, it records the number of times that atimed
loop starts in execute mode.

Theway that t cc processesat i med_| oop directive in rerun mode is similar to that described
above for resume mode. However, the difference is that the test performed before the start of
each loop iteration in execute mode always takes account of both the loop execution time and the
loop iteration count.

3.8 Communication variables

t cc must be able to communicate with the other tools it executes (build tool, clean tool, exec
tool, and the test cases). t cc does this by using communication variables. Communication
variables are environment variables, so environment variables starting with TET_ are reserved
for use by TETware. The communication variables defined include:

TET_ACTIMITY

The number of activities performed thus far by the TCC. Activities include
executions of build tool, clean tool, exec tool, and test cases.

TET_CODE The path name of the current result code definition file.
TET_CONFI G
The path name of the current configuration variable file.

TET_EXECUTE

The path name of the top of the alternate execution directory hierarchy if one has
been specified.

TET_ROOT The path name of the TETware root directory.
TET_RUN The path name of the runtime directory if one has been specified.

TET_SUl TE_ROOT

The path name of the aternate location in which test suite root directories reside,
if one has been specified.

May 2000 Page 23
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

3.9 Journal entries

t cc manages updates to the journal file. Upon completion of a test case build, execution or
clean, the results are transferred from a temporary file into the journal file. During this transfer,
t cc ensuresthat each executed test purpose generated one (and only one) result.

The way in which t cc processes an execution results file is described in the section entitled
“‘Result file processing’’ elsewherein this guide.

3.10 Locking

t cc employs a locking system which prevents concurrently executing TCCs from interfering
with each other’s processing of test cases. In the following description, ‘‘execution directory’’
means the execution directory under the alternate execution directory hierarchy if oneisin use,
otherwise the source directory. The discussion applies equally to master and slave systems.

In build and clean modes, t cc obtains an exclusive lock in both the source and alternate
execution directories as follows;

o« Afilet et | ock iscreated in the source directory, using an atomic operation which will
fail if afile or directory of that name already exists. If the file cannot be created the locking
operation fails.

« If an alternate execution directory hierarchy isin use, afilet et | ock is created in the
execution directory in the same manner. If the file cannot be created, the lock is removed
from the source directory and the locking operation fails.

When the build or clean has completed the lock files are removed; first from the alternate
execution directory if thereis one, then from the source directory.

In execute mode with TET_EXEC | N PLACE true, t cc obtains an exclusive lock in the
execution directory using the same method as for build mode.

In execute mode with TET_EXEC | N PLACE false, t cc obtains a shared lock in the execution
directory asfollows:

e A directory tet | ock is created in the execution directory, with read and write
permission for all users, using an atomic operation which will fail if afile or directory of
that name already exists. If the directory cannot be created because a plain file exists, the
locking operation fails. If the directory cannot be created because a directory already
exists, the failureisignored.

o A unique file is created in the directory t et _| ock. If the file cannot be created because
t et _| ock either does not exist or isaplain file, then the locking attempt is re-started.

When the execute has completed the lock isremoved as follows:
« Thefile created when the lock was obtained is removed from thet et _| ock directory.

e Thet et _I| ock directory is removed, using an operation which will fail if the directory is
not empty. Failure of this operation isignored.

Page 24 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

3.11 Usingt cc to process atest suite on aread-only file
system

When t cc processes a test suite which resides on a read-only file system, it is unable to obtain
the locks described in the previous section. However, if an attempt to obtain a lock fails because
the file system is read-only, t cc ignores the failure. Thus, it is possible to uset cc to process a
test suite which is provided on aread-only file system. It is possible that such afile system might
be mounted read-only from a central file server or might reside on a read-only medium such as a
CD ROM.

If the read-only file system contains only source files, t cc must first copy the test suite source
files to aruntime directory and build the test suite there before it can be executed. The TET_RUN
environment variable may be used to instruct t cc to perform this operation. In Distributed
TETware the TET _REMhnn_TET _RUN distributed configuration variables may be used to
specify runtime directories on remote systems.

If the read-only file system contains executable test suite files, the TET_RUN environment
variable may be used in the same way as for a test suite provided in source form. Alternatively,
when there are no remote systems the TET_TMP_DI R environment variable may be used to
specify atemporary directory location on a writable file store and the test suite can be processed
in execute mode with the TET_EXEC | N_PLACE configuration variable set to Fal se. When
this is done it is necessary to invoke t cc with the - i option to specify an alternate location for
the results directory.

May 2000 Page 25
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 26 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

4. Thescenariofile

4.1 Introduction

When t cc processes test cases, it does so by reading instructions contained in a test scenario.
Each test suite should include a scenario file which contains one or more test scenarios. This
chapter describes the format of the scenario file and the language that is used to specify a test
scenario.

When you invoke t cc, one of the parameters that you can supply is the name of the scenario to
process. If you do not specify this parameter, t cc processes a scenario called al | .
Alternatively you can specify a simple test scenario independent of any scenario file by means of
one or more —| command-line options.

4.2 Thescenario language
4.2.1 Introduction

A scenario consists of a sequence of elements. In most cases each element is separated from the
next by white space. However, in certain cases, it is possible for two elements to appear together
without being separated by white space. When this is done, the second element is said to be
attached to thefirst one; the significance of this type of construct is described in alater section.

The first element in the scenario is the scenario name. Subsequent elements in the scenario are
directives and simple elements.

A summary of the scenario language is presented in the appendix entitled ** Scenario language
syntax summary’’ at the end of this guide.

4.2.2 Scenariolines

Conceptualy, a scenario consists of a sequence of elements on a single line. However, in
practice it is usually necessary to divide up the elements over several linesin order to limit each
line to a manageable length. t cc silently imposes a maximum length of 1024 characters
(including the newline) on a single physical line read from the scenario file. However, the
number of elements that can appear in a scenario and the number of scenarios that may be
specified in ascenario file are limited only by the amount of memory that is availabletot cc.

The start of a scenario is indicated when an element appears at the start of aline. Continuation
lines are indicated by placing white space at the start of each line. A comment isintroduced by a
character and continues until the end of the line. Blank lines and comments are ignored.

For example, the following scenario:
scenario-name element, element, ...
isidentical in meaning to:

scenario-name
element,
element,

When continuation lines are used in a scenario, it should be understood that the newline character
which ends each line is regarded as part of the white space which separates one scenario element

May 2000 Page 27
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

from the next. Therefore it is not possible to split an individual element over more than one line
by using continuation lines.
4.2.3 Thescenario name

The first element in the scenario is the scenario name. A scenario name may contain between 1
and 31 characters. Characters in the scenario hame are taken from the POSIX portable character
set. The first character in the name may be an aphabetic character or a _ character (an
underscore). Each of the other characters in the name may be an aphanumeric character or one
of the_- ./ characters (an underscore, a hyphen, a period and aforward slash).

4.2.4 Simple scenario elements
4.2.4.1 Introduction

Each simple scenario element is complete in itself and has no effect on other elements in the
scenario.

When reading the descriptions that follow, it should be understood that a scenario directive is
anything between apair of . characters.

For example:
: directive:

In addition, each reference to a directive in these descriptions applies equally to a directive
group. The meanings of the directives themselves and the concept of a directive group are
described in later sectionsin this chapter.

All the simple elements are supported in both TETware-Lite and Distributed TETware. The
simple scenario elements are described in the following sections.

4.2.4.2 Scenarioinformation line
A scenario information line is atext string enclosed by a pair of " characters (double quotes).
For example:

"this is a scenario information |ine"

Whent cc processes a scenario information line, it simply prints the string (including the double
quotes) to the journal.

A scenario information line is treated as a single scenario element; therefore it cannot be split
over more than one line by using continuation lines. A scenario information line is the only
simple scenario element which may contain embedded spaces.

4.2.4.3 Test case name

A test case name may appear by itself or may be attached to a directive. When atest case name
appears by itself, it startswith a/ character.

For example:

| test-case-name

Page 28 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

When atest case name is attached to a directive, it starts with a @ %quence.7 There must be no
space between the directive’ sterminating ;. character and the @character.

For example:
: directive: @ test-case-name

A test case name may have an optiona list of invocable components (or I C list) associated with
it. Whenan IC list is specified, it is enclosed between { and } characters and attached to the end
of thetest case name. There must be no space between the test case name and the IC list.

For example:
/ test-case-name{ ic-list}
or:
. directive: @ test-case-name{ ic-list}

AnIC list consists of one or more numbers or number ranges. Each number or number rangeis
separated from the next by a, character (a comma). A number range consists of two numbers
separated by a — character (a hyphen). A number in the IClist refers to a single invocable
component in the test case. A number range refers to a range of invocable components in the test
case. AnIC list must not contain embedded spaces.

When a test case hame appears in a scenario, t cc processes the test case according to the
selected modes of operation. When t cc processes a test case name with an IC list in execute
mode, it passes the IC list as an argument to the test case or exec tool. When the TCM receives
the IC list argument, it only calls the invocable components that are specified in the list. When
no IC list argument is specified, the TCM calls all the invocable componentsin the list.

For example, if atest caseis specified in the scenario as:
/ test-case-name{ 2, 4, 7-10}

t cc passes an argument of 2, 4, 7-10 when it executes the test case. This argument instructs
the TCM to call only the user-supplied test purpose functions specified by invocable component
numbers 2, 4, 7, 8, 9 and 10. The TCM prints a diagnostic if an invocable component specified
explicitly inthe IC list is not defined in the test case.

A test case nameis always interpreted relative to the test suite root directory.

4.2.4.4 Referenced scenario name

The name of another scenario (also known as a referenced scenario name). A referenced
scenario name may appear by itself or may be attached to a directive. In each case the scenario
name startswith a™ character.

7. Note that the @character is used to distinguish between the attached / test-case-name described here and the
attached / file-name that is described in alater section.

May 2000 Page 29
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

For example:
" scenario-name
or:
: directive: ~ scenario-name

When a referenced scenario name appears by itself, t cc processes each of the elements
contained in the named scenario asif they had appeared where scenario-name appears.

When a referenced scenario name is attached to a directive, t cc processes each of the elements
contained in the named scenario within the scope of the directive to which the scenario-name is
attached.

4.2.4.5 Filename
The name of afile which contains alist of test case names (also known as an include file name).
A file nameis always attached to a directive and startswith a/ character.
For example:
. directive: / file-name
Note that there is no space between the directive’ sterminating : character and the/ character.

The named file should contain alist of test case names and/or scenario information lines, one per
line. Linesin the file should not contain directives or referenced scenario names. Leading white
space on aline is permitted but ignored. Comments in the file are introduced with a# character
and end at the end of theline. Blank linesin the file and comments are ignored.

Aninclude file is used to associate alist of test case names and/or scenario information lines with
a particular directive. When a file name appears in a scenario, t cc processes each test case and
scenario information line listed in the file within the scope of the directive to which the file name
is attached, according to the selected modes of operation. A file name is always interpreted
relative to the test suite root directory.

4.2.5 Scenario directives
4.25.1 Introduction

A directive is a scenario element which has scope. It affects the way in which t cc processes
other elements within its scope.

Each directive is enclosed between apair of : characters, thus:
: directive:

A directive may have one or more par ameter s associated with it. Parameters also appear within
the pair of : characters and are separated from the directive keyword and each other by a ,
character (a comma), thus:

: directive, parameter. . .:

A directive may have a simple scenario element attached to it. An attached element appears
immediately after the: character which ends the directive, thus:

. directive: attached-element

Page 30 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

There must be no space between the directive’'s terminating : character and the attached
element.

When a directive has a simple element attached to it, the attached element is processed within the
scope of the directive. Subsequent elements in the scenario are not processed within the scope of
the directive.

When a directive does not have an element attached to it, there must be a matching end directive
at some point before the end of the scenario. All the scenario elements between the directive and
its matching end directive are processed within the scope of the directive. The end directive
keyword is formed by prefixing the directive keyword with end, thus:

: enddirective:
An end directive does not take parameters or have an element attached to it.

Directives may be nested; that is: one directive may appear within the scope of another directive.
There are rules which determine whether or not a particular directive may appear within another
directive' s scope. These rules are presented in the section entitled ‘* Directive nesting rules”’ later
in this chapter.

Some directives are supported in both TETware-Lite and Distributed TETware, whereas others
are supported only in Distributed TETware. The scenario directives are described in the
following sections.

4.25.2 r epeat - processscenario elements a specified number of times

Synopsis
: repeat [, count]:
element
;endrepeat:
or:

: repeat [, count]: @ test-case-name

or:
: repeat [, count]: / file-name
or:
. repeat [, count]: ~ scenario-name
Description

Ther epeat directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes the sequence of elements within the scope
of ther epeat directive oncein build mode.

o Then, if execute mode has been selected, t cc processes the sequence of elements within
the scope of ther epeat directive count times in execute mode.

« Finaly, if clean mode has been selected, t cc processes the sequence of elements within
the scope of ther epeat directive once in clean mode.

If count is specified, it should be a positive number. If count is not specified, it defaultsto 1.

May 2000 Page 31
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

4.25.3 ti med_| oop — process scenario elements until a specified period of time
expires

Synopsis
:timed_I| oop, seconds:
element

»endti ned_| oop:

or:
:ti med_| oop, seconds. @ test-case-name
or:
:ti med_I oop, seconds: / file-name
or:
:ti med_I| oop, seconds. ~ scenario-name
Description

Thet i med_| oop directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes the sequence of elements within the scope
of thet i med_| oop directive oncein build mode.

o Then, if execute mode has been selected, t cc performs a test before processing the
sequence of elements within the scope of the ti med_I| oop directive in execute mode.
The sequence of elements is processed repeatedly until the test fails.

Normally the test performed fails if the time specified by the seconds parameter has
expired. However, whent cc isinvoked with the rerun option, or before the resume point
isfound when t cc isinvoked with the resume option, the test fails if the time specified by
the seconds parameter has expired or the sequence of elements has aready been processed
as many times as the same sequence was processed in the course of the test session
recorded in the old journal file.

o Finally, if clean mode has been selected, t cc processes the sequence of elements within
the scope of thet i med_I oop directive once in clean mode.

The seconds parameter must be a positive number.

Warning

When t cc processesati med_| oop directive in execute mode, it ensures that the directive's
scope contains at least one test case to execute. However, it is possible for the duration of each
loop iteration to be shorter than expected; for example, if some problem prevents one or more test
cases from executing for as long as anticipated (or at all). When this happens it is possible for
t cc to generate huge volumes of journal output while waiting for the specified period of time to
expire.

Therefore it is recommended that the ti med_| oop directive should only be introduced into a
scenario once it is known that test cases in the scenario are working correctly.

Page 32 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

4.25.4 r andom-— process atest case selected at random

Synopsis
:random
element
:endrandom
or:

:random @ test-case-name

or:
:random / file-name
or:
:random ~ scenario-name
Description

The way in which t cc processes the r andom directive depends on which modes of operation
have been selected and whether or not this directive appears within the scope of a looping
directive,® asfollows:

 When execute mode has not been selected and the r andom directive is not within the
scope of alooping directive:

— tcc processes each of the elements within the scope of the r andom directive in
build and/or clean mode according to the sel ected mode(s) of operation.

« When execute mode has not been selected and the r andomdirective is within the scope of
alooping directive:
— If build mode has been selected, t cc processes each of the elements within the
scope of the r andomdirective in build mode.

— Then, if clean mode has been selected, t cc processes each of the elements within
the scope of the r andomdirective in clean mode.

« When execute mode has been selected and the r andomdirective is not within the scope of
alooping directive:

— t cc selects atest case at random from within the scope of ther andomdirective and
builds and/or executes and/or cleans the test case according to the selected mode(s)
of operation.

« When execute mode has been selected and the r andomdirective is within the scope of at
least one looping directive:

— If build mode has been selected, t cc processes each of the elements within the
scope of the r andomdirective in build mode.

8. Thelooping directives are: ther epeat andt i med_| oop directives.

May 2000 Page 33
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

— Then, if execute mode has been selected:

o For each iteration of each enclosing looping directive, t cc selects a test case
at random from within the scope of the r andomdirective and executesiit.

— Finally, if clean mode has been selected, t cc processes each of the elements within
the scope of the r andomdirective in clean mode.

It can be seen from this description that whent cc processes all the elements within the scope of
a r andom directive, both test cases and scenario information lines are processed. However,
when t cc processes a randomly selected element within the scope of ar andomdirective, the
selection is made only from test case elements. Therefore, scenario information lines are not
processed when elements are selected at random.

When considering the operation of the r andomdirective when t cc isinvoked with the rerun or
resume options, it should be understood that the selection of a single test case from within the
scope of arandomdirective is, by definition, random. Therefore, when t cc is invoked with
either of these options, it is likely that a different test case to the one selected in the previous run
will be selected in the current t cc invocation.

When t cc isinvoked with the rerun option and must select a test case at random, it selects the
test case from the set of test cases within the scope of the r andomdirective that are identified by
the rerun options and not from the set that appears in the scenario file. Therefore, the chance of
any particular test case being selected in the current invocation is at least as great asit wasin the
previoust cc run.

Likewise, whent cc isinvoked with the resume option and identifies the resume point within the
scope of a random directive, it moves the resume point to the start of the random directive
before processing the scenario in the current invocation. Therefore, although the same test case
may not be selected from within the scope of the r andomdirective after the resume point has
been found as was selected in the previous t cc run, the chance of a particular test case being
selected in the current invocation is the same asit was in the previoust cc run.

4.25.5 paral | el —processscenario elementsin parallel

Synopsis
:parall el [, count]:
element

:endparal l el :

or:
: paral | el [, count]: @ test-case-name
or:
: paral |l el [, count]: / file-name
or:
:paral | el [, count]: ~ scenario-name
Page 34 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Compatibility with previous TET implementations
Previous TET implementations have processed the par al | el directive in different ways.

In dTETZ2, apar al | el directive may not enclose ar enot e or another par al | el directive
within its scope, and the t i med_| oop and r andom directives and referenced scenario names
are not supported. All the elements within the scope of apar al | el directive are processed in
parallel; that is, processing of each element starts at the same time.®

In ETET, a par al | el directive may enclose other directives and referenced scenario hames
within its scope. Elements of these types that appear immediately below a par al | el directive
are not truly processed in paralld; instead, for each element below a par al | el directive the
ETET t cc forks achild to process the element. Thus, if an element other than a ssmple scenario
element appears below apar al | el directive, the child processes these subordinate elementsin
sequence. However, al the child processes thus created themselves execute in parallel.

When a directive or referenced scenario name appears within the scope of apar al | el directive
in a context which might be processed differently in previous TET implementations, TETware
uses the TET_COVPAT configuration variable to resolve the ambiguity in order to provide
backwards compatibility with both of these implementations. There is no default value for
TET_COMPAT. Therefore, if t cc needsto refer to this variable when the variable is not defined,
it prints a diagnostic and exits.

When t cc operates in ETET compatibility mode and needs to process a sequence of scenario
elements within the scope of a paral | el directive, it does so by inserting an implied
sequential directive at the head of the sequence. When't cc processes the scenario, it processes
the sequences thus defined in parallel; that is: processing of each sequence starts at the same time.
However, within each element sequence, processing of elements is sequential; that is. processing
of each successive element in the sequence starts as soon as processing of the previous element
has finished. This strategy enables TETware to provide ETET compatibility even on operating
systems where the f or k() system call — necessary for ETET's support of the paral | el
directive — is not implemented.

The way in which t cc processes elements within the scope of the paral | el directive is
affected by the compatibility mode that is specified by the test suite author using the
TET_COMPAT configuration variable, asfollows:

— Whenin ETET mode:

o An implied sequential directive is inserted between a par al | el directive and a
subordinate repeat, tined_ | oop or random directive. Therefore these
directives are permitted to appear within the scope of apar al | el directive.

o If a referenced scenario name appears immediately below a par al | el directive,
the top level of the referenced scenario is searched for r epeat , ti med_| oop and
r andomdirectives and other referenced scenario names. If one of these elementsis
found, the referenced scenario name immediately below the par al | el directive is
replaced by a copy of the referenced scenario. Then an implied sequential directive
is inserted between the par al | el directive and each of the subordinate r epeat ,

9. In dTET2, when more than one mode of operation is selected, test cases may be built in parallel, then executed in
parallel, then cleaned in parallel, according to the selected modes of operation.

May 2000 Page 35
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

ti med_| oop and r andomdirectives and other referenced scenario names in the
copy of the referenced scenario.

— When in dTET2 mode:

e Arepeat,timed_I| oop orr andomdirective may not appear within the scope of
aparal | el directive.

e Any number of referenced scenario names may appear within the scope of a
par al | el directive, nested to any level, provided that the directive nesting rules
are not violated when the contents of each referenced scenario is interpolated.

Description
Thepar al | el directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes in build mode a single copy of al the
elements (when in dTET2 mode) or sequences of elements (when in ETET mode) within
the scope of the par al | el directivein parallel.

« Then, if execute mode has been selected, t cc processes in execute mode count copies of
al the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the par al | el directivein paralel.

« Finaly, if clean mode has been selected, t cc processes in clean mode a single copy of al
the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the par al | el directivein parallel.

If count is specified, it should be a positive number. If count is not specified, it defaultsto 1.

When t cc processes a test case, it may obtain locks in the test case source and execution
directories in order to prevent unwelcome interference between concurrent test case processing.
Whent cc processesapar al | el directive, it attempts to obtain al the locks that it needs at the
same time. Therefore, it is necessary for the test suite author to organise the test suite in such a
way that alocking conflict does not occur when test cases are processed in parallel. Usually this
organisation is best achieved by locating each test case in its own directory within the test suite
hierarchy.

When't cc isinvoked with the resume option and identifies the resume point within the scope of
aparal | el directive, the resume point is moved back to the start of the directive. In ETET
mode the use of implied sequential directives makesit possible for for a resume point to be found
within the scope of more than one par al | el directives; in this case the resume point is moved
back to the start of the outermost enclosing par al | el directive. A consequence of thisisthat if
an entire scenario is contained within the scope of a parall el directive, tcc cannot
effectively be invoked with the resume option to process such a scenario.

Page 36 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

4.2.5.6 gr oup — process scenario elementsin parallel

Synopsis
: gr oup|, count]:
element
: endgr oup:
or:

: group[, count]: @ test-case-name

or:
: group|, count]: / file-name
or:
: group|[, count]: ~ scenario-name
Description

The gr oup directive operates in the same way as does the par al | el directive. This directive
is supported only for compatibility with previous TET implementations and should not be used in
new test cases.

4.2.5.7 r enpt e — processtest cases on remote systems

Synopsis
. renot e, system-specifier ... :
element
> endr enot e:
or:

: renot e, system-specifier...: @ test-case-name

or:
: renot e, system-specifier ... : / file-name
or:
. renot e, system-specifier ...: ~ scenario-name
Description

Ther enot e directive is not supported by TETware-Lite.

In Distributed TETware, t cc processes test cases within the scope of the r enot e directive on
the systems specified by the system-specifier parameters. Each system-specifier should consist of
asystem ID or arange of system IDs. A range of system IDs consists of two numbers separated
by a - character (a hyphen).

For example:
:renote, 1, 2, 6-10:
is equivalent to:
‘renote, 1,2,6,7, 8,9, 10:

May 2000 Page 37
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

At least one system must be specified. A system ID of zero refersto the local system™ and other
positive system 1D values refer to remote systems. The way that TETware maps system I1Ds to
machine names is described in the section entitled ** System definitions'’ later in this guide.

When the local system is not specified, t cc processes test cases within the scope of ar enot e
directive as non-distributed test cases. When the local system is specified, t cc processes test
cases within the scope of a renot e directive as distributed test cases. t cc supports the
processing of distributed test cases when the local system is specified only for backward
compatibility with dTET2. Authors of new test suites should use the di st ri but ed directive
to specify distributed test cases.

Distributed test cases must use an APl which supports distributed testing; at present these are the
C, C++ and Java APIsin Digtributed TETware. Non-distributed test cases may use any TETware
API or be non API-conforming test cases.

4.25.8 di stri but ed — processdistributed test cases

Synopsis
: di stri but ed, system-specifier .. .:
element

: enc.i;j-i stri but ed:

or:

. di stri but ed, system-specifier ...: @ test-case-name
or:

. di stri but ed, system-specifier...: / fileename
or:

:di stri but ed, system-specifier ...: " scenario-name
Description

Thedi st ri but ed directive is not supported by TETware-Lite.

In Distributed TETware, t cc processes test cases within the scope of the di stri but ed
directive on the systems specified by the system-specifier parameters. Each system-specifier
should consist of a (humeric) system ID or arange of system IDs. A range of system IDs consists
of two numbers separated by a — character (a hyphen). For example:

:distributed, 1, 2, 6-10:
is equivalent to:

:distributed, 1,2,6,7,8,9, 10:

At least one system must be specified. A system ID of zero refers to the local system and other
positive system ID values refer to remote systems. The way that TETware maps system IDs to
machine names is described in the section entitled ** System definitions'’ later in this guide.

10. That is: the system on which t cc isinvoked.

Page 38 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

t cc aways processes test cases within the scope of adi stri but ed directive as distributed
test cases. Thus it is possible to use this directive to specify a distributed test case which is
processed entirely on remote systems.

Distributed test cases must use an API which supports distributed testing; at present these are the
C, C++ and Java APIs in Distributed TETware. Test cases which use other TETware APIs and
non API-conforming test cases cannot be processed by TETware as distributed test cases.

4.25.9 i ncl ude - process scenario elementslisted in an includefile

Synopsis
2i ncl ude: / file-name
Description

Thei ncl ude directive is not atrue directive in that it does not have scope; that is: it does not
affect the way in which t cc processes scenario elements in the named file. Instead it is provided
simply to enable test suite authors to specify a file containing certain types of simple scenario
element to be processed by t cc outside the scope of any directives.

Note that the rules that govern the format and contents of the file associated with the i ncl ude
directive are the same as those which apply to include files associated with other directives.
These rules are presented in the section entitled ** File name'’ earlier in this chapter.

This directive should not be confused with the % ncl ude keyword described later in this
chapter.
4.2.6 Directive groups

A directive group is constructed from two or more directives that are permitted by the scenario
language syntax to appear adjacent to each other in atest scenario.

A directive group is enclosed between apair of : characters, and each directive is separated from
the next by a; character, thus:

: directive;; directive,.. ..
Aswith individual directives, adirective within a group may have parameters associated with it.

So, the complete formal syntax specification for a directive group which contains one or more
directivesisasfollows:

. directive], parameter[, ...]11[; ...

Aswith individual directives, a directive group may have a simple element attached to it, thus:

- directive,; directive,. attached-element
When this is done, the attached element is processed within the scope of all the directives in the
group.

When a directive group does not have an element attached to it, there must be matching end
directives in the correct order at some point before the end of the scenario. Often, each directive
in a group without an attached element will be matched by an end directive in another group.

May 2000 Page 39
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

For example:

- directive,; directive,:
element

. enddirective,, enddirective,:
Note that this example could also be written as follows:
: directive;:
: directive,:
element
: enddirective,:
: enddirective;:
or even on asingle line, asfollows:
. directive;; directive,: element ... : enddirective, enddirective;:

This format is particularly useful when specifying a simple scenario on the command-line by
means of the —| optiontot cc.

4.2.7 Directive nesting rules

It is possible for a directive to appear within the scope of another directive. When this is done,
the directives are said to be nested. However, there are rules which limit the way in which
directives may be nested. These rules are defined in terms of whether or not a particular directive
may appear within the scope of ancther directive of the same or a different type.

These rules are complicated by the way in which the par al | el directive is processed. This
processing is described in the section entitled ‘‘paral | el — process scenario elements in
paralel’’ earlier in this chapter. In particular, this section describes how t cc may insert an
implied sequential directive in a scenario when processing the scenario in ETET compatibility
mode. The placement of these implied sequential directives is significant when the directive
nesting rules areinterpreted by t cc.

The directive nesting rules are described in the following table:

Permitted directive combinations
Outer directive
I nner renote and implied
directive i) . .
timed_| oop | repeat | random| parall el distributed | sequentia
timed_I oop OK OK Error Error OK OK
r epeat OK OK Error Error OK OK
random OK OK Error Error OK OK
paral | el OK OK Error Error OK OK
renote and
di st ribut ed OK OK OK OK Error OK
mplied oK oK OK oK oK oK
sequential

When interpreting these rules it should be understood that the effect of an implied sequential

directive isto hide apar al | el directive when directives are nested. That is. for the purposes

of these rules the scope of a paral | el directive is considered to end when an implied

Page 40 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

sequential directive is encountered.

For example, it can be seen from the table above that the the rules do not permit ar epeat
directive to appear within the scope of apar al | el directive. When dTET2 compatibility mode
isin effect, t cc does not insert implied sequential directives into the scenario. Therefore, the
directive nesting rules are violated if a repeat directive appears within the scope of a
paral | el directive.

However, when ETET compatibility mode is in effect and a repeat directive appears
immediately below apar al | el directive, t cc inserts an implied sequential directive between
them. The effect of thisis to exclude the r epeat directive from the scope of the par al | el
directive, and so the directive nesting rules are not violated.

4.3 Scenario fileinclusion
If alinein the scenario file consists of
% ncl ude filename

the line will be replaced by the contents of filename when t cc reads the scenario file. The
% ncl ude keyword can appear anywhere in a scenario file but it must appear at the start of the
line. If filename is not an absolute path name, t cc interprets filename relative to the test suite
root directory.

Lines in filename may contain any valid scenario language syntax. The resulting scenario must
be syntactically correct after the contents of filename has been interpolated in the main scenario
file. % ncl ude keywords may be nested; that is: a scenario file included using % ncl ude may
itself contain one or more % ncl ude keywords.

The % ncl ude keyword is not valid in a scenario line specified using the —-| command-line
option to t cc, neither is it valid in an include file that is specified using the : directive: / file-
name syntax. This keyword should not be confused with the : i ncl ude: directive described
earlier in this chapter.

4.4 Example scenarios

This section contains some examples of the different ways in which simple elements and
directives can be used to define test scenarios. Alternative ways of defining the same scenario are
illustrated in some of the more simple examples.

A diagram is used to illustrate each example. Each diagram is presented as a simple flow chart in
which time advances from top to bottom.

May 2000 Page 41
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Example 1

In this scenario the named test cases are simply processed in sequence. One of the test cases has
alist of invocable components associated with it.

This scenario can be written in several ways as follows:

or:

or:

sinple scenario exanpl e
al |
"this is a sinple scenario”
/ts/tcl{1-3, 6}
/ts/tc2
/ts/tc3

sinple exanple using a referenced scenari o nane
al |
“scenl

scenl
"this is a sinple scenario”
/ts/tcl{1-3, 6}
/ts/tc2
/ts/tc3

sinple exanple using an include file
al |
sinclude:/ts/tclist

In this case the file test-suite-root/ t s/ t cl i st contains the following lines:

"this is a sinple scenario”
/ts/tcl{1-3, 6}

/ts/tc2

/ts/tc3

Page 42 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit

TETware Programmers Guide

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

Start

/ts/tcl

/ts/tc2

/ts/tc3

Figure5. Processing test casesin sequence

Example 2
In this scenario the named test cases are processed in parallel.

This scenario can be written in several ways as follows:

exanpl e of parallel processing
al |
"these test cases are processed in parallel”
:parall el
/ts/tcl/itcl
/ts/tc2/tc2
/ts/tc3/tc3
:endparal | el

or
exanpl e of parallel processing using an attached el ement
al |
"the test cases in scenario 'scenl are processed in parallel”
;parallel: scenl
scenl
/ts/tcl/tcl
/ts/tc2/tc2
/ts/tc3/tc3
May 2000 Page 43

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

or:

or:

or:

anot her exanple of parallel processing using a referenced scenari o name
al |
"the test cases in scenario 'scenl’ are processed in parallel”
:parall el
“scenl
. endparal | el

scenl
/ts/tcl/tcl
/ts/tc2/tc2
/ts/tc3/tc3

exanpl e of parallel processing using an include file
al |
"the test cases listed in the include file are processed in parallel”
cparallel:/ts/tclist

anot her exanple of parallel processing using an include file
al |
"the test cases listed in the include file are processed in parallel"
:parall el
sinclude:/ts/tclist
:endparal | el

Note that the test suite is organised so that each test case resides in its own directory when a
par al | el directiveisused.

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

/\

/ts/tcl/tcl /ts/tc2/tc2 /ts/tc3/tc3

—

End

Figure 6. Processing test casesin parallel

Page 44 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Example 3

In this example four instances of a single test case are executed at the same time. This scenario
must be processed with TET_EXEC | N_PLACE set to Fal se so asto ensure that each test case
instance executes in its own directory.

The scenario is defined as follows:

al |
cparallel,4: @ts/tcl

When t cc processes this scenario in build or clean mode, the test case is processed once.
However, when t cc processes this scenario in execute mode, four instances of the test case are
executed at the same time.

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

/ts/tcl /ts/tcl /ts/tcl /ts/tcl

Figure 7. Processing multiple instances of asingletest casein parallel

May 2000 Page 45
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Example 4

This exampleillustrates how t cc processes nested referenced scenario names within the scope of
apar al | el directive differently in dTET2 and ETET compatibility modes.

The scenario is defined as follows:

al |
;parallel:"scenl
scenl
/ts/tcl/tcl
“scen2
scen2

/ts/tc2/tc2
/ts/tc3/tc3

In dTET2 mode al the test cases are processed in paralel. In ETET mode the objects defined at
thetop level of scenl are processed in parallel. However, if an object expands to more than one
eement (as is the case for the scenario reference ~ scen2), these elements are processed in
sequence.

The way in which t cc processes this scenario in dTET2 mode may be represented by the

following diagram:

/ts/tcl/tcl /ts/tc2/tc2 /ts/tc3/tc3

—

End

Figure 8. Processing referenced scenario elementsin parallel when in dTET2 mode

Page 46 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The way in which t cc processes this scenario in ETET mode may be represented by the
following diagram:

Start

/ts/tcl/tcl /ts/tc2/tc2

/ts/tc3/tc3

End

Figure 9. Processing referenced scenario elementsin parallel whenin ETET mode

Example 5
In this example the named test cases are processed within the scope of ar epeat directive.

The scenario is defined as follows:

al |
:repeat, 10:
/ts/tcl
/tsltc2
/ts/tc3
:endr epeat :

When t cc processes this scenario in build or clean mode, the sequence of test casesis processed
once. However, whent cc processes this scenario in execute mode, the sequence of test casesis
executed 10 times.

May 2000 Page 47
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

Restart No
loop?

Yes

/ts/tcl

/ts/tc2

/ts/tc3

L]

Figure 10. Processing ar epeat directive in execute mode

Example 6

In this example two instances of the list of test cases within the scope of ar epeat directive are
processed in parallel.

The scenario is defined as follows:

al |

:parallel,2;repeat, 10: “scenl
scenl

/ts/tcl

/ts/tc2

/ts/tc3

Since this scenario contains a looping directive within the scope of a par al | el directive, the
compatibility mode must be specified in order to enable t cc to interpret the scenario correctly.
When t cc reads this scenario in ETET mode, it inserts an implied sequential directive between
the paral | el andrepeat directives. However, no directives are added whent cc reads this
scenario in dTET2 mode. It can be seen that without the implied sequential directive the
directive nesting rules have been violated so t cc cannot process this scenario in dTET2 mode.

Note that since it is possible for more than one instance of a test case to execute at once,
TET_EXEC | N_PLACE must be set to Fal se when this scenario is executed, so as to ensure
that each test case instance executes in its own directory.

When t cc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, when t cc processes this scenario in execute mode, two sequences

Page 48 May 2000
The Open Group

TET3-PG-1.6

Test Environment Toolkit
TETware Programmers Guide

of test cases areinitiated at the same time and each sequence is executed 10 times.

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

Yes Yes

/ts/tcl /ts/tcl

/ts/tc2 /ts/tc2

/ts/tc3 /ts/tc3
L] L]

End

Figure 11. Processingr epeat directivesin paralel

Example7

In this example two instances of atimed loop execute in parallel. In each loop a single test case
is chosen at random from the list of test cases. Each loop is repeated until its execution time has

exceeded 300 seconds.

The scenario may be defined as follows:

:parallel,2;timd_| oop, 300; random “scenl

al l
scenl
/ts/tcl
[ts/tc2
/ts/tc3
May 2000

Page 49
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

or asfollows:
al |
:parallel,?2;timd_| oop, 300; random
/ts/tcl
/ts/tc2
/ts/tc3
: endrandon endt i ned_| oop; endparal | el :
or asfollows:
al |

cparallel, 2:
:tined_l oop, 300:
: random

/ts/tcl

/ts/tc2

/ts/tc3
:endrandom
sendtimed_| oop:
:endparallel:

The versions of this scenario shown here illustrate how the same scenario may be written with or
without the use of directive groups.

Like the scenario in the previous example, this scenario must be processed in ETET mode and
with TET_EXEC | N_PLACE set to Fal se so asto ensure that each test case instance executes
inits own directory.

When t cc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, whent cc processes this scenario in execute mode, two instances of
the timed loop areinitiated at the same time. Each timed loop instance iterates until 300 seconds
have expired. During each iteration of each loop instance, asingle test caseis selected at random
from the list and executed.

Page 50 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The way in which t cc processes this scenario in execute mode may be represented by the
following diagram:

Select one of ; Select one of:;
/ts/tcl /ts/tcl
/ts/tc2 /ts/tc2
/ts/tc3 /ts/tc3
at random at random
L] L]

-

End

Figure 12. Processing randomly selected test casesin parallel for a specified period of time

Example 8
In this example the named test cases are processed as non-distributed test cases on several remote
systems.

The scenario is defined as follows:

al |
:renote, 1, 2:
/ts/tcl
/ts/tc2
/ts/tc3
: endr enpt e:

This scenario cannot be processed by TETware-Lite.

Whent cc processes each test case in this scenario, it starts the processing of instances of the test
case on each system specified by the r enot e directive at the same time. Then, t cc waits for
the test case instance on each system to finish processing before it starts processing the next test
case.

May 2000 Page 51
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

System 1 System 2

"

/ts/tcl /ts/tcl

X

/ts/tc2 /ts/tc2

X

/ts/tc3 /ts/tc3

N

Figure 13. Processing remote and distributed test cases

Example 9

In this example the named test cases are processed as distributed test cases on several remote
systems.

The scenario is defined as follows:

al |
:distributed, 1, 2:
/ts/tcl
/ts/tc2
/ts/tc3
:enddi stri but ed:

This scenario cannot be processed by TETware-Lite.

The way in which t cc processes this scenario may be represented by the same diagram as was
used to represent the previous example.

Page 52 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

5. Configuration files

5.1 Introduction

Each test suite has one or more configuration files associated with it. These files contain
configuration variable assignments which are specified by the test suite author. When t cc
processes test cases in a particular mode of operation, it reads variables from the configuration
file for that mode. So, each test suite should include a build configuration file, an execute mode
configuration file and a clean mode configuration file.

By default, configuration files for each test suite are located in the test suite root directory.
However, if an alternate execution directory is specified, the execute mode configuration file may
be located there instead if so desired. The name of the build mode configuration file is
t et bui | d. cf g, that of the execute mode configuration file ist et exec. cf g and that of the
clean mode configuration fileist et cl ean. cf g. The names of these files may be overridden
by t cc command-line options if so desired.

In Distributed TETware, configuration files for each mode must be provided on the local system
and on each remote system on which tests are to be processed. The names and locations of these
files on each remote system are the same as the ones described above for the local system. In
addition, a file containing distributed configuration variables must be provided only on the local
system when test cases are to be processed on remote systems or when the TETware network
code uses such variables. The name of distributed configuration fileist et di st. cfg anditis
located in the test suite root directory.

5.2 Useof configuration variables

Test suite authors may define variables in the per-mode configuration files which are to be used
by API-conforming tools and test cases. (Note that in Distributed TETware, variables defined in
the distributed configuration file cannot be accessed by test cases.)

TETware does not provide default values for user-defined variables. Therefore, test suite authors
should allow for the possibility that test suite variables may not be defined and ensure that test
cases behave sensibly in the event that a required variable is undefined.

In addition to user-defined configuration variables, test suite authors may define certain variables
that are used by TETware to determine how test cases are to be processed. These variables are
described in the sections that follow.

5.3 Configuration file format

Each (non-blank, non-comment) line in a configuration file specifies a configuration variable
assignment in the following format:

variable=value
Lines beginning with # and blank lines are ignored.

The first character in a variable' s name should be an alphabetic character. Subsequent characters
in the name should be an alphanumeric character or a _ character (an underscore). Names
beginning with the prefix TET_ arereserved for use by TETware.

May 2000 Page 53
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

5.4 Configuration variable processingin TETware-Lite

In addition to variables specified in configuration files, configuration variables may be specified
on thet cc command-line by means of one or more —v options. When a configuration variableis
specified in thisway, it is added to the configuration for each selected mode of operation.

Variables specified using the —-v command-line option have higher precedence than variables
specified in configuration files.

The way in which TETware-Lite processes configuration variables in each mode of operation is
illustrated in the following diagram:

configuration
file

Configuration
variable set

Figure 14. Configuration variable processing in TETware-Lite

5.5 Configuration variable processing in Distributed TETware

As indicated previously, when Distributed TETware is used, configuration variables for each
mode of operation may be specified on remote systems as well as on the local system. In
addition, it is possible to prefix a variable’s name with TET _REMinn_ in order to associate a
variable with aparticular system.

The Distributed t cc processes the configuration for each mode of operation by performing the
following actions:

1. tcc determines the location of the configuration file on the local system and reads in the
variables defined in thefile.

2. tcc adds in any variables defined on the command-line, giving them precedence over
variables defined in the configuration file. The set of variables derived in this way is
known asthe master configuration for the particular mode of operation.

3. If thelocal system is mentioned in the chosen scenario, t cc uses the master configuration
to generate a configuration for the local system using the following precedence (highest
first):

— variableswitha TET_REMIO0O0_ prefix defined onthet cc command line

Page 54 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

— other variables defined onthet cc command line
— variableswitha TET _REMDO0O__ prefix defined in the local configuration file
— other variables defined in the local configuration file

Then tcc removes any TET_REMDOO_ from each variable in the local system’'s
configuration. The set of variables derived in this way is known as the per-system
configuration for the local system.

4. For each remote system that is mentioned in the chosen scenario, t cc performs a
configuration variable exchange with tccd on that system, using the master
configuration. When performing this operation, t cc indicates which variables in the
master configuration originated from the command-line.

5. tccd readsin the variables defined in the configuration file on that system.

6. Thent ccd merges these variables with the master configuration received from the local
system using the following precedence (highest first). In the text that follows, ‘‘local’’ and
“‘remote’’ describe systems from t cc’s point of view and ‘‘a matching TET _REMhNN_
prefix’’ isaprefix in which nnn matches the system ID of the remote system.

— variables with amatching TET_REMhnn_ prefix defined on thet cc command line
— other variables defined on thet cc command line

— variables with a matching TET_REMNN_ prefix defined in the configuration file on
the remote system

— variables with a matching TET_REMhnn__ prefix defined in the master configuration
received fromt cc

— other variables defined in the configuration file on the remote system
— other variables defined in the master configuration received fromt cc

7. Finaly, t ccd removes any matching TET_RENMhnn_ prefix from each variable and returns
the merged configuration back tot cc. The set of variables derived in this way is known
asthe per-system configuration for that system.

From this description it will be seen that it is possible to define a variable on the local system that
isto appear in the master configuration and in the per-system configurations for both the local and
remote systems. Such variables may be defined in a configuration file on the local system or on
thet cc command line. In addition, it is possible to define a variable in a configuration file on a
remote system that is to appear in the per-system configuration for that system.

However, it is not possible to define a variable in a configuration file on aremote system that isto
appear in the master configuration or in the per-system configuration for another system.

May 2000 Page 55
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The way in which Distributed TETware processes configuration variables in each mode of
operation isillustrated in the following diagram:

Local system

configuration command-line
file variables

Remote system

configuration
file

Master
configuration
|
|
|
! merge
: & trim
[
|
|
|
|
|
Per-system Per-system I
configuration configurations :
for the for each |
local system remote system [
|
|
|
|

Figure 15. Configuration variable processing in Distributed TETware

The result of al thisis that when Distributed TETware is used you can specify variables that are
read from each of the per-system configurationsin several ways.

Configuration variables may be specified both on the local system and on any remote systems that
are to participate in remote or distributed testing. In this context, the local system is the system
onwhicht cc isrun (whether or not any test cases run on this system), and remote systems are
other systems on which test cases or test case parts are run. When reading the discussion that
follows, you should bear in mind that the local system always has a system ID of zero; other
system IDs always refer to remote systems.

Configuration variable assignments made on the local system are propagated to each of the
remote systems; however, configuration variable assignments made on a remote system normally
have precedence over those that are propagated from the local system.

Page 56 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

For example, if the following assignment is made on the local system:
TET_BU LD TOOL=nake

then, the value of TET_BUI LD _TOOL will be set to make on the local system and on all the
remote systems.

If the following assignment is made on one of the remote systems:
TET_BUI LD_TOOL=augnake

then the value of TET_BUI LD_TOOL is changed to augnmake only on that remote system, and
remains unchanged on all of the other systems.

It is possible to direct a variable assignment made on the local system to a particular system by
prefixing its name with TET _RENMhNn_ where nnn is the ID of the system that is to receive the
variable.

So, if the following assignments are made on the local system:

TET_BUI LD_TOOL=nake
TET_REMD02_TET_BUI LD_TOOL=augnake

then the value of TET_BUI LD_TOOL on remote system 002 is set to augnake and the value of
TET_BUI LD_TOOL on thelocal system and all the other remote systemsis set to nake.

Furthermore, the value of a TET_REMinn_ variable assignment made on the local system
overrides any assignment to the corresponding variable that may be made on system nnn. So, in
this case, the value of TET_BUI LD_TOOL on remote system 002 is set to augnake irrespective
of any assignment that might be made on that remote system.

Finaly, if the following assignments are made on the local system:

TET_BUI LD_TOOL=augmake
TET_REMDOO_TET_BUI LD_TOOL=nake

then the value of TET_BUI LD_TOCL on the local system will be set to make and the value of
TET_BUI LD _TOOL on al the remote systems will be set to augnmake (provided that no
assignment for TET_BUI LD_TOOL is made on any of the remote systems).

5.6 Configuration variables which modify TETware's
oper ation

This section describes configuration variables which affect the way in which TETware processes
atest suite. The variables described here should be set in the per-mode configurations.

In Distributed TETware, the values of some variables are read from the master configuration and
affect the way in which TETware processes test cases on all systems. By contrast, the values of
other variables are read from each per-system configuration and affect the way in which TETware
processes test cases on each individual system.

Some variables used by TETware are boolean variables, whereas others are string variables.
TETware provides default values for all the boolean variables and some of the string variables.

The following table lists al the variables used by TETware, the type of each value and the default
value supplied (if any). The last column indicates whether Distributed TETware obtains the
variable's value from the master configuration or from the per-system configuration. It will be
seen from the description of configuration variable processing presented in the previous section

May 2000 Page 57
The Open Group

Test Environment Toolkit
TETware Programmers Guide

TET3-PG-1.6

that it is not meaningful to use a TET_REMhnn_ prefix in conjunction with a variable obtained

from the master configuration.

Configuration variablesused by TETware
. Sourcein
Variable name Type Default value Distributed TETware
TET_API _COVPLI ANT boolean | inverse of master
TET_OUTPUT_CAPTURE
TET_BUI LD FAIL_FI LE string undefined per-system
TET_BUI LD FAIL_TOOL string undefined per-system
TET_BUI LD FI LE string undefined per-system
TET_BUI LD TOOL string undefined per-system
TET_CLEAN FI LE string undefined per-system
TET_CLEAN TOOL string undefined per-system
TET_COVPAT string undefined master
TET_EXEC FI LE string undefined per-system
TET_EXEC | N _PLACE boolean | Fal se master
TET_EXEC TOOL string undefined per-system
TET_EXPAND_CONF_VARS boolean | Fal se per-system
TET_QUTPUT _CAPTURE boolean | Fal se master
TET_PASS TC NAME boolean | sameas master
TET_OUTPUT_CAPTURE
TET_PREBUI LD FI LE string undefined per-system
TET_PREBUI LD _TOCL string undefined per-system
TET_RESCODES FI LE string tet _code master
TET_SAVE _FI LES string undefined per-system
TET_TRANSFER SAVE FI LES | boolean | Fal se per-system

The meaning of each variable is asfollows:

TET_API _COVPLI ANT

TET _BUI LD FAIL_FILE

TET_BUI LD _FAI L_TOOL

TET_BUI LD FI LE

TET_BU LD_TOOL

Page 58

Specifies whether or not test cases and tools use a TETware
API. If true, test cases and tools are expected to use the API
to print diagnostics and register results. If false, t cc treats
the test case or tool as if it consists of a single invocable
component containing a single test purpose. When tcc
processes the test case in execute mode, it prints the
messages to the journal file that would be printed by an API-
conforming test case and generates a test purpose result based
on the test case's exit status (zero = PASS, non-zero =
FAIL).

Names the file of instructions for the build fail tool. The use
of thisvariable is optional.

Names the utility to be executed if a prebuild or build
operation fails. The use of this variable is optional.

Names the file of instructions for the build tool. The use of
this variable is optional.

Names the utility to be executed when processing a test case
in build mode. This variable must be specified if build mode
is selected.

May 2000
The Open Group

TET3-PG-1.6

TET_CLEAN_FI LE

TET_CLEAN TOOL

TET_COMPAT

TET_EXEC FI LE

TET_EXEC_| N_PLACE

TET_EXEC_TOOL

TET_EXPAND_CONF_VARS

TET_OUTPUT_CAPTURE

TET_PASS_TC_NAMVE

May 2000

Test Environment Toolkit
TETware Programmers Guide

Names the file of instructions for the clean tool. The use of
thisvariable is optional.

Names the utility to be executed when processing a test case
in clean mode. This variable must be specified if clean mode
is selected.

Specifies the compatibility mode to be used when
interpreting a scenario. Possible values are; dt et 2 to select
dTET2 compatibility mode or etet to sedect ETET
compatibility mode. This variable must be specified if the
scenario contains ambiguous syntax. If t cc is invoked in
more than one mode of operation, this variable must have the
same value in each of the configurations for the selected
modes of operation. Further details of the effect this variable
has on the way that t cc interprets a scenario are presented in
the section which describes the : paral |l el : scenario
directive in the chapter entitled ‘‘The scenario file'’
elsewherein this guide.

Names the file of instructions for the exec tool. The use of
thisvariable is optional.

Specifies whether or not t cc should execute test cases *‘in
place’’. If fase tcc copies test case files to a temporary
directory before executing them. The setting of this variable
is only meaningful in execute mode.

Names the utility to be executed when processing a test case
in execute mode. Normally this variable is not specified, in
which casethetest caseis executed directly.

The value of this variable determines whether or not t cc
performs configuration variable expansion on variables
defined in the per-mode configurations. If true, t cc replaces
the string ${ variable-name} in a configuration variable
assignment with the value of the variable variable-name. If
false, t cc does not treat the string ${ variable-name} in a
configuration variable assignment specialy. Further
information about this feature is presented in the section
entitled ‘‘Configuration variable expansion’’ later in this
chapter.

Specifies whether or not t cc should capture standard output
and standard error output from test cases and record it in the
journal. For historical reasons the value of this variable also
provides default values for the TET_API _COMPLI ANT and
TET_PASS TC_NAME configuration variables.

If true, t cc passes the name of the test case to be processed
on the command-line when executing abuild or clean tool. If
false, t cc does not pass a test case name to a build or clean
tool. Note that t cc always passes a test case name to a
prebuild, buildfail or exec tool.

Page 59
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

TET_PREBUI LD FI LE Names the file of instructions for the prebuild tool. The use
of this variable is optional.
TET_PREBUI LD _TOOL Names the utility to be executed before processing a test case

in build mode. In Distributed TETware, if the test case to be
processed in within the scope of a renote or
di stribut ed directive which specifies more than one
system, the prebuild tool is only executed on the first system
inthelist. The use of thisvariableis optional.

TET_RESCODES FI LE This variable specifies the name of the result code file. When
more than one mode of operation is selected and this variable
is defined in more than one per-mode configuration, only the
first definition is significant. Thus the use of this variable to
specify a results code file is per t cc invocation and not per
mode of operation. The use of thisvariable is optional.

TET_SAVE_FI LES This variable specifies a (comma separated) list of file names.
If, after t cc executes atest case, afile matching one of these
names is found below the execution directory hierarchy, that
file is transferred to the saved file directory tree on the same
system. If a directory is found that matches one of the
names, then its contents are transferred recursively. Shell file
name matching syntax may be used in the list of file names.
The use of this variable is optional.

TET_TRANSFER _SAVE FI LES If true, files processed by Distributed TETware on a remote
system in accordance with the description of
TET_SAVE_FI LES above are transferred to the saved file
directory on the local system instead of being saved on that
remote system. The use of this variable is optional. This
variable isnot used in TETware-Lite.

5.7 Distributed configuration variables used by Distributed
TETware

This section describes distributed configuration variables. When Distributed TETware processes
test cases on remote systems, these variables inform t cc of the locations of test case files and
directories on each remote system. In addition, when Distributed TETware is built to use the XTI
network interface, certain distributed configuration variables are used by t cc’s network code.
The variables described here should be set in the distributed configuration file on the local
system.

The following table lists al of the distributed configuration variables used by Distributed
TETware. Separate values of each variable with a TET _RENMhnn_ prefix must be supplied for
each remote system mentioned in the chosen scenario.

Page 60 May 2000
The Open Group

TET3-PG-1.6

Test Environment Toolkit
TETware Programmers Guide

Distributed configuration variables used by Distributed TETware

Variable name Type Default value
TET_RENMhnn_TET_EXECUTE string | undefined
TET_RENMhnn_TET_ROOT string | undefined
TET_RENMhnn_TET_RUN string | undefined

TET_RENMhnn_TET_SUI TE_ROOT | string | same as the value of

TET_REMinn_TET_ROOT

TET_REMhnn_TET_TSROOT
TET_LOCALHOST

TET_RENVhnn_TET_TMP_DI R string | tet _tnp dir
string | undefined
string | undefined
string | tcp

TET_XTI _MODE

TET_XTI _TPI

string | / dev/tcp

The meaning of each variable is asfollows:

TET_REMhnn_TET_EXECUTE

TET_REMhnn_TET_ROOT

TET_REMhnn_TET_RUN

The values of these variables specify the locations of
alternate execution directories on remote systems. The use of
these variables is optional but, if they appear, they perform
the equivalent functions on remote systems to that performed
by the value of the TET_EXECUTE environment variable on
the local system. The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

The values of these variables specify the locations of tet root
directories on remote systems. One of these variable
assignments must be made for each remote system that may
participate in remote or distributed testing. The values of
these variables are passed to test cases and tools in the
environment as communication variables on each system.

The values of these variables specify the locations of runtime
directories on remote systems. The use of these variables is
optiona but, if they appear, they perform the equivaent
functions on remote systems to that performed by the value
of the TET_RUN environment variable on the local system
(refer to the section entitled ** Environment variables’’ earlier
in this chapter). The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMhnn_TET_SUI TE_ROOT

May 2000

These variables are not used by TETware but, when
specified, are passed to test cases and tools in the
environment as communication variables on each system.
This is done in order to enable existing ETET test cases
which rely on the presence of a TET_SU TE ROOT
environment variable to be processed on a remote system by
Distributed TETware.

Page 61
The Open Group

Test Environment Toolkit
TETware Programmers Guide

TET_REMhnn_TET_TMP_DI R

TET_REMhnn_TET_TSROOT

TET_LOCALHOST

TET3-PG-1.6

The values of these variables specify the locations of
temporary directories on remote systems which are used
instead of the default location when TET _EXEC | N_PLACE
is false. The use of these variables is optional but, if they
appear, they perform the equivalent functions on remote
systems to that performed by the vaue of the
TET_TWMP_DI R environment variable on the local system.

The values of these variables specify the locations of test
suite root directories on remote systems. One of these
variable assignments must be made for each remote system
that may participate in remote or distributed testing.

This variable is optional when the socket interface is used.
Y ou should not specify this variable unless you need to make
use of the facilities described here.

Normally, when a process on a remote system connects to the
Synchronisation Daemon and Execution Results Daemon on
the local system, it does so using the host name or Internet
address that is specified for system 0 in the syst ens file.
This variable can be used to specify a different host name or
Internet address that should be used by processes on remote
systems when connecting to servers on the local system.
This variable can be used to direct incoming connections to a
particular network interface when running t cc on a machine
which is connected to remote machine(s) by more than one
network. The value specified by this variable must resolve to
an Internet address that can be used to access the local system
from remote systems (that is: it should not be the address of
the loopback interface). Needlessto say, chaoswill break out
if the value specified by this variable does not refer to avalid
addressfor the local system.

In addition, the following distributed configuration variables are accessed by t cc’s network
transport code when the XTI network interface is used:

TET_LOCALHOST

TET_XTI _MODE

Page 62

This variable must be specified when the XTI network
interface is used and the underlying transport provider is
TCP/IP. The value of this variable should be the Internet
address of the local system. This address is presented in dot
notation and must be an address that can be used to access the
local system from remote systems (that is: it should not be
the address of the loopback interface). All four fields in the
address must be specified. A host name may not be specified
when the XTI network interface is used. Needless to say,
chaos will break out if the value specified by this variable
does not refer to avalid address for the local system.

Possible values: t cp (to indicate TCP/IP) or osi co (to
indicate the OSI connection-oriented transport).
The value of this variable indicates the underlying transport

May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

provider to be used.

TET_XTI _TPI The name of the XTI transport provider identifier on the local
system.

5.8 Configuration variable expansion
5.8.1 Introduction

It is possible to instruct t cc to substitute the value of a configuration variable in the value
assigned to another configuration variable. The mechanism which t cc usesto do this is known
as configuration variable expansion and is described in this section.

When tcc processes a per-mode configuration, it uses the vaue of the
TET_EXPAND_ CONF_VARS configuration variable to determine whether or not to perform
variable expansion on the configurations. The value of this variable defaults to Fal se so
variable expansion is not performed on variables defined in a per-mode configuration unless
TET_EXPAND_CONF_VARS isset to Tr ue in that configuration.

The Distributed version of t cc aways performs configuration variable expansion on variables
defined in the distributed configuration. It is not meaningful to define a value for
TET_EXPAND_CONF_VARS in the distributed configuration.

5.8.2 Variable expansion syntax

Y ou can specify the name of a variable whose value is to be interpolated in the value of another
variable by using ${ variable-name} in the value of the other variable. For example, suppose a
configuration contains the following assignments:

PRODUCT=Supert est
VERSI ON=3. 4
MESSAGE=t his i s ${PRODUCT} version ${VERSI ON\}

When t cc makes the configuration available to a test case or tool, the value of MESSAGE is
“‘thisis Supertest version 3.4".

When you want to include a literal $ character in the value of a configuration variable, you can
use the $ character to escape itself. t cc condenses $$ in a variable's value to asingle $ when
configuration variable expansion is enabled. For example, suppose a configuration contains the
following assignment:

PRI CE=$%$2. 50
When t cc makes the configuration available to a test case or tool, the value of PRI CE is
*$2.50".
5.8.3 Variables on whose values expansion may be performed

When TET_EXPAND_CONF_VARS is true in a per-maode configuration, t cc performs variable
expansion in the values of the following variablesin that configuration:

1. All user-defined variables.
2. All thevariables that are used to specify tools and files; that is:

May 2000 Page 63
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

TET_BUI LD_FAI L_FI LE
TET_BUI LD_FAI L_TOOL
TET_BUI LD _FI LE
TET_BUI LD_TOOL
TET_CLEAN FI LE
TET_CLEAN _TOOL
TET_EXEC_FI LE
TET_EXEC_TOOL
TET_PREBUI LD _FI LE
TET_PREBUI LD_TOOL

That is: if the value of any of these variables contains a ${ variable-name} , t cc replaces the
${ variable-name} string with the value of variable-name which must be defined in the same
configuration.

The Distributed t cc aways performs expansion on the values of al the TET _REMhnn_
variables that may be defined in the distributed configuration.

5.8.4 Variableswhose values may beinterpolated in another variable's
value

When you include a ${ variable-name} string in another variable's value, variable-name may be
the name of any of the other variables that are specified in the same configuration.

In addition variable-name may be one of the special variables defined by t cc. The ability to
have one of these special variables expanded in another variable’s value makes the path names
used internally by t cc available to the user. Thus the need to have path names of tools hard-
coded in configuration files is removed.

These variables are described in the sections that follow.

t cc reports a configuration error if variable-name is not defined in the configuration in which it
isused and is not one of the special variablesdefined by t cc.

5.8.5 Special variablesdefined in TETware-Lite

The following special variables are defined by tcc and may be substituted as described
previously. Some of the variables are always defined, whereas others are only defined if the
corresponding parameter has been specified by the user.

${ TET_ROOT} The location of the tet root directory, as defined by the
TET_ROOT environment variable. This variable is always
defined.

${ TET_TSROOT} The location of the test suite root directory as determined by
t cc. Thisvariableisaways defined.

${TET_TWP_D R} The location of the temporary directory as determined by
t cc. Thisvariableisaways defined.

${ TET_EXECUTE} The location of the aternate execution directory if one has

been specified either by the TET _EXECUTE environment
variable or by tcc -a; otherwise this variable is not
defined.

Page 64 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

${ TET_SUl TE_ROOT} The alternate location below which the test suite root
directory is located if one has been specified by the
TET_SUl TE_ROOT environment variable; otherwise the
vaue of this variable is the same as the vaue of
${ TET_RQOOT} . Thisvariableis aways defined.

${ TET_RUN} The location of the runtime directory if one has been
specified by the TET _RUN environment variable; otherwise
this variable is not defined.

5.8.6 Configuration variable expansion in Distributed TETware

The way in which configuration variables are expanded in Distributed TETware is rather more
complicated than in TETware-Lite. This is because variables may be defined either on the local
system or on remote systems.

Recall that in Distributed TETware there are a master configuration and one or more per-
system configurations for each mode of operation. These are described in the section entitled
“*Configuration variable processing in Distributed TETware'’ earlier in this chapter.

Configuration variable expansion is performed on the per-system configurations and not on the
master configurations. Thus, variable expansion is performed separately on the configuration
variables for each system after the values on all the systems have been determined.

A result of this is that when the value of a variable is to be substituted, this operation is
performed within the context of the variable whose value is being expanded. There are severa
casesto consider; each caseisillustrated in the examples that follow. 1n these examples, suppose
that thereisalocal system (system 0) and two remote systems (systems 1 and 2).

Example 1

Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supert est
VERSI ON=3. 4
MESSAGE=t his i s ${PRODUCT} version ${VERSI ON\}

These variables are copied into the per-system configurations for each system. Then the variables
are expanded.

After expansion, NESSAGE has the value ‘‘thisis Supertest version 3.4’ on all systems.
Example 2
Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supert est
VERSI| ON=3. 4
MESSAGE=t hi s i s ${PRODUCT} version ${VERSI O\}

and the following entry in the corresponding configuration file on remote system 1:
PRCDUCT=Megat est

The assignment for PRODUCT made on the local system is copied to the per-system
configurations for the local system and for system 2, and the assignment for PRODUCT made on
system 1 is copied to the per-system configuration for system 1. The other assignments made on
the local system are copied into the per-system configurations for each system. Then the

May 2000 Page 65
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

variables are expanded.

After expansion, MESSAGE has the value ‘‘this is Supertest version 3.4’ on the local system and
on system 2, and the value *‘thisis Megatest version 3.4"" on system 1.

Example 3

Consider the following entries in one of the per-mode configuration files on the local system:
PRODUCT=Supert est
TET_REMDO1_PRODUCT=Megat est

VERS| ON=3. 4
MESSAGE=t his i s ${PRODUCT} version ${VERSI ON}

The assignment for PRODUCT is copied to the per-system configurations for the local system and
for system 2. The assignment for TET_REM)01_ PRODUCT has its TET _REMDO1_ prefix
removed, then it is copied to the per-system configuration for system 1. The other assignments
are copied into the per-system configurations for each system. Then the variables are expanded.

After expansion the results are the same as those described in the previous example.

Example 4

Consider the following entries in one of the per-mode configuration files on the local system:
PRODUCT=Supert est
TET_REMDO1_PRODUCT=Megat est

VERS| ON=3. 4
MESSAGE=t hi s i s ${ TET_REMDO1_PRODUCT} version ${VERSI ON}

The variable assignments are copied as described in the previous example. Then the variables are
expanded.

After expansion, MESSACE hasthe value ‘‘thisis Megatest version 3.4 on all systems.

Example 5
Consider the following entries in one of the per-mode configuration files on the local system:

VERSI ON=3. 4
MESSAGE=t hi s i s ${PRODUCT} version ${VERSI ON\}

and the following entry in the corresponding configuration file on remote system 1:
PRODUCT=Megat est

The assignment for PRODUCT made on system 1 is copied to the per-system configuration for
system1l. The assignments made on the local system are copied into the per-system
configurations for each system. Then the variables are expanded.

After expansion, MESSAGE has the value *‘this is Megatest version 3.4"" on system 1. The value
of MESSAGE cannot be expanded in the per-system configurations for the local system and for
system 2, since there is no value for PRODUCT defined in the configurations for those systems.

5.8.7 Special variables defined in Distributed TETware

The Distributed version of t cc defines the same special variables on the local system as does the
Lite version of t cc. In addition, the Distributed version of t cc defines similar variables in
respect of remote systems. The values of these variables may be substituted in the values of
variables defined in the per-mode configurations or in the distributed configuration, using the
rules described in the previous section.

Page 66 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The following special variables are defined by tcc and may be substituted as described
previously. Some of the variables are aways defined, whereas others are only defined if the
corresponding parameter has been specified by the user. In these descriptions, nnn stands for the
number of any remote system! which is mentioned in the scenario being processed.

${ TET_REMDOO_ROOT} The location of the tet root directory on the local system, as
defined by the TET_ROOT environment variable. This
variable is always defined.

${ TET_REMhnN_TET_ROOT} The location of the tet root directory on remote system nnn,
as specified in the distributed configuration. These variables
are only defined if system nnn is mentioned in the scenario
being processed.

${ TET_REMDOO_TET_TSROOT}

The location of the test suite root directory on the local
system as determined by tcc. This variable is always
defined.

${ TET_REMhnn_TET_TSROOT}

The location of the test suite root directory on remote system
nnn, as specified in the distributed configuration. These
variables are only defined if system nnn is mentioned in the
scenario being processed.

${ TET_REMDOO_TET_TMP_DI R}

The location of the temporary directory on the local system
asdetermined by t cc. Thisvariableis always defined.

${ TET_REMhnn_TET_TMP_DI R}

The location of the temporary directory on system nnn as
determined by tcc. These variables are only defined if
system nnn is mentioned in the scenario being processed.

${ TET_REMDOO_TET_EXECUTE}

The location of the alternate execution directory on the local
system if one has been gpecified either by the
TET _EXECUTE environment variable or by tcc’s -a
command-line option; otherwise this variable is not defined.

${ TET_REVhnn_TET_EXECUTE}

The location of the aternate execution directory on system
nnn if one has been specified in the distributed configuration
and system nnn is mentioned in the scenario being processed,;
otherwise these variables are not defined.

11. That is: anumber greater than zero.

May 2000 Page 67
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

${ TET_REMDOO_TET_SUl TE_ROOT}

The dternate location below which the test suite root
directory on the local system is located if one has been
specified by the TET_SUI TE_ROOT environment variable;
otherwise the value of this variable is the same as the value of
${ TET_REMDOO_TET_ROOT}. This variable is aways
defined.

${ TET_REMhnn_TET_SUlI TE_ROOT}

The value of TET_REMhnn_TET_SUl TE_ROOT if that
variable is defined in the distributed configuration and system
nnn is mentioned in the scenario being processed; otherwise
these variables are not defined.

${ TET_REMDOO_TET_RUN} The location of the runtime directory on the local system if
one has been specified by the TET_RUN environment
variable; otherwise this variable is not defined.

${ TET_REMNN_TET_RUN} The location of the runtime directory on system nnn if one
has been specified in the distributed configuration and system
nnn is mentioned in the scenario being processed; otherwise
these variables are not defined.

5.8.8 Using special variablesin Distributed TETware

As described in a previous section, when the value of avariable isto be substituted in the value of
another variable, this operation is performed within the context of the variable whose value is
being expanded. This behaviour is particularly useful if the name of a special variable is used
without its TET_REMhnn__ prefix.

For example, in Distributed TETware it is necessary to specify the tet root and test suite root
directories for each remote system in the distributed configuration. In most cases the name of the
test suite root directory relative to the tet root directory is the same on all systems. Consider the
following setup:

a. Thetest suiteiscalednyt est sui t e.
b. Thetest suite runs on the local system and on remote systems 1 and 2.

c. Thelocation of the tet root directory on system 1is/ user 1/ TET and that on system 2 is
/ home/ TET.

d. Analternate execution directory calledt s_exec isused on each system.
When configuration variable expansion syntax is not used, the distributed configuration would
look like this:

TET_REMDO1_TET_ROOT=/ user 1/ TET
TET_REMDO1_TET_TSROOT=/user 1/ TET/ nmytestsuite
TET_REMDO1 TET_EXECUTE=/user 1/ TET/ nytestsuite/ts_exec
TET_REMD02_TET_ROOT=/ hone/ TET

TET_REMD02_TET_TSROOT=/ hone/ TET/ nytest suite
TET_REMDO2_TET_EXECUTE=/ hore/ TET/ myt est sui te/ts_exec

However, when configuration variable expansion syntax is used, the distributed configuration

Page 68 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

looks like this:

TET_REMDO1_TET_ROOT=/ user 1/ TET
TET_REMDO2_TET_ROOT=/ hone/ TET

TET _TSROOT=${ TET _ROOT}/ nytestsuite
TET_EXECUTE=${ TET_TSROOT}/ts_exec

This makes for a more easily maintained distributed configuration, particularly when large
numbers of remote systems are involved.

May 2000 Page 69
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 70 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

6. Other test suitefiles

6.1 Introduction
This chapter describes the formats of other files that may be provided with each test suite.

6.2 Result codes

6.2.1 Description

A mapping mechanism is provided to enable TETware processes to interpret results from test
suites. This mapping is contained in aresult codes file. When atest purpose returns a particular
result, the TCM determines the action required for each result code and writes an entry in the
journal. The API library ensures that the test purposes only generate standard or test suite
specified results.

TETware provides the default set of result codes that are defined in IEEE Std 1003.3-1991.
Additional result codes may be defined on a per installation or per test suite basis.

6.2.2 Result code definitions

TETware provides the standard result code definitions. The user can supply additional result
code definitions. The standard codes are defined in an internal table provided by TETware. Itis
an error for the user to assign different meanings to the standard codes.

The provision of user-supplied result code files is optional. User-supplied codes for use by all
test suites may be defined in afile which is located in the tet root directory. User-supplied codes
for use by a particular test suite may be defined in afile which is located in that test suite’s test
suiteroot directory. When Distributed TETware is used these file reside on the local system.?

By default, the names of each user-supplied fileist et _code. However, a different name may
be defined by use of the TET_RESCODES_FI LE configuration variable. t cc determines the
name of each user-supplied result code file using the following algorithm:

o If build mode has been selected and TET _RESCODES FI LE is defined in the build
configuration file, then that value is used.

e If no file name has yet been determined and execute mode has been selected and
TET_RESCODES_FI LE is defined in the execute configuration file, then that value is
used.

o If no file name has yet been determined and clean mode has been selected and
TET_RESCODES_FI LE isdefined in the clean configuration file, then that value is used.

o If no file name has yet been determined thent et _code isused.

12. That is: the system on which t cc isinvoked.

May 2000 Page 71
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

When result code files are supplied, the precedence of result definitions is as follows (highest
precedence first):

o Codes defined in thefile at the test suite root level.
o Codes defined in the file at the tet root level.
o Codes defined in the internal table provided by TETware.

This precedenceisillustrated in the following diagram:

Standard
result codes

User-supplied
per-installation
result codes

User-supplied
per-test suite
result codes

Result codes
used by
TETware components

Figure 16. Precedence of result code definitions

6.2.3 Fileformat

Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields, defined as follows:

1. The result code. This is a non-negative decimal integer between 0 and 127, inclusive.
Result codes from 0 to 31 (inclusive) are reserved for use by TETware. The remainder are

available for use by the test suite author.

2. The name of thisresult. Thisis afield delimited by double quotes which contains a text
string describing the result. Thisfield may contain embedded spaces.

3. The action to take when this result is encountered. Thisis an indication of what the TCM
should do when the result is returned by a test purpose. Possible values are Cont i nue

Page 72 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

and Abor t . The default value for thisfield is Cont i nue.

6.2.4 Exampleresults codefile

The following is an example result codes definition file. It contains some user-defined result
codes as wel| as the standard result codes provided by TETware.

first, the standard result codes

0 ' PASS" Cont i nue
1 "FAI L" Cont i nue
2 " UNRESOLVED"' Cont i nue
3 " NOT| NUSE" Cont i nue
4 " UNSUPPORTED" Cont i nue
5 " UNTESTED"' Cont i nue
6 "UNI NI TI ATED" Cont i nue
7 " NORESULT" Cont i nue
then, sone codes for use with this test suite
32 "I NSPECT" Cont i nue
33 "STOP RUN' Abor t

6.3 System definitions

6.3.1 Description

Distributed TETware uses a systems definition file to define the mapping of a TETware
system ID to a host name or other parameter which may be used by the network code to establish
aconnection with that system. The systems definition file is not used by TETware-Lite.

The name of thisfileissyst ens and it islocated in the tet-root directory on each system.

When remote or distributed testing is to be performed, TETware components on each
participating system each refer to the syst ens file on that system when mapping a TETware
system ID to a network address. You must ensure that the same mappings are defined on all
participating systems, otherwise unpredictable behaviour will occur.

In addition, test cases can access entries in the system definition file by calling the
tet _getsyshbyi d() API function.

6.3.2 Fileformat

Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields. The first field contains the TETware system identifier. System zero must
aways refer to the system on which t cc is to be invoked (the master or local system). Other
(remote or slave) systems are specified by system identifiers with positive values. The value of
the system identifier for aremote system must be in the range 1 through 999.

When Distributed TETware is built to use the socket network interface, each entry in the
syst emns file takes the following form:

sysid host [tccd-port]

The system is identified by the value in the host field. The host name lookup functions on each
system must be able to perform address resolution on each host name listed in the sy st ens file.
Note that it is an error to specify ahost name as| ocal host since that name cannot be used to
connect to another system.

May 2000 Page 73
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

When the optional tced-port field appears, it specifies the well-known port number to be used
when a process connects to t ccd on a particular system. If the tccd-port field is not specified,
processes use the well-known port number taken from the tcc service specification when
connecting tot ccd on aparticular system.

When Distributed TETware is built to use the X/Open Transport Interface (XTI), each entry in
the syst ens file takes the following form:

sysid host address-string
The host field is not used when Distributed TETware is built to use X T1.13

The address-string field contains a hexadecimal string representation of a data item which is used
to identify the address of a network endpoint. The network endpoint thus identified must refer to
the entity which is used by the Test Case Controller daemon (t ccd) on the named system to
accept connections from client processes. Each byte in the data item is represented by a pair of
hexadecimal digits in the address string; for example, a byte in the data item with decimal value
13 is specified in the address string as 0d. The precise format of the data item depends on which
transport provider is being used.

6.3.3 Examplesyst ens files

Here are some example syst ens files. Note that, in each example, one of the machines is
referenced by more than one logical system ID.

The following example is for a machine on which TETware has been built to use the socket
network interface:

Exanple systemfile for INET i nplenentation on host 'ozone

000 ozone
001 neon
002 argon
003 ozone

Entries for al the host names mentioned in this file should appear in the hosts database on each
system.

The following example is for a machine on which TETware has been built to use the XTI
network interface:

Exanple systemfile for XTI inplenmentation on host ’'ozone

000 ozone 000204010a010200000000000000000000
001 neon 000204010a010300000000000000000000
002 argon 000204010a010400000000000000000000
003 ozone 000204010a010200000000000000000000

The contents of the XTI address string depends on the transport being used, the network
implementation and the architecture of the machine on which the file resides. Therefore,
although the XTI address strings specified for a particular system in the syst ens files on each
machine must describe the same transport address, the contents of this field for a particular entry

13. However, test cases may still accessthe valuein thisfield by calling thet et _get sysbyi d() API function.

Page 74 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

may be different on different types of machine.

May 2000 Page 75
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 76 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

7. TheTest Case Manager

7.1 Introduction

TETware supplies functionality to support the development of test cases. This chapter describes
that functionality for a Test Case Manager (TCM) or ‘‘wrapper’’ that provides a suitable
environment for the execution of invocable components as requested by the Test Case Controller
(tcc).

The TCM is not a separate program but instead is part of each TETware API. Whichever
language binding is used, the appropriate version of the TCM and API are linked with the user-
supplied test code to produce each test case.

TETware-Lite and Distributed TETware provide different versions of the C, C++ and Java
TCMs. However, the same versions of the Shell, Korn Shell and Perl TCMs are supplied with
both Distributed TETware and TETware-Lite. This is because in Distributed TETware the C,
C++ and Java TCMs support distributed test cases whereas the others do not.

Through the TCM, developers gain support in doing the following:
« Initialising and cleaning-up test cases.
« Selecting invocable components and test purposes.
« Insulating from the test environment.

e Making journal entries.

7.2 TCM flow of control

This section describes the flow of control in a TETware TCM. When Distributed TETware is
used to execute parts of a distributed test case, this processing takes place on each participating
system except where noted otherwise. When TETware-Lite or TCMs that do not support
distributed testing are used, processing that is described as being associated with distributed test
casesis not performed.

The general flow of control for test cases written to one of the TETware APIsis asfollows:
1. TheTCM arrangesfor accessto its respective configuration information.

2. The TCM outputs a Test Case Manager start message to the execution results file. When
processing a distributed test case this operation is only performed by the master TCM.

3. The TCM builds alist of test purposes to be executed from the list of requested invocable
components. |If no invocable components were requested, or if the specia invocable
component al | is requested, the TCM builds this list from al of the invocable
components in the test case.

4. The TCM arranges for the processing of asynchronous events.'*

14. But see the section entitled ** Portability’’ later in this chapter.

May 2000 Page 77
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

10.
11.

12.

13.

14.

15.

16.

When processing a distributed test case, all the TCMs synchronise with each other before
executing their respective start-up procedures (if any).

When processing a distributed test case, al the TCMs synchronise at the commencement of
each invocable component.

The TCM prints an Invocable Component Start message to the execution results file before
it executes each invocable component. When processing a distributed test case this
message is printed by the master TCM.

When processing a distributed test case, al the TCMs synchronise at the commencement of
each test purpose. During this synchronisation process the TCMs ensure that they are
executing a common test purpose.

The TCM prints a Test Purpose Start message to the execution results file before it
executes each test purpose. When processing a distributed test case this message is printed
by the master TCM.

The TCM executes each test purpose in the invocable component.

During the test purpose any test case information lines generated by the user-supplied test
code are entered into the execution results file.

If an event occurs which interrupts the processing of atest purpose, the interrupted process
immediately proceeds to the end of the test purpose and outputs a test result of
UNRESOLVED. If the event is a termination message from the TCC, the TCM reports
receipt of the message to the execution results file, executes the specified clean-up
procedure (if any) and exits;'® otherwise it continues by processing the next test purpose.

If aTCM is about to execute a test purpose that has been marked as cancelled, it instead
reports the test purpose as UNI NI TI ATED and continues to process the next test purpose
(if any). If atest purpose has been marked as cancelled in one part of a distributed test
case, the TCM informs al the others of the cancellation during the automatic
synchronisation at the start of the test purpose.

When processing a non-distributed test case, the TCM prints a test purpose result to the
execution results file at the end of each test purpose. When processing a distributed test
case, al the TCMs synchronise at the end of the test purpose. The execution results
daemon gathers the partial results recorded by each test purpose part, arbitrates between
them and prints the consolidated result to the execution results file.

Once al of the test purposes in an invocable component have been executed, the TCM
outputs an Invocable Component End message to the execution results file and moves on to
the next invocable component. When processing a distributed test case this message is
only printed by the master TCM.

After all test purposes for all requested invocable components have been executed, the
TCM executes the specified clean-up procedure (if any) and exits normally.

15. When the TCC terminates the TCM on a Win32 system, the TCM exits immediately without reporting the event or
executing the clean-up procedure. See the section entitled ** Portability’’ later in this chapter.

Page 78 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

17. If for any reason, a particular TCM fails to execute the requested set of invocable
components or the specified start-up or clean-up procedure, the relevant APl will exit
abnormally. When a distributed test case is being processed and one test case part
terminates abnormally, this event is communicated to the other parts at the next automatic
synchronisation point; whereupon they also terminate without executing any more test
purposes.

7.3 TCM options

In addition to the ordinary TCMs, each version of TETware provides versions of the C and C++
TCMs which are suitable for use in multi-threaded environments. When either version of
TETwareis built on a UNIX system, the user may choose to configure the thread-safe versions of
the C and C++ TCMsto support either Ul or POSIX threads (but not both at the same time).

It can be seen that there are a number of TCM options from which to choose. The test suite
author should ensure that the correct APl is used with each TCM. The following TCM/API
options are available:

e TETware-Lite, C TCM/API, single-threaded version.

o TETware-Lite, C++ TCM, single-threaded version, use with the single-threaded C API
library.

e TETware-Lite, C TCM/API, multi-threaded version.

e TETware-Lite, C++ TCM, multi-threaded version, use with the multi-threaded C API
library.

» Distributed TETware, C TCM/API, single-threaded version.

o Distributed TETware, C++ TCM, single-threaded version, use with the single-threaded
C AP library.

o Distributed TETware, C TCM/API, multi-threaded version.

o Distributed TETware, C++ TCM, multi-threaded version, use with the multi-threaded
C APl library.

o TETware-Lite or Distributed TETware, Shell TCM/API.

e TETware-Lite or Distributed TETware, Korn Shell TCM/API.

e TETware-Lite or Distributed TETware, Perl TCM/API.

o TETware-Lite, Java TCM/API.

o Distributed TETware, Java TCM/API.
Note that test cases using the Distributed versions of the C, C++ and Java TCMs must always be
run under control of the Distributed TETware TCC. They cannot be run stand-alone or under the

control of the TETware-Lite TCC. Test cases which use the other TCMs may be run stand-alone
or under control of either TCC.

May 2000 Page 79
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

7.4 TCMsthat support distributed testing

The information presented in this section applies only when the C, C++ and Java TCMs are used
with Distributed TETware. It does not apply when other TCMs or TETware-Liteis used.

When the Distributed version of a TCM is used to manage parts of the same distributed test case
running on different systems, one TCM assumes the role of master and the others assume the role
of slaves. However, unlike previous DTET implementations, the master system is not
constrained to be the system on which t cc isinvoked. Indeed, it is possible for the Distributed
TCC to control both distributed and non-distributed test cases which are processed entirely on
remote systems.

The identity of master and slave TCM is determined as follows: when the Distributed TCC
processes a test case, it does so with reference to alist of systems on which the test case is to be
processed. Initially thislist contains only one entry for the local system (system ID 0). However,
this list is updated when t cc processes test cases specified within the scope of arenpt e or
di stri but ed directive in the test scenario. Whent cc executes either a distributed or a non-
distributed test case on a particular system, it communicates the system’s ID to the TCM. When
t cc determines that a test case is a distributed test case, it communicates the list of al the
participating systems to the TCM that is managing each test case part. However, when t cc
determines that a test case is a non-distributed test case, it communicates a system list to the
TCM which contains only that TCM’s system ID.

So a TCM aways knows the ID of the system on which it is running and can determine whether
or not it is processing a distributed test case by counting the number of system IDsin the list that
it receives fromt cc. A Distributed TCM acts as a master TCM if its system ID is the first (or
only) ID in the list. Conversely, a Distributed TCM acts as a dave TCM if its system ID is the
second or subsequent ID in thelist.

Since al the parts of a distributed test case share the same execution results file, it is appropriate
for only one of the test case partsto print TCM Start, IC Start, IC End and TP Start messages to
the execution resultsfile. Thisfunction isonly performed by the master TCM in adistributed test
case.

In addition, Distributed TCMs that are managing parts of a particular distributed test case on
different systems al synchronise with each other at certain points during test case execution.
These synchronisation points occur at the following times:

e At TCM startup time.

« Before the user-supplied startup function is called by the TCM.

« Beforethefirst test purpose function in an invocable component is called by the TCM.

« Before each test purpose function is called by the TCM.

o When each test purpose function returns control to the TCM.

« Before the user-supplied cleanup function is called by the TCM.
Thus it can be seen that TCMs which support distributed testing ensure that each part of a
distributed test case keepsin step with al of its peers throughout the execution process. Refer to

the chapter entitled ‘*Test case synchronisation” in the TETware User Guide for details of
synchronisation between TCMs that are managing the different parts of a distributed test case.

Page 80 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

7.5 Portability

On Win32 operating systems the Cruntime support library does not really support the
asynchronous event handling that is provided by the signal mechanism on a UNIX system.
Therefore the Win32 versions of the C TCM do not attempt to handle asynchronous events of
this type.

This and other issues related to the processing of test cases on Win32 systems are discussed in the
appendix entitled *‘ Implementation notes for TETware on Win32 systems’’ in the TETware User
Guide.

May 2000 Page 81
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 82 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8. TheC API

8.1 Introduction

This chapter describes the TETware C API. Different versions of the C APl are supplied with
TETware-Lite and Distributed TETware. The Distributed version of the C APl may be used
when writing both distributed and non-distributed test cases, whereas the Lite version of the
CAPI may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

The synopses here are described in accordance with the International C Standard SO 9899. An
SO 9899 or Common Usage C (as defined in 1SO 9945-1) conforming compiler is required to
develop test cases using these interfaces. See the chapter entitled **Writing a C language API-
conforming test suite’’ for an example of how to write a C language based test suite.

8.2 C language binding

On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

o tet-root/ | i b/ t et 3/ 1 i bapi . a contains the support routines for test purposes.

o tet-root/ | i b/ tet 3/t cm o contains the TCM. This file contains the routine mai n()
and associated support routines for the sequencing and control of invocable components
and test purposes.

o tet-root/ | i b/tet 3/tcnthil d. o contains the child process controller. This file
contains a mai n() routine which can be used by test suites when building processes
which test purposeswill launch usingthet et _exec() andt et _spawn() interfaces.

o tet-root/ | i b/t et 3/t cnr em o contains the remote executed process controller. This
file contains amai n() routine which can be used by test suites when building processes
which test purposes will launch using the t et _renexec() interface. Note that in
Distributed TETware the use of t et _remexec() (and therefore the use of this file) is
deprecated. It is possible that this file may be removed from a future TETware release.
Thisfileisnot supplied in TETware-Lite.

o tet-root/ i nc/tet 3/tet _api.h contains prototypes for the functions, declarations of
al the global variables, and definitions of all the structures and manifest constants that
constitute the C API.

The names of these files are similar on Win32 systems; the differences are that object files (. o
files) instead have a. obj suffix and library files (. a files) instead havea. | i b suffix.

The abject and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled **Using shared AP libraries” elsewherein this guide.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate for the available Software Generation System. Test suite authors are advised to allow
easy specification of alternate path names for these files (possibly through TETware configuration
variables), thus improving the flexibility of their suites.

May 2000 Page 83
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

A thread-safe version of the C API is supplied in addition to the standard (that is: single-threaded)
version described here. Distinct versions of the thread-safe C APl are supplied with Distributed
TETware and TETware-Lite. Differences between the standard and thread-safe APIs are
described in the chapter entitled ** The Thread-safe C and C++ APIS’ elsewhere in this guide.

The interfaces described in this chapter can also be used by test cases written to the C++ language
binding, although the names of the files containing these interfaces are different. As with the
C API, the C++ language binding is provided in both standard and thread-safe versions, and
distinct versions of each are supplied with Distributed TETware and TETware-Lite. The C++
API isdescribed in more detail in the chapter entitled ** The C++ API’’ elsewherein this guide.

8.3 TCC dependencies

Test cases built to the Lite version of this APl may be either be executed stand-alone or under the
control of either TCC version. Test cases built to the Distributed version of this API require the
Distributed TCC to execute; they cannot be executed stand-alone. This is because the amount of
effort required to establish an environment in which test cases could execute without the TCC is
substantial. This applies especialy to the requirement for test purpose synchronisation and result
arbitration.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTI VI TY
defaultsto 0 and TET_CONFI Gto undefined. If TET _CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codesis used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when atest case is executed stand-alone.

Page 84 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8.4 Test case structure and management
8.4.1 Introduction

These functions and variables are used when test cases are initialised and cleaned up, and in
selecting invocable components and test purposes to execute. Some of these elements are
provided by the API, whereas others must be defined in each test case.

There are two methods that may be used to specify the list of invocable components and test
purposesin atest case, asfollows:

« When the static method is used, the list of invocable components and test purpose functions
in the test case must be specified by the test suite author at compile time in a static array
which is part of the user-supplied test code. The TCM determines which invocable
components and test purposes to execute by inspecting the contents of this array.

« When the dynamic method is used, the list of invocable components and test purpose
functions in the test case may be specified at run time by the test case itself. The TCM
calls certain test case interface functions to determine which invocable components and test
purpose functions exist within the test case, and to invoke each test purpose function which
isto be executed. When the dynamic method is used, all of the test case interface functions
must be provided in the user-supplied test code.

The method used by the TCM to determine which invocable components and test purpose
functions have been specified in the test case depends on whether or not the test case contains
these interface functions. If the test case contains the set of interface functions that are called by
the TCM, then those functions are used. Otherwise, the TCM uses a default set of interface
functions that are part of the APl library; this set implements the interface to the static
tet _testlist[] aray.

The two methods that may be used to specify invocable components and test purpose functions
are described in more detail in the two subsections that follow.

8.4.2 Statictest caseinterface—thetet testlist[] array
Synopsis

struct tet testlist {
void (*testfunc)(void);
int icref;

1

struct tet testlist tet testlist[];

Description

When the static method is used to specify the invocable components and test purpose functionsin
atest case, thet et _testlist[] array consistsof anarray of t et _t est!li st structuresthat
must be defined in the user-supplied test code. Each element in this array specifies a user-
supplied test purpose function that may be called by the TCM.

May 2000 Page 85
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Membersof thet et _testl i st structure have meanings as follows:
t est func A pointer to the test purpose function.

i cref The number of the invocable component to which this function belongs.

Thetet testlist[] array isterminated by a structure with the t est f unc element set to
NULL. No other element of the array will use the value NULL for this element.

For each requested invocable component, the TCM scansthetet testlist[] array and
executes, in order, each test purpose that is associated with that invocable component. When
al | invocable components are regquested, the TCM executes all ICs for which entries are defined
inthetet _testlist[] array, inorder of ascending IC number. In both cases the TCM will
calculate the number of test purposes that are to be executed for each requested invocable
component.

The TCM does not perform any error checking on the contents of thet et _testlist[] array.
It is the test author’s responsibility to ensure that the contents of the array is correctly specified.
In particular, it should be noted that in a distributed test casethet et _testlist[] structure
must be exactly replicated on each system that is to participate in the test and, therefore, contain
the same number of members. This may require the inclusion of test purposes on some systems
that do nothing except register aresult of PASS.

Application notes

When atest case containsat et _testlist[] array, it should not contain any of the interface
functions described in the next subsection.

8.4.3 Dynamictest caseinterface—t et _get maxi c(),
tet _getmnic(),tet _isdefic(),tet _gettpcount(),
tet _gettestnunm() andtet _i nvoket p()

Synopsis
int tet_getmaxic(void);
int tet_getminic(void);
int tet_isdefic(int icnum;
int tet_gettpcount(int icnum;
int tet_gettestnum(int icnum int tpnum;
int tet_invoketp(int icnum int tpnuny;

Description

The TCM calls these functions to determine which invocable components and test purpose
functions have been specified in the test case. If any of these functions are provided in the user-
supplied code, they must al be provided. If the user-supplied code does not contain this set of
functions, the TCM uses a default set that is provided in the API library.

The tet _getmaxic() and tet_getm nic() functions should return the highest and
lowest invocable component number that are defined in the test case. Invocable component
numbers should be non-negative values. It is permissible for gaps to exist in the range of
invocable component numbers that are defined in the test case, but the TCM operates less
efficiently when thisis the case.

Page 86 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The TCM cdls tet _getnmaxic() and tet _getm nic() when building the list of
invocable components to be executed. This operation is performed soon after the start of
processing, before the test case startup function'® is called.

Thet et _i sdefi c() function should return 1 if the invocable component specified by i cnum
is defined in the test case, or 0 if the invocable component is not defined.

The TCM cdls tet i sdefic() when building the list of invocable components to be
executed, and before executing each invocable component in the list. It is likely that the TCM
will call this function more than once for each invocable component number between the values
returned by callstot et _get maxi c() andtet _getnini c(). Itistheresponsibility of the
test suite author to ensurethat acal tot et _i sdefi c() foraparticular i cnumalways returns
the same value.

Thetet gettpcount () function should return the number of test purposes that have been
defined in the invocable component specified by i cnum or O if the invocable component
specified by i cnumhas not been defined in the test case.

The TCM cdls tet _gettpcount() once for each invocable component that is to be
executed, before invoking each test purpose function defined for that invocable component.

Thet et gettestnun() function should return the absolute test number for the test purpose
specified by t pnumwithin the scope of the invocable component specified by i cnum If this
test purpose has not been defined in the test case, t et _get t est nun() should return O.

The test purpose number specified by t pnum and the absolute test number returned by this
function both start at 1. For example, consider a test case which contains three invocable
components. The first and third invocable components each contain two test purposes, and the
second invocable component contains four test purposes. The following table shows the absolute
test number that should be returned by acall tot et _get t est nun{ icnum, tpnum) for each
of the defined test purposesin this example test case:

Relationship between invocable component number, test purpose
number and absolute test number in the example test case
I nvocable component Test purpose Valueto bereturned by
number (icnum) number (tpnum) | tet gettestnum)
1 1 1
1 2 2
2 1 3
2 2 4
2 3 5
2 4 6
3 1 7
3 2 8
any other (icnum, tpnum) combination 0

The TCM callstet _gettestnunm() immediately before invoking the specified test purpose

16. That is: the function specified by (*t et _startup) ().

May 2000 Page 87
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

function. The value returned is used to initialise the global variablet et _t hi st est whichis
described in alater subsection.

Thet et _i nvoket p() function should invoke the test purpose function specified by t pnum
within the scope of the invocable component specified by i cnum In this context the first test
purpose in a particular invocable component ichum hasat pnumof 1, and the last test purposein
the same invocable component hasat pnumoft et _get t pcount (icnum) .

The TCM calst et i nvoket p() in order to invoke the specified test purpose function. The
return value of this function is reserved for future use; for now, t et _i nvoket p() should
awaysreturn O.

Application notes

When any of the interface functions described in this section are provided in a test case, they
must all be provided.

When atest case contains the set of interface functions that are described in this section, it should
not contain the tet testlist[] array that is described in the previous section. (If you
provide the interface functions described in this section, any t et _testli st[] array will be
ignored by the TCM.)

It is possible to use the API functions which write information lines to the journal and access the
values of configuration variables from these functions.

It is the responsibility of the provider of these functions to ensure that they behave in a consistent
manner. For example, the results are undefined if acall totet _i sdefi c() for a particular
i cnumreturns 1 and a subseguent call for the same i cnumreturns 0. Likewise, the results are
undefined if a call to tet _getnaxic() or tet_getm nic() indicates that a particular
invocable component is defined and a subsequent call to tet isdefic() or
tet gett pcount () indicatesthat the invocable component is not defined.

When these functions are used in parts of a distributed test case, total chaos will break out if
when called with particular arguments they behave differently in the different test case parts.

By convention the absolute test number should increase uniformly for each test purpose defined
within the test case, just as it does when the static test case interface is used. Although the TCM
does not itself rely on this behaviour, test suite authors are reminded that failure to observe this
convention might confuse areport writer.

The flexibility provided by the dynamic test case interface makes it possible for atest caseto ater
its execution path on-the-fly, possibly depending on factors which can change between test runs.
When this capability is used it is possible that the journal produced might yield unexpected
results when used as input to a subsequent t cc run when the Rerun or Resume options are
specified.

The TCM will not call any of the functionst et _get t pcount () ,tet_gettest nun() and
tet i nvoket p() with an i cnumvaue which has not been returned by a previous call to
tet _getnaxic() or tet_getnminic(), or indicated as valid by a previous call to
tet isdefic(icnum). Likewise, the TCM will not call any of the functions
tet _gettestnun() and tet _invoketp() with a known good i cnum value and a
t pnumvalue which is outside of therange 1 throught et _gett pcount (ichnum) .

In TETware-Lite there is no practical limit to the number of invocable components and test
purpose functions that may be defined in atest case. In Distributed TETware the maximum value
of ani cnumislimited to 32766 and the maximum value of at pnumislimited to 32767.

Page 88 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

844 tet _startupandtet cl eanup

Synopsis
void (*tet _startup)(void);

void (*tet_cl eanup)(void);

Description

The function pointerst et _startup andt et _cl eanup must be defined in the user-supplied
test code. These pointers may be initialised with the addresses of the functions to be used to
perform test case specific start up and clean up procedures, respectively. The start up procedure
is executed before the first requested invocable component and the clean up procedure is executed
on completion of the last requested invocable component. These routines are executed
irrespective of which invocable components are requested. |If atest case does not need to perform
actions on start up and/or clean up, the corresponding pointer should be initialised to
TET_NULLFP (aNULL function pointer, definedint et _api . h).

845 tet thistest,tet nosigreset andtet pnane
Synopsis

int tet_thistest;
int tet_nosigreset;

char *tet_pnane;

Description
These variables are provided by the API.

When the static test case interface is used, thet et _t hi st est variable contains the sequence
number (starting at 1) of the element inthet et _testli st[] array that is associated with the
currently executing test purpose.

When the dynamic test case interface isused, thet et _t hi st est variable contains the absolute
test number that is returned by thet et _gett est num() function as described in a previous
subsection.

During execution of the start up and clean up functions, t et _t hi st est isset to zero.

Thevalue of t et _nosi gr eset determines whether or not the TCM reinstates signal handlers
for unexpected signals before each test purpose function is called. Initialy this variable contains
avalue of zero but this may be changed by the user-supplied test code. The default value of zero
means that signal handlers will be reinstated before each test purpose, in order to ensure that
unexpected signals do not go unnoticed if an earlier test purposeinstalled alocal handler but does
not restore the original handler before returning control to the TCM.

If tet_nosigreset is set to a non-zero value in the start up function called via
(*tet_startup) (), then signal handlers will be left in place between test purposes. In test
cases where stray signals constitute a test failure, it is recommended that t et _nosi gr eset is
left with its default value of zero. This is because, even if test purposes contain code to restore
the signal handling, this code will not be executed if an unexpected signal arrives and the TCM
skips to the start of the next test purpose.

The t et _pnane variable points to the process name as given on the test case command line.
This variable is aso provided in sub-programs that are linked with one of the TETware child

May 2000 Page 89
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

process controllers.

Portability
Setting thevalue of t et _nosi gr eset hasno effect on aWin32 system.

Page 90 May 2000
The Open Group

TET3-PG-1.6

Test Environment Toolkit
TETware Programmers Guide

8.5 Insulating from thetest environment

Description

The following configuration variables are used by the C language TCM to help determine which
events should be handled for the test case, and which should be passed through. They are used by
the TCM to support functionality to insulate test cases from the test environment.

TET SIG I GN

TET_SI G LEAVE

defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left (see TET_SI G LEAVE below) with its current
disposition, will be caught when raised and the result of the test purpose will
be set to UNRESCLVED because of the receipt of an unexpected signal. A
test purpose may undertake its own signa handling as required for the
execution of that test purpose. The disposition of signals will be reset after
the test purpose has completed, unless the global variable
tet _nosi greset is non-zero. The TCM needs to know how many
signals the implementation supports in order to set up catching functions for
these signals.

defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

The implementation on UNIX systems does not allow the signals defined by POSIX.1 (ISO
9945-1) to be set to be ignored or left unchanged, as this may pervert test results.

Portability

The facilities described here are not provided on Win32 systems.

May 2000

Page 91
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.6 Error handling and reporting
8.6.1 Introduction

Many of the API functions return error indications. The API provides the following variables for
use when determining and reporting the cause of these errors.

86.2tet _errno
Synopsis

int tet_errno;

Description

When an API function returns a value which indicates that an error has occurred, the APl stores a
value in the global t et _er r no variable which indicates the cause of the error. The APl does
not alter the value of this variable when acall to an API function is successful.

Distributed TETware uses a client/server architecture and calls to severa of the API functions
cause the API to send requests to server processes. A server sends a reply code in response to
each request that it receives. When the reply code indicates that a request has failed, the value
storedint et _err no isderived from the server reply code. A list of the server reply codes and
their meanings is presented in the appendix entitled ** Server reply codes’ in the TETware User
Guide.

The following error codes may be used by the API. These codes are defined int et _api . h.
Note that not all of them may be visible outside of the API.

TET_ER 2BI G Argument list too long.

TET_ER _ABORT Abort TCM on TP end.
TET_ER_CONTEXT Request out of context.

TET_ER DONE Event finished or aready happened.
TET_ER DUPS Request contained duplicate IDs.
TET_ER ERR General error code.

TET _ER FID Bad identifier infile i/o request.
TET_ER_FORK Can't fork.

TET_ER | NPROGRESS Event in progress.

TET_ER | NTERN Server internal error.

TET_ER | NVAL Invalid parameter.

TET_ER _LOGON Not logged on to server.

TET_ER MAGQ C Bad magic number in server request.
TET_ER_NCENT No such file or directory.

TET_ER PERM Privilege request/kill error.
TET_ER PID No such process.

TET_ER RCVERR Receive message error.

TET_ER REQ Unknown request code.

TET_ER_SI GNUM Bad signal number.

TET_ER _SNI D Bad sync identifier in SYNCD request.
TET_ER_SYNCERR Sync completed unsuccessfully.
TET_ER SYSI D System identifier not in system name list.
TET_ER TI MEDOUT Request or system call timed out.
TET_ER TRACE Tracing not configured.

Page 92 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

TET_ ER WAIT Process not yet terminated.
TET_ER XRI D Bad execution results file identifier in XRESD request.

Whenever an unsuccessful APl call setst et _errno to TET_ER_ERR (the genera error code),
adiagnostic message is generated somewhere which contains more precise details of the cause of
the error. If an error of this type occurs in the API library, the diagnostic is printed to the
execution results file as a TCM/API message if possible; if this is not possible, the diagnostic is
printed on the test case’ s standard error stream.

However, in Distributed TETware, an error of this type can also occur in aserver process. Inthis
case the more detailed error message is printed on the server’s standard error stream. The result
of thisisthat when an API cal is unsuccessful in Distributed TETwareandt et _errno issetto
TET_ER _ERR, the more detailed error message often appears in a TCCD log file on the local
system or on one of the remote systems that is participating in the test run.

863 tet errlist[] andtet_nerr
Synopsis

char *tet_errlist[];

int tet_nerr;

Description

Thetet_errlist[] aray contains short text strings, similar to those listed in the previous
section, which describe each of the values defined fort et _er r no.

When a cal to an APl function is unsuccessful, the string obtained when the vaue of
tet _errnoisusedtoindex thetet errlist[] array may be used when an information
line is printed to the execution resultsfile by the test case.

The global variable tet _nerr is initialised to the number of strings provided in the
tet _errlist[] aray. The value of t et _errno should be checked against t et _nerr
before using it to index the array in order to guard against the possibility that a new error code is
added to the API before the corresponding message is added to the array.

May 2000 Page 93
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.7 Makingjournal entries
8.7.1 Introduction

These functions are provided for use by test cases when making entries in the execution result
file.

872 tet _setcontext() andtet set bl ock()
Synopsis

void tet setcontext(void);

voi d tet_setbl ock(void);

Description

Thet et setcontext () function sets the current context to the value of the current process
ID, and resets the block and sequence numbersto 1. A cal tot et _set cont ext () should be
made by any application which executes af or k() to create a new process and which wishes to
write entries from both processes. The call tot et _set cont ext () must be made from the
child process, not from the parent.

The t et _set bl ock() function increments the current block ID. The value of the current
block ID is reset to one at the start of every test purpose or after acall tot et _set cont ext ()
which atered the current context. The sequence ID of the next entry, a number which is
automatically incremented as each entry is output to the execution results file, is set to one at the
start of each new block.

Return value

These functions do not return avalue.

Portability

The thread-safe version of tet setcontext () does not reset the block and sequence
numbers.

Page 94 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

873 tet _infoline(),tet_mnfoline(),tet_printf() and
tet _vprintf()

Synopsis
void tet_infoline(char *line);
int tet_minfoline(char **lines, int nlines);
int tet_printf(char *format, /* [arg,] */ ...);

int tet_vprintf(char *format, va_ list ap);

Description

A cal to tet_i nfoline() prints the information line specified by | i ne to the execution
results file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call tot et _i nfol i ne() causesthe
current context to be set to the value of the calling process ID and the current block ID to be set
to one.

Acdltotet _m nfoline() printsgroupsof information lines to the execution resultsfile. In
Distributed TETware these lines are printed using a single operation which guarantees that lines
from other test case parts do not appear in between lines printed by a particular call to this
function. | i nes points to the first in alist of pointers to strings which are to be written to the
execution results file in a single operation. A NULL pointer in the list is ignored. nl i nes
specifies the number of pointersin the list.

A cal to tet_printf() formats the string specified by format which may contain
pri ntf () -like conversion specifications and printsit to the execution results file as one or more
test case information lines. If after formatting the string is to contain more than one information
line, each line except the last should be delimited by a newline character. If the formatted string
contains aline that is longer than the maximum permitted for a journal information line, the API
adds extra newlines in order to break the long line into two or more shorter lines. If possible, a
newline added by the API will replace a blank character in the string so that the string is broken
on aword boundary. When formatting is complete, the lines are written to the execution results
fileasif by acal totet _m nfoline().

The operation of t et _vprintf () isthe same as that described fort et _printf () except
that, instead of being called with a variable number of arguments, it is caled with a variable
argument list.

Return value

Acdltotet infoline() doesnot returnavalue.

A successful call totet _minfoline() returns zero. If acal totet _m nfoline() is
unsuccessful, -1l isreturned andt et _er r no is set to indicate the cause of the error.

A successful call totet _printf() ortet_vprintf() returnsthe number of bytes written
to the execution resultsfile. If acalltotet _printf() ortet_vprintf () isunsuccessful,
—-lisreturned andt et _err no isset to indicate the cause of the error.

May 2000 Page 95
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

874 tet result()
Synopsis

void tet result(int result);

Description

A cdl totet _result() informsthe APl of the result of the test purpose from which it is
called. The API generates a TP result line which is printed to the execution results file by the
TCM upon test purpose completion. This ensures that al informational messages are written out
before the test purpose result, and that there is one (and only one) result generated per test
purpose. If the result code specified by r esul t isone for which the action specified in the result
codes file is to abort testing, then the TCM will exit after the test purpose has completed. If an
immediate abort is desired, then the test purpose should execute a return statement
immediately after thecall tot et _result().

If atest purpose doesnot call t et _resul t (), the TCM will generate a result of NORESULT.
If more than one cal to tet_result() is made with different result codes, the TCM
determines the final result code by use of precedence rules. The precedence order (highest first)
is:

FAI L

UNRESCLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPCRTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t () with one
of those codes are ignored except the first such call.

Thetet result() function should only be called from within the scope of a test purpose
function. It must not be called from atest case start up or clean up function.

Return value
This function does not return avaue.

Page 96 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8.8 Cancellingtest purposes
8.8.1 Introduction

These functions are provided for use when cancelling test purposes.

882 tet _del ete()
Synopsis

void tet _delete(int testno, char *reason);

Description

Acaltot et del et e() marksthetest purpose specified by the absolute test number t est no
as cancelled. When the static test case interface is used, the test purpose to be cancelled is the
one defined in the element specified by t et _t est! i st[testno—1] . When the dynamic test
case interface is used, the test purpose to be cancelled is the one identified by the
tet _gettestnun() function. If the test purpose specified by t est no is not defined in the
test case, acal tot et _del et e() hasno effect.

r eason should point to a text string which describes the reason why the test purpose is to be
marked as cancelled. This string should be contained in a static area.

When the TCM prepares to call a test purpose function, it first checks to see if the function has
been marked as cancelled by acall tot et _del et e() . If the test purpose has been marked as
cancelled, the TCM does not call the function but instead prints the line pointed to by r eason to
the execution results file and records aresult of UNI NI TI ATED.

Ifacaltotet del ete() namesat est no that has been marked as cancelled by a previous
tet_del ete() cal, the reason for cancellation is changed to the r eason specified in the
current call.

If tet del ete() is caled with a NULL r eason parameter, the test purpose specified by
t est no isreactivated if it has previously been marked as cancelled.

Note that the string pointed to by anon-NULL r eason parameter is not copied by the APl when
tet_del ete() iscaled. Therefore it must point to static data, as the calling function will
have terminated when the reason string is accessed by the TCM. Also, care should be taken not
to re-use a buffer that has previously been passedtot et _del et e() .

Ift et _del et e() iscaledin adistributed test case, the API notifies other participating TCMs
of the cancellation. This notification occurs when the TCMs synchronise with each other before
attempting to execute the cancelled test purpose. Thus, none of the TCMs execute a distributed
test purpose which has been cancelled on any of the participating systems.

Return value
This function does not return avaue.

Application notes

Thetet del et e() function can only usefully be called from a top-level process; that is, a
process which has been linked with the TCM module. It has no effect when called from a child
process,; that is, inthe (*chi | dpr oc) () function after acall totet for k() orinaprocess
which has been linked with one of the child process controllers.

May 2000 Page 97
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.83 tet reason()
Synopsis

char *tet _reason(int testno);

Description

The function t et _reason() returns a pointer to a string which contains the reason why the
test purpose with the specified absolute test number has been cancelled by a previous call to
tet _delete(). If this test purpose is not defined in the test case or is not marked as
cancelled, avalueof (char *) NULL isreturned.

Return value

If the specified test purpose exists and has been cancelled by apreviouscall tot et _del et e(),
acal totet _reason() returnsthe r eason parameter supplied with thet et _del et e()
call; otherwise, aNULL pointer is returned.

Application notes

Thetet reason() function can only usefully be called from a top-level process; that is, a
process which has been linked with the TCM module. The return value of a cal to
tet _reason() is undefined in a child process; that is, in the (*chi | dproc) () function
after acall tot et _fork() orinaprocesswhich has been linked with one of the child process
controllers.

It is not possibletouset et _reason() inadistributed test case to determine whether or not a
remote test purpose part has been cancelled.

Page 98 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8.9 Accessing configuration variables
8.9.1 Introduction

This function provides access to configuration variables. A description of how configuration
variables are defined is presented in the chapter entitled ‘* Configuration files’ elsewhere in this
guide. Note that when a test case or tool is processed by the TCC, this function only provides
access to variables that are defined for the current mode of operation.

When Distributed TETware is used, this function provides access to the per-system configuration
defined for the system on which the calling process is running. This function cannot be used to
access configuration variables defined on other systems or distributed configuration variables.

8.9.2 tet getvar ()
Synopsis

char *tet _getvar(char *nane);
Description

A cdl totet _getvar () returns a pointer to the value of the configuration variable narne.
This pointer will remain valid for the life of the process, regardless of subsequent calls to
tet_getvar().

If the variable specified by name is defined but has no setting, t et _get var () returnsapointer
to an empty string. If the variable specified by nane is undefined, t et _get var () returns a
NULL pointer.

Return value

This function returns the values described above.

May 2000 Page 99
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.10 Generating and executing processes
8.10.1 Introduction

These functions enable API-conforming child processes and sub-programs to be created and
administered.

8102 tet fork(),tet _exec() andtet _child

Synopsis

int tet fork(void (*childproc)(void), void (*parentproc)(void),
int waittine, int validresults);

int tet_exec(char *file, char *argv[], char *envp[]);

extern pid t tet _child;

Description

Thetet fork() function creates a new process which is a copy of the calling process and,
unless a negative wai t t i me is specified, modifies the signal disposition in the newly created
process such that any signals that were being caught in the parent process are set to their default
values in the child process. Then the function specified by (* chi | dproc) () iscalled in the
child process. If this function returns, the child process terminates with an exit status of 0.
Alternatively, the (*chi | dproc) () function may terminate the child process with a specific
exit status by means of acall tot et _exi t () or overlay the child process by means of acall to
tet _exec().

If (*parent proc) () isnot set to NULL, the function specified by (* par ent proc) () is
called in the parent process. Then the parent process waits for the child process to terminate and
obtains the child’s exit status. Then, the bitswhich areset inval i dr esul t s are cleared in the
child’s exit status value. If the result of this operation is zero, t et _f or k() assumes that the
child process terminated with a valid (or expected) exit status. Otherwise, tet fork()

assumes that the child process terminated with an unexpected exit status and reports this exit
status to the execution resultsfile.

If the value of the child’'s exit status is one of the expected values, t et _f or k() returns the
child’'s exit status; otherwise, t et _f or k() returns a value of -1 if the child's exit status is
unexpected or some other error occurs. Whent et for k() returns -1, it reports the nature of
the error using t et _i nf ol i ne() and sets the test purpose result code to UNRESOLVED by
calingtet _result().

If apositive wai tti e is specified, the parent process will ensure that the child process does
not continue to execute for more than wai t t i me seconds after the completion of the optional
(*parent proc) () function. If wai tti ne is zero, the parent process will wait indefinitely
for the child process to terminate. If anegativewai tti e is specified, the signal dispositionsin
the child process are not modified, the parent process does not wait for the child process to
terminate and the value of val i dresul ts is ignored. When a negative wai tti me is
specified, it is the responsibility of the (*parent proc) () function to wait for the child
process and interpret its exit status.

The APl cdls tet _setcontext() in the child process before caling the
(*childproc) () function, so that journa entries made by the child process may be
distinguished from journa entries made by the parent process. The APl makes cals to

Page 100 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

tet _set bl ock() in the parent process in order to distinguish between journal entries made
before, during and after execution of the child process.

tet _exec() may be called from a (*chi |l dproc) () function of a child process that is
generated by a call totet _fork(). tet_exec() passes the argument data specified by
ar gv[] and the environment data specified by envp[] to the process specifiedby fi | e. The
usage of thet et _exec() isequivaent to that of the ISO 9945-1 execve() function, except
that the APl adds arguments and environment data that are to be interpreted by the driver of the
executedfi | e.

The interface between t et _exec() and the sub-program launched by it has been designed to
enable the sub-program to use the API. Therefore the sub-program that is launched by a call to
t et _exec() must be built with the child process controller t crchi | d. o.

If t et _exec() iscaled without first calling t et _f or k() , the results are undefined. Thisis
because the t et _f ork() function makes calls to t et _set cont ext () in the child and
tet_set bl ock() in the parent to distinguish output from the child and from the parent
before, during and after execution of the (* par ent proc) () function.

The global variablet et _chi | d is provided by the API for use in the (* par ent proc) ()
function called fromt et _for k(). Itissettothe process|D of the child.

Return value

A successful call tot et _fork() returns the exit status of the child process. If an error occurs,
the child process terminates abnormally!’ or the child’s exit status is not one of the values
specified by val i dresul t s, -lisreturned andt et _er r no is set to indicate the cause of the
error.

A successful call tot et _exec() doesnot return. If acall tot et _exec() isunsuccessful, -1
isreturned andt et _er r no is set to indicate the cause of the error.
Portability

tet fork(),tet _exec() andtet chil d arenot provided on Win32 systems. Test suite
authors should instead uset et _spawn() andt et _wai t () whenwriting portable test cases.

17. That is: W FEXI TED(wait-status) in the parent processisfalse.

May 2000 Page 101
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.10.3 tet _spawn()
Synopsis

pidt tet spawn(char *file, char *argv[], char *envp[]);

Description

A cdl totet _spawn() creates a sub-program without the need to cal tet fork() first.
The meanings of the arguments to tet _spawn() are the same as the meanings of the
argumentstot et _exec(), described previoudly.

The interface between t et _spawn() and the sub-program launched by it has been designed to
enable the sub-program to use the API. Therefore the sub-program that is launched by a call to
tet _spawn() must be built with the child process controller t cnthil d. o (on UNIX
systems) ort cnchi | d. obj (on Win32 systems).

Return value

A successful call tot et _spawn() returns the process identifier of the newly created process.
If acall tot et _spawn() isunsuccessful, -1 isreturned andt et _errno is set to indicate the
cause of the error.

Portability

Test case authors are reminded that process identifiers are reallocated rather more frequently on a
Win32 system than they are on atypical UNIX system. Therefore, the use of the value returned
by t et _spawn() to generate a unique quantity (such as a temporary file name) is likely to be
less successful on a Win32 system than on a UNIX system.

On aWin32 system the type of the return value of this function (pi d_t) isdefined asani nt in
tet _api.h. This corresponds to the type of the value returned by the underlying
_spawnve() function in the C runtime support library. Thisvalueis actualy a HANDLE value,
so it is only meaningful within the context of the calling process. Therefore it should be
remembered that this value is not the same as the value that would be returned by a cal to
_get pi d() inthenewly created process.

Page 102 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8104 tet _wait ()

Synopsis
int tet_ wait(pid t pid, int *statp);

Description

A cdl totet _wait () waits for the process identified by pi d to terminate and returns that
process's exit status indirectly through * st at p. pi d is the process identifier returned by a
previous successful call tot et _spawn() .

Return value

A successful call tot et _wai t () returnszero. If acall tot et _wai t () isunsuccessful, -1is
returned andt et _er r no is set to indicate the cause of the error.

Portability

On a UNIX system, the value returned indirectly through *st at p is obtained from the
wai t pi d() system call. On aWin32 system, the value returned indirectly through * st at p is
obtained from a call to the _cwai t () function in the C runtime support library. Test suite
authors are reminded that the encodings of the process exit status values returned by these two
functions are likely to be different.

8.10.5 tet _kill ()

Synopsis
int tet_kill(pid_t pid, int sig);

Description

Acdltotet Kkill () sendsthesignal specified by si g to the process specified by pi d, which
should be the processidentifier returned by a previous successful call tot et _spawn() .

Return value

A successful call tot et kil | () returnszero. If acaltotet Kkill () isunsuccessful, -1is
returned andt et _er r no is set to indicate the cause of the error.

Portability

The si g parameter is ignored on a Win32 system; instead, a different method is used to
terminate the process specified by pi d.

Application notes

Test case authors are discouraged from using t et _ki | | () to terminate a process which is
running on a Win32 system. The reasons for this are discussed in the appendix entitled
“‘Implementation notes for TETware on Win32 systems'’ in the TETware User Guide.

May 2000 Page 103
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.11 Executed process functions
8.11.1 Introduction

These functions are provided for use by API-conforming processes that are launched by calls to
thet et _exec(),tet_spawn() andtet _renmexec() functions.

8112 tet _main()
Synopsis

int tet_main(int argc, char *argv[]);
int tet thistest;

char *tet_ pnane;

Description

The functiont et _nai n() must be supplied by the test suite developer. This function is called
by the main() function of the TETware child process controller. Prior to calling
tet _mai n(), the child process controller setsthe value of thet et _t hi st est variable to the
value of tet_thistest in the process that caled tet _exec(), tet_spawn() or
tet _remexec() . Thisvaue should not be changed by the executed process.

The current context is preserved from the calling process and the current block is incremented by
onebeforet et _mai n() iscaled.

If tet _mai n() returns, its return value becomes the child process's exit status. If the child
process was started by acall tot et _exec(), the child process's exit status will be returned to
the process which caled the t et _fork() function; in this case, the value returned from
tet _main() will usually match one of the valid result values specified in the cal to
tet _fork(). Ifthechild processwas started by acal tot et _spawn() , the child process's
exit status may be accessed in the parent by acall totet _wai t (). If the child process was
started by a call totet _remexec(), the child process's exit status may be accessed in the
parent by acall tot et _remnai t ().

The t et _pname variable in the child process contains the process hame as given in the
ar gv[0] parametertotet main().
Return value

If the user-supplied t et _mai n() function returns a value to the child process controller, this
value becomes the child process' s exit status.

Page 104 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8113 tet _exit() andtet | ogoff ()
Synopsis

void tet_exit(int status);
void tet | ogoff(void);

Description

The functiont et _exi t () should be used instead of exi t () by achild process that is started
by a cal to tet fork(), tet_exec(), tet_spawn() or tet renexec(). In
Distributed TETware this function logs off all TETware servers, then calls exi t () with the
specified st at us asargument. t et _exi t () should only be called from the child process that
isstarted by tet _fork(),tet_exec(),tet_spawn() ortet_renexec() and not by
any of its children.

The function t et _| ogof f () may be caled by a child process that is started by a call to
tet fork(),tet _exec(),tet_spawn() ortet renmexec() which does not need to
make any further TETware APl callsand isnot ableto call t et _exi t () at processtermination
time (for example: if one of the flavours of exec() is about to be called in the child process).
tet | ogoff () shouldonly be caled once from the child process. In Distributed TETware the
results are undefined if a process or any of its descendents makes any TETware API cals after
tet | ogoff () iscaled.

Return value
A successful call tot et _exi t () doesnot return.
Acdltotet _| ogoff () doesnot return avalue.

Portability

In TETware-Liteacal totet _exit() smply calsexit() andacal totet | ogoff()
has no effect.

May 2000 Page 105
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.12 Test case synchronisation
8.12.1 Introduction

These functions enable parts of a distributed test purpose or a user-supplied startup or cleanup
function that are running on different systems to synchronise to an agreed point in the executing
code. They are only available for use in distributed test cases.

Refer to the chapter entitled ‘‘Test case synchronisation’’ in the TETware User Guide for an
overview of TETware synchronisation and a description of how to interpret journal messages that
are generated by the default sync error handling function.

8122 tet rensync()
Synopsis

int tet_rensync(l ong syncptno, int *sysnanes, int nsysnane,
int waittine, int vote, struct tet_synmsg *msgp);

Description

Acaltotet _remsync() causesthe caling process' s system to synchronise with one or more
of the other systems that are participating in the same distributed test case. The call can only
succeed if each of the systems specified in the call also expect to synchronise with each other and
with the calling process.

syshanes pointsto alist of IDs of the other systems with which the calling process wishes to
synchronise. nsysnane specifies the number of systems in the list. The system ID of the
calling processisignored if it appearsin the list pointed to by sysnanes.

syncpt no specifies the sync point number to which the calling process wishes to synchronise.
If syncpt no is zero, asuccessful call tot et _renmsync() returns as soon as all participating
systems have synchronised to the next sync point. If syncpt no is greater than zero, a
successful cal to tet_remsync() returns as soon as al participating systems have
synchronised using a sync point number which is not lessthan syncpt no. Whensyncpt no is
greater than zero, acall tot et _rensync() will fail if async point has already occurred during
the lifetime of the current test case whose number is greater than or equal to syncpt no. The
results are undefined if a negative syncpt no is specified.

wai tti me specifies the number of seconds that may elapse between synchronisation requests
from other participating systems before the calling process times out. If wai tti e is greater
than zero, a cal to tet _rensync() will be successful if al the participating systems
synchronise to the specified sync point with no more than wai t t i ne seconds between each
request. If wai ttine iszero, acaltotet_renmsync() will return immediately, whether or
not it is successful. If wai tti me isnegative, acal totet _rensync() will wait indefinitely
for the specified sync point to occur or until the request fails for some reason. Test suite authors
should be aware of the potential for deadlock if anegativewai tt i nme is specified.

vot e specifies how the calling system wishes to vote in the synchronisation event. This
parameter should be set to one of the defined constants TET _SV_YES or TET_SV_NO, to
indicate ayes vote or ano vote, respectively. When the calling process specifies ayes vote, a call
totet _renmsync() can only be successful if al the other participating systems also specify a
yes vote. When the calling process specifies a no vote, the APl does not use the votes specified
by the other participating systems when determining whether or not acall tot et _rensync()

in that processis successful.

Page 106 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

It is possible for a process which callst et _rensync() to exchange sync message data with
other participating systems which synchronise exactly to the sync point specified by syncpt no.
This is done by callingtet _renmsync() with a non-NULL vaue of nsgp. When nsgp is
non-NULL, it points to a user-supplied t et _synnsg structure which contains the following
elements:

struct tet_synnsg {
char *tsmdata;
int tsmdlen;
int tsmsysid,
int tsmflags;

}s

Whent et _rensync() iscaled by parts of a distributed test purpose, one system sends data
which may be received by other systems. The APl associates the sync message data with the
particular sync point specified by the syncpt no parameter used inthet et _rensync() cal
on the sending system. In order to receive the message data, the syncpt no parameter in calsto
tet _remsync() on receiving systems must reference this sync point exactly, either by
specifying the same value for syncpt no as that used on the sending system, or by specifying a
zero syncpt no.

The test purpose part on the sending system should indicate a desire to send sync message data by
initialising members of the t et _synnsg structure as follows before t et _remsync() is
caled:

o t sm _dat a points to the message to be sent.
o t sm dl en isset to the number of bytes of message data to be sent.
e tsmfl ags issetto TET SNMSNDVSG

The test purpose part(s) on the receiving system(s) should indicate their willingness to receive
sync message data by initialising members of the t et _synnsg structure as follows before
tet_renmsync() iscaled:

« t sm dat a pointsto a user-supplied buffer in which the message datais to be received.
« t sm dl en isset to the length of the receiving buffer.
e tsmflagsissetto TET SMRCVNSG.

If the call totet _remsync() is successful, then on return the APl modifies members of the
t et _synnsg structure on the receiving systems(s) as follows:

« Uptot sm dl en bytes of sync message data are copied to the receiving buffer pointed to
by t sm dat a.

o t sm dl en isset to the number of bytes of sync message data actually copied.

e t sm sysi d isset to the system ID of the system that sent the data, or to -1 if there is no
message data associated with the sync point specified by syncpt no.

« If the APl must truncate the message because the receiving buffer is not big enough, the
TET _SMIRUNC bitissetint sm fl ags.

If more than one system tries to send sync message data for a particular sync point, the AP
performs the following operations:

May 2000 Page 107
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

1. Decide from which system to accept data and re-designate the other sending systems as
receiving systems.

2. Processthe re-designated systems as described above.

3. Clear the TET_SMSNDMSG bit and set the TET _SMRCVMSG bit int sm _f | ags on the
re-designated systems.

4, Setthe TET _SMDUP bitint sm fl ags onall systems.

If aprocesstries to send a message which is larger than the maximum permitted message size (as
defined by the value TET_SMVIBGVAX), the API perform the following actions:

1. Truncate the message to the maximum size before accepting it.
2. Setthe TET_SMIRUNCDbitint sm f | ags onall systems.

In most cases when acall totet renmsync() is unsuccessful, the values of members of the
t et _synnsg structure are undefined when the call returns. However, if the only reason that a
cal totet _rensync() is unsuccessful is that other systems specified a no sync vote, the
tet _synnsg structure is processed in the normal way. This enables a process both to send
message data and to specify anovoteinasinglet et _rensync() call.

If a process running on a particular system callst et _rensync() withanmsgp of NULL, the
APl regardsit as areceiving system but does not return any message data to it.

Return value

Thecal tot et _renmsync() returnszero as soon as al the participating systems synchronise at
least as far as the specified sync point without timing out.

Thecaltotet _renmsync() returns-1when one of the following conditions occur:

o Morethanwai t t i me seconds elapse between synchronisation requests from participating
systems.

« A related synchronisation request times out on one of the other participating systems.

« The user-supplied function in a test case on one of the other participating systems returns
control to its TCM before synchronising.

o The sync point specified by syncpt no has already occurred.

o A yes sync vote is specified in the call but another participating system specifies a no vote
for this sync point.

e sysnanes isNULL or nsysnane specifies an empty system ID list.

o A system |ID appears more than once in the array pointed to by sysnanes.
o Aninvalid parameter is specified in the call.

« The APl encounters a problem while processing the request.

When a call totet _rensync() is unsuccessful, the APl setst et _errno to indicate the
cause of the error before calling the sync error handling function specified by t et _syncerr.

Page 108 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Portability

tet _remsync() isonly provided in Distributed TETware. It is not provided in TETware-
Lite.

The API treats sync message data as opague and does not perform byte-swapping or other
processing when data is exchanged between machines with different architectures. So it is best
only to send ASCII strings in messages that are to be exchanged between systems which might
run on different machines.

Application notes

The values of user-defined sync point numbers must increase throughout the lifetime of an entire
test case and not just during the lifetime of a particular test purpose function within the test case.

Since synchronisation with other systems is defined in terms of system IDs (rather than individual
process IDs), it is the responsibility of the test suite author to ensure that only one process
running on a particular (logical) system callst et _remsync() at onetime. The results are
undefined if processes running on the same system make overlappingt et _rensync() cals.

If a multi-threaded test case makes overlapping callstot et _rensync() from more than one
thread at once, one thread will be blocked by the API until the call in the other thread compl etes.
Then the call in the blocked thread will fail, usually with an ER_DONE error.

8123 tet _sync() andtet _nsync()
Synopsis

int tet_sync(long syncptno, int *sysnames, int waittine);

int tet_msync(long syncptno, int *sysnanes, int waittine,
struct tet_synmsg *nsgp);

Description

tet _sync() and tet _msync() are provided for backward compatibility with previous
DTET implementations and their use is deprecated in TETware. It is possible that support for
these functions may be removed from a future TETware release. Test case authors should use
tet_renmsync() whenwriting new test cases.

InTETwaret et _sync() andt et _nsync() areimplemented by callingt et _rensync().
When sysnanes is non-NULL, it points to a zero-terminated list of systemIDs. If either
function is called with a NULL sysnanes parameter, a default system list containing only
system ID zero is used; otherwise, the zero-terminated system list pointed to by the sysnarnes
parameter is used. A pointer to the resulting system list and the number of systems in the list
(including the terminating zero) are passed to the underlyingt et _rensync() cal.

When acdl tot et _sync() resultsinacal totet_rensync(),avote of TET_SV_YES
and ansgp of NULL are used. Likewise, when acall totet nsync() resultsin acal to
tet _remsync(),avote of TET_SV_YESisused.

When callstot et _sync() ortet_nsync() areunsuccessful, the API places an entry in the
journa file indicating the cause of the failure. If the call is unsuccessful because one or more of
the participating systems fails to synchronise, or the related process times out or terminates
before the specified sync point occurs, acal is made to the sync error handling function specified
by tet _syncerr. This variable is initialised with the address of a function which prints
messages similar to those printed by the APl in previous DTET implementations.

May 2000 Page 109
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Return value

The return value of tet _sync() andtet _msync() is the same as that of the underlying
tet _remsync() cal.

Portability

tet _sync() andtet _mnsync() are only provided in Distributed TETware. They are not
provided in TETware-Lite.

8.12.4 Control over syncerror reporting
Synopsis

void (*tet _syncerr)(long syncptno, struct tet _syncstat *statp, int nstat);

void tet_syncreport(l ong syncptno, struct tet_syncstat *statp, int nstat);

Description

If acal totet _rensync() is unsuccessful, the API calls the sync error handling function
pointed to by the global variablet et _syncerr beforethet et _rensync() call returns.

When (*t et _syncerr) () iscaled by the API, syncpt no contains the number of the sync
point that has failed, st at p points to the first in an array of structures, each of which describes
the sync status of each of the other systems participating in the event and nst at specifies the
number of structuresin thelist.

The sync status structure is defined as follows:

struct tet _syncstat ({
int tsy sysid; [/* systemID */
int tsy state; /* sync state */

s

Possible values for thet sy st at e member of this structure are as follows:

Symbolic constant Meaning

TET_SS_NOTSYNCED | sync request not received
TET_SS_SYNCYES system voted YES

TET_SS_SYNCNO system voted NO
TET_SS Tl MEDOUT system timed out
TET_SS DEAD process exited

The global variable tet_errno is set to indicate the cause of the error before
(*tet_syncerr) () iscaled.

tet _syncerr is initialised to point to the API's default sync error reporting function
tet _syncreport (), but may be changed by the test suite author to point to a user-supplied
sync error handling function.

Page 110 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

8.13 Remote system information
8.13.1 Introduction

These functions are provided in Distributed TETware to enable a test purpose to retrieve
information about remote systems.

8132 tet rengetlist()
Synopsis

int tet rengetlist(int **sysnanes);
Description

Acdltotet rengetlist() from a processwhich is part of a distributed test case returns
the number of other systems which are participating in the test case. In addition, a pointer to a
zero-terminated array containing the names of the other systems is returned indirectly through
*syshanes.

A cal totet _rengetlist() from a process which is not part of a distributed test case
returns zero.

Return value
This function returns the values described above.

Portability

In TETware-Liteacall totet _rengetli st () aways returns zero and a pointer to a single
zero-value system ID is returned indirectly through * sysnarmes.

8.13.3 tet _rengetsys()
Synopsis
int tet _rengetsys(void);

Description

Acaltotet rengetsys() returnsthe system ID of the system on which the calling process
IS executing.

Return value
This function returns the value described above.

Portability
In TETware-Liteacall tot et _renget sys() aways returns zero.

May 2000 Page 111
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.134 tet getsysbyi d()

Synopsis
int tet _getsysbyid(int sysid, struct tet_sysent *sysp);
Description

Thet et _getsysbyi d() function enables a test case to access information contained in the
system definition file. If an entry for the system specified by sysi d can be found in the file,
information from the entry is placed in the user-supplied t et _sysent structure pointed to by

sSysp.

This function enables part of adistributed test case to determine the host (or node) names of other
systems participating in the test.

Thet et _sysent structure contains the following members:

struct tet _sysent {
int ts_sysid; /* TETware system |D */
char ts_name[TET_SNAMELEN] ; /* systenis host name */
1

Refer to the section entitled *‘ System definitions’’ elsewhere in this guide for details of the
system definition file.

Return value

A successful call tot et _get sysbyi d() returnszero. If acall totet _get sysbyi d() is
unsuccessful, =l isreturned andt et _er r no is set to indicate the cause of the error.
Portability

Thisfunction is not provided in TETware-Lite.

8135 tet rentine()
Synopsis

int tet rentime(int sysid, tinme_t *tp);
Description

Acal totet _rentinme() obtans the system time on the system specified by sysi d and
returnsit indirectly through *t p.

When sysi d specifies the system ID of the calling process, the time is obtained by using an
appropriate system call. However, when sysi d specifies a different system ID, the time is
obtained from an instance of TCCD that is running on the specified system.

Return value

A successful call to tet _rentinme() returns zero. If a cal to tet _remine() is
unsuccessful, —lisreturned andt et _er r no is set to indicate the cause of the error.

Page 112 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Portability
Thisfunction is not provided in TETware-Lite.

May 2000 Page 113
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

8.14 Remote process control

8.14.1 Introduction

In Distributed TETware these functions enable a part of a distributed test case running on one
system to generate a remote process on another system.

Note: The use of these functions is deprecated; they are only supported in order to provide
backward compatibility with previous DTET implementations. It is possible that support
for these functions may be removed from afuture TETware release.

If it is necessary for one part of a distributed test case to start a process on a remote system, it is
recommended that the test case should instead be structured so that the process is started by the
part of the test case which is running on that system. If necessary, the two systems can make
calstotet _rensync() in order to ensure that the process is executed and waited for at the
correct time.

If it is necessary for anon-distributed test case to start a process on aremote system, it is strongly
recommended that the test case should instead be structured as a distributed test case; when thisis
done the method mentioned in the previous paragraph may be used.

8.14.2 tet renmexec()
Synopsis

int tet_renexec(int sysnanme, char *file, char *argv[]);

Description

Acdltot et _renexec() startsanew processon the remote system specified by sysi d. The
calling process waits wait until the new process has been started and has synchronised with it.

fil e specifies the name of the file to be executed. The location of fi |l e is relative to the
remote system’s TET _EXECUTE directory if set, otherwise, it isrelative to tet-root on the remote
system. Since the request is performed by a server process, it is not necessary for atest case to
caltet fork() beforecdlingt et _renmexec().

Thet et _renexec() function passesthe argument data as specified by ar gv[] to the process
specified by fil e. The usage of t et _renexec() is similar to the 1SO 9945-1 execv()
function.

Note that the environment is not passed in at et _renmexec() cal because it is not expected
that there will be any correlation of the environment information on the remote machine to that of
the calling process. Any datathat is need by the remote process must be passed as an argument.

Return value

A successful call to tet_remexec() returns a positive value (the r enot ei d) which
identifies the remote process within the context of the calling process. This value has no meaning
outside the calling process. If thecal tot et _renexec() fails, avalue of -1 is returned and
t et _errno issettoindicate the cause of the error.

Page 114 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

In addition, an unsuccessful call tot et _remexec() may set er r no to one of the following
values.

El NVAL sysnane does not refer to a known remote system.
ENOEXEC f i | e cannot be executed on the remote system.

ENOEXEC Synchronisation with the remote process was not successful.
EFAULT Thefil e orargv parametersareinvalid.

El O The connection with the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in any of the thread-safe APIs.

Application notes
Thisfunction isonly provided for backward compatibility with existing test cases.

The preferred method of launching a process on a remote system is to arrange for the test case
part executing on that system to perform the operation instead. If it is hecessary for the operation
to be controlled from another system, this can be achieved by appropriate calls to
tet _remsync() from thetest case partsthat are running on each system.

8143 tet _remmait ()
Synopsis

int tet_ remwait(int renoteid, int waittine, int *statloc);

Description

A cdl to tet_remnait() waits for the termination of a remote process initiated by
tet _remexec().

r enot ei d specifies the remote process identifier returned from a previous successful call to
tet_renexec().

wai tti me specifies the maximum number of seconds that thet et _remwai t () cal should
wait before returning. If wai tti ne is greater than zero, acall totet _remnai t () will be
successful if the remote process exits within the specified time. If wai tti nme is zero, acall to
tet _remnait () will return immediately whether or not it is successful. If wai ttime is
negative, acal tot et _remnai t () will wait indefinitely for the remote process to exit or until
the request fails for some reason.

A successful call to tet _remnai t () returns the exit status of the remote process in the
location pointed to by st at | oc. The exit status value returned indirectly through * st at | oc
uses a standard encoding that is independent of the type of remote system on which the processis
executed or the encoding used to return exit status values on that system.

The scheme used by TETware to encode the exit status of a remote process returned indirectly
through *st at | oc by tet _remwai t () isthe one that traditionally has been used on many
UNIX systems, as follows:

« |f the remote process terminated normally, bits 0 through 7 contain zero and bits 8 through
15 contain the low order 8 bits of the argument that the remote process passed to exi t ()
(but see under the Portability heading below).

May 2000 Page 115
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

« If the remote process terminated due a signal, bits O through 6 contain the number of the
signal that caused the process to terminate and bits 8 through 15 contain zero. In addition,
bit 7 isset if receipt of the signal caused a core image to be produced on the remote system.

« If the remote processis in a stopped state, bits O through 7 contain the value 0177 and bits
8 through 15 contain the number of the signal which caused the process to stop.

Return value

A successful call tot et _remnai t () returns zero. If thecal tot et _remnai t () times out
or is unsuccessful for some other reason, —1 is returned and t et _er r no is set to indicate the
cause of the error.

In addition, an unsuccessful call tot et _remnai t () may set er r no to one of the following
values:

El NVAL renot ei d doesnot refer to aprocessinitiated fromacall tot et _renexec() .

ECH LD renoteid refersto a process which is has already been waited for by a successful
caltotet _remmai t ().

EAGAI N The number of seconds specified by ti meout expires before the remote process
terminates.

EI NTR Thecaltotet wait () isinterrupted.

El O The connection to the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in any of the thread-safe APIs.

As indicated above, the process exit status returned by tet _remwai t () uses a standard
encoding which may not be the same as the one used by any particular operating system. For this
reason, test suite authors are reminded that it is not appropriate to use the macros defined in
<sys/wai t . h> on aPOSIX-conforming system to decode this value.

If a signal value is encoded in a process exit status, it is the value of the signa on the remote
system. Test suite authors are reminded that this value may not refer to the the same (or any)
signal on the systemonwhicht et _remwai t () iscalled.

The indication that a core image has been produced is not specified by POSIX. Therefore the
setting of bit 7 to indicate that a core image has been produced as a result of a signal is
implementati on-dependent.

On aWin32 system the range of values which may usefully be passed to exi t () isgreater than
the useful range on UNIX systems. Therefore it is possible for a process to exit with a non-zero
status value whose low-order 8 bits are zero. In order to enable such a status to be identified as
non-zero after acall tot et _remnai t () , the API returns a status value of 1 in cases where the
value of the low-order 8 bits of a non-zero exit status value from a process on a Win32 systemis
itself zero. Therefore, if the exit status of a process running on a Win32 system is to be returned
unaltered by acal tot et _remnai t () , itsvalue should bein the range 0 to 127.

The C runtime support library on the Win32 system does not support the concept of a stopped
process, encode the receipt of asignal in a process's exit status or generate a core image when a
signa is raised in a process. Therefore, these indications are not available when a cal to
tet _remnait () returnsan exit status from aremote process invoked on a Win32 system.

Page 116 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

When a remote process running on a Win32 system isterminated by acall tot et _renki I | (),
acdltotet _remmait () returns a process exit status of 3. This is the same value as that
generated by the C runtime support library when the default action is taken after a signal is
generated by meansof acall tor ai se() .

Application notes

Thisfunction isonly provided for backward compatibility with existing test cases.

The preferred method of performing remote process control operations is described in the note
which accompanies the description of the deprecatedt et _r emexec() function.

8144 tet _renkill ()
Synopsis

int tet_renkill(int renoteid);

Description

A cal totet_renkill () instructs the TCCD server which controls the remote process
designated by r enot ei d to terminate the process. r enot ei d refers to a process started by a
previouscal tot et _remexec() .

On UNIX systems TCCD terminates the process by sending a SI GTERM signal; therefore the
processis not terminated if this signal is being blocked or ignored.

Acdltotet _renkill () returnsimmediately without awaiting confirmation that the remote
process has terminated. (This information can be obtained from a subsequent cal to
tet _remnait () if required.)

Return value

A successful cal to tet _renkill () retuns zero. If the call to tet _renkill () is
unsuccessful, —lisreturned andt et _er r no is set to indicate the cause of the error.

In addition, an unsuccessful call totet _renkill () may set err no to one of the following
values:

El NVAL renot ei d doesnot refer to aprocessinitiated fromacall tot et _renexec() .

El O The connection to the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in any of the thread-safe APIs.

Application notes
Thisfunction isonly provided for backward compatibility with existing test cases.

The preferred method of performing remote process control operations is described in the note
which accompanies the description of the deprecatedt et _r enmexec() function.

Test case authors are discouraged fromusingt et _renki | | () to terminate a process which is
running on a Win32 system. The reasons for this are discussed in the appendix entitled
“*Implementation notes for TETware on Win32 systems’’ in the TETware User Guide.

May 2000 Page 117
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 118 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

9. TheC++ API

9.1 Introduction

This chapter describes the TETware C++ API. Different versions of the C++ API are supplied
with TETware-Lite and Distributed TETware. The Distributed version of the C++ APl may be
used when writing both distributed and non-distributed test cases, whereas the Lite version of the
C++ APl may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

On UNIX systems, this API has been designed to work with the USL C++ compiler release 3 or
later, and with GNU g++ release 2.4.5 or later.

On Win32 systems, this API is known to work with the Microsoft Visual C++ compiler.

9.2 C++ language binding

On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

o tet-root/ | i b/t et 3/ i bapi . a contains the support routines for test purposes. Thisis
the samelibrary asis provided with the C API.

o tet-root/ | i b/ t et 3/ Ct cm o contains the TCM. This file contains the routine mai n()
and associated support routines for the sequencing and control of invocable components
and test purposes.

o tet-root/ 1 i b/tet 3/ Ctcnthil d. o contains the child process controller. This file
contains a mai n() routine which can be used by test suites when building processes
which test purposeswill launch usingthet et _exec() andt et _spawn() interfaces.

o tet-root/ i nc/tet 3/tet _api.h contains prototypes for the functions, declarations of
al the global variables, and definitions of all the structures and manifest constants that
constitute the C++ API. This file is the one that is provided with the C API; however,
when this file is processed by a C++ compiler, its contents are made visible within an
extern "C' block.

The names of these files are similar on Win32 systems; the differences are that object files (. o
files) instead have a. obj suffix and library files (. a files) instead havea. | i b suffix.

The object and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled ‘* Using shared AP libraries’ elsewherein this guide.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate given the available Software Generation System.

A thread-safe version of the C++ APl is supplied in addition to the standard (that is. single-
threaded) version. Distinct versions of the thread-safe C++ APl are supplied with Distributed
TETware and TETware-Lite. Differences between the standard and thread-safe APIs are
described in the chapter entitled ** The Thread-safe C and C++ APIS’ elsewhere in this guide.

May 2000 Page 119
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

9.3 Using the C++ language binding

This APl may be considered to be a*‘lightweight’’ binding, in that only a small part of it is built
using a C++ compiler. This language binding uses the API library that is supplied with the
C language binding. Details of al the functions and interfaces provided by this API library are
presented in the chapter entitled ** The C API'’ elsewherein this guide.

In Distributed TETware the C++ API does not provide support for remote executed processes.

In the C and C++ language bindings, the TCM references variables that you must define in your
test code. When you write a test case that uses the C++ |anguage binding, you must enclose the
definitions of these variablesinanext ern " C' code block, thus:

extern "C' {
struct tet testlist tet testlist[] = {

b
void (*tet_startup)()

void (*tet_cl eanup) ()

}

in order to enable the linker to resolve references made to these variables from the TCM code.

Page 120 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

10. The Thread-safe C and C++ APIs

10.1 Introduction

TETware provides thread-safe versions of the Cand C++ APIs in addition to the standard
(single-threaded) API versions. The thread-safe APIs are provided in both TETware-Lite and
Distributed TETware.

On UNIX systems each API can be built to support either POSIX threads or ‘* UNIX International
threads’’ (Ul threads), but not both at the same time. On systems which support both types of
threads, you should build TETware to support the type of threads that you wish to use in test
cases.

When you use a thread-safe APl on a UNIX system, you must compile all application source
code that uses the API (including test suite libraries, for example) with either -DTET_THREADS
when using Ul threads, or -DTET _POSI X THREADS when using POSIX threads. You must
specify these options in addition to any other compiler options that may be required when
compiling and/or linking multi-threaded programs.

On Win32 systems each API is built for use with the multi-threaded DLL version of the
C runtime support library (MSVCRT. LI B). Note that the use of a thread-safe API in conjunction
with the static version of the C runtime support library (LI BCMT. LI B) is not supported on
Win32 systems.

When you use a thread-safe APl on a Win32 system in conjunction with the defined build
environment,'® you must compile all application source code that uses the APl with =MD and
-DTET_THREADS. You must aso use the —MD compiler option when linking a test case which
uses a thread-safe API; when this option is used, the compiler instructs the linker to link with the
correct version of the C runtime support library.

All of the standard interfaces are available in the thread-safe APIs with the exception of the
deprecated t et _renexec(),tet_remmait() andtet _renkill () API functions.

10.2 C language binding

On UNIX systems, applications written to the thread-safe C language binding attach themselves
to it through the following files:

o tet-root/ | i b/ tet 3/1i bt hrapi . aisthethread-safe version of the API library.

e tet-root/ | i b/ t et 3/ t hrt cm o isthethread-safe version of the TCM.

o tet-root/ | i b/ tet 3/ thrtcnchil d. oisthethread-safe equivalent of t cnthi | d. o.
o tet-root/ i nc/tet 3/tet _api. histhesamefileasusedin the standard API.

The names of these files are similar on Win32 systems; the differences are that object files (. o
files) instead have a. obj suffix and library files (. a files) instead havea. | i b suffix.

18. That is: Microsoft Visual C++ and the MK S toolkit.

May 2000 Page 121
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The abject and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled ** Using shared AP libraries’ elsewherein this guide.

On UNIX systems, the extra threads-related contents of t et _api . h are made visible by
compiling applications with TET _THREADS or TET POSI X _THREADS defined. On Win32
systems, the extra threads-related contents of this file are made visible by compiling applications
with TET_THREADS defined.

10.3 C++ language binding

On UNIX systems, applications written to the thread-safe C++ language binding attach
themselves to it through the following files:

o tet-root/ | i b/t et 3/1i bt hrapi . aisthesamelibrary asfor the thread-safe C language
binding.

o tet-root/ | i b/t et 3/ Ct hrt cm o isthe C++ version of the thread-safe TCM.
o tet-root/ | i b/ tet 3/ Ct hrtcnthil d. oisthe C++ equivaent of t hrt cnchi | d. o.

o tet-root/ i nc/tet 3/tet _api. h isthe samefile as used in the thread-safe C language
binding.

Again, the names of these files are similar on Win32 systems; the differences are that object files
(. ofiles) instead have a. obj suffix and library files (. a files) instead havea. | i b suffix.

All of the declarationsint et _api . h are placed withinanext ern " C' block when thefileis
compiled with a C++ compiler.

10.4 Functionsthat are specific to the Thread-safe APIs
10.4.1 Introduction

The following sections describe functions which are only provided in the thread-safe versions of
the C and C++ APIs.

1042 tet _thr _create() andtet pthread _create()

These functions create a new thread in atest purpose on a UNIX system. Applications which use
Ul threads should call t et _t hr _creat e() and applications which use POSI X threads should
caltet _pthread_create(). Thesefunctionsare not implemented on Win32 systems.

When one of these functions is used to create a new thread, the API stores information about the
newly-created thread in order to enable the TCM to perform appropriate actions when the test
purpose returns control to the TCM, or when an unexpected signal occurs.

Page 122 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The syntax of these functionsis as follows:

int tet thr _create(void *stack base, size t stack_size,
void *(*start_routine)(void *), void *arg
long flags, thread t *new thread, int waittine);

int tet pthread create(pthread_ t *new thread, pthread attr t *attr,
void *(*start _routine)(void *), void *arg, int waittine);

The arguments and return value are the same as those for the thr _create() and
pt hread _creat e() functions respectively, except for the addition of the waitti ne
argument.

When one of these functions is used to create a thread that is not detached, the wai tti nme
argument determines the action to be taken when the main thread returns control to the TCM. If
a positive wai t ti me is specified, the TCM waits at least wai t t i me seconds for the newly-
created thread to exit after the main thread returns. If the newly-created thread is still running at
the end of that time, it is terminated by the TCM. If azero or negativewai t t i me is specified,
the TCM does not wait for the newly-created thread to exit when the main thread returns.
Instead, if the newly-created thread is till running at that time, it is terminated immediately by
the TCM. The method used by the TCM to terminate a thread is described in the section entitled
‘*Clean-up of |eft-over threads on UNIX systems’’ later in this chapter.

The purpose of thiswait time isto allow other threads a grace period in which to exit in the event
of an abnormal return from the main thread. Normally, al non-main threads should be waited for
by callstotet _thr_join() ortet_pthread_joi n() inthetest case.

Unlike other API calls, tet _thr_create() and tet _pthread_create() do not set
t et _errno if thecal fails.

If either of these functions are used to create a detached thread, the APl does not store any
information about the new thread and the waittine argument is ignored. It is the
responsibility of the test suite author to ensure that the detached thread either terminates before
the main thread returns, or that it cannot interfere with the operation of later test purposesin the
test case. Since an unexpected signal can cause the main thread to skip to the next test purpose, it
is recommended that detached threads are only created in child processes (where unexpected
signals are not caught by the TCM).

Unexpected results may occur if an application creates a new thread on a UNIX system other than
by using these functions.

10.4.3 t et _begi nt hr eadex()

This function creates a new thread in atest purpose on a Win32 system. It is not implemented on
UNIX systems.

When this function is used to create a new thread, the API stores information about the newly-
created thread in order to enable the TCM to perform appropriate actions when the test purpose
returns control to the TCM.

May 2000 Page 123
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The syntax of this function is asfollows:

unsi gned | ong tet begi nt hreadex(void *security, unsigned stack_size,
unsi gned (*start_address)(void *), void *arglist,
unsigned initflag, unsigned *thrdaddr, int waittine);

The arguments and return value are the same as those for the _begi nt hr eadex() functionin
the C runtime support library, except for the addition of thewai t t i ne argument.

When this function is used to create a thread, the wai t t i me argument determines the action to
be taken when the main thread returns control to the TCM. If apositivewai tti e is specified,
the TCM waits at least wai tt i ne seconds for the newly-created thread to exit after the main
thread returns. If the newly-created thread is still running at the end of that time, the TCM aborts
thetest case. If azerowai tti me is specified, the TCM waits indefinitely for the newly-created
thread to exit after the main thread returns. If anegativewai t t i ne is specified, the TCM does
not wait for the newly-created thread to exit when the main thread returns. Instead, if the newly-
created thread is still running at that time, the TCM aborts the test case.

The purpose of thiswait time is to allow other threads a grace period in which to exit in the event
of an abnormal return from the main thread.

Normally, al non-main threads should be waited for by calls to Wai t For Si ngl eQbj ect ()
in the application.

Unlike other API calls, t et _begi nt hr eadex() doesnot sett et _errno if the cal fails.

Unexpected results may occur if an application creates a hew thread on a Win32 system other
than by using this function.

The following points should be noted when using thet et _begi nt hr eadex() function;

1. The start_address argument must point to a function that uses the __ st dcal |
calling convention. That is: the function must be defined using:

unsigned int _ stdcall function-name(voi d *argument)

{

}

2. A test case that uses one of the TETware C APIs must be linked with one of the C runtime
support libraries. Therefore a thread that is created by a cdl to
t et _begi nt hr eadex() should exit either by returning from the start function or by
caling _endt hr eadex() . A memory leak will occur in the C runtime support library if
athread exits by calling Exi t Thr ead() directly.

3. On Win32 systems the value returned by t et _begi nt hreadex() is actudly a
HANDLE, so it should be closed by acall to Cl oseHandl e() when no longer required.

1044 tet _thr_join() andtet pthread_join()

These functions are used to join threads that were created using tet _thr _create() and
tet _pthread_create(), respectively, with the joinable attribute. These functions are not
implemented on Win32 systems.

Page 124 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The syntax of these functionsis as follows:
int tet thr join(thread_ t thread, void **value ptr);
int tet pthread_join(pthread_ t thread, void **val ue ptr);

The arguments and return value are the same as those for the thr_join() and
pt hread_j oi n() functions respectively, except that for tet _thr_join(), thethread
argument cannot be (t hread_t) 0, and the second argument to t hr _j oi n() is omitted.
(This argument is not needed, as its purpose is to obtain the thread 1D of the joined thread when
thet hr ead argumentis(thread_t)O0.)

Earlier versions of TETware (up to 3.3) did not include these two functions and threads were
joined by calling t hr _j oi n() or pt hread_j oi n() directly. Old applications which join
threads in this way will still work the same with TETware version 3.4 and later. However, it is
recommended that thetet _thr_join() andtet_pthread_join() functions are used
when writing new code, and especially in the following cases:

« When large numbers of threads are created and joined in a single test purpose.

e On POSIX threads implementations where thread IDs are reused ‘quickly’. (Problems
have sometimes been observed on such systems when the thread cleanup code tries to join
athread that has already been joined.)

1045 tet _pthread_detach()

This function is wrapper for the POSIX threads pt hr ead_det ach() function. It is not
implemented for Ul threads and on Win32 systems.

The syntax of this function is as follows:
int tet pthread_detach(pthread t thread);
The arguments and return value are the same as those for the pt hr ead_det ach() function.

Earlier versions of TETware (up to 3.3) did not include this function, and threads were detached
by calling pt hr ead_det ach() directly. Old applications which detach threads in this way
will still work the same with TETware version 3.4 and later. However, it is recommended that
thet et _pt hr ead_det ach() function isused when writing new code.

1046 tet _fork() andtet forkl()

When Ul threads are used, acall tot et _f or k() creates a child process that contains copies of
al the threads that are in the calling process, and acall tot et _f or k1() createsachild process
that contains only a copy of the calling thread. When POSIX threads are used, a call to either
tet fork() ortet fork1l() createsachild processthat contains only acopy of the calling
thread.

The difference between the semantics of the POSIX and Ul versions of t et _f or k() reflects
the difference between the semantics of the POSIX and Ul versions of the underlying f or k()
system call.

tet fork() andtet forkl1() areonly implemented on UNIX systems.

May 2000 Page 125
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The syntax of these functionsis as follows:

int tet_fork(void (*childproc)(void), void (*parentproc)(void),
int waittine, int validresults);

int tet_forkl(void (*childproc)(void), void (*parentproc)(void),
int waittine, int validresults);

The arguments and return value of tet forkl() are the same as those described for
tet fork() inthechapter entitled ‘““The CAPI'".

Applications must safeguard calls to the POSIX version of t et _f or k() and both versions of
tet _fork1() in the same way as for calls to the POSIX version of fork() and the Ul
version of f or k1() . For example, if the child needs to obtain resources such as mutexes, then
the calling thread must obtain all the resources before making the call, in order to ensure they are
not held by a non-existent thread in the child process. The POSIX versionof t et _fork() and
both versionsof t et _f or k1() dothisfor all such resources used internally by the API.

Unexpected results may occur if an application creates a new process other than by using
tet_fork(),tet_forkl() ortet_spawn().

10.5 Unavailableinterfaces

The deprecated t et _renexec(),tet_remwait() andtet_renkill () functions are
not available in the thread-safe APIs. In TETware these functions are provided for backward
compatibility with dTET2 and should not be used in new test cases. When a distributed test case
needs to execute a new pProcess on a remote system, it is recommended that the new process
should instead be started by the test case part that is executing on that system. If necessary, user-
defined synchronisation points can be used to ensure that the new process is executed at the
proper time.

10.6 Useof API functionsin child processes

The POSIX threads standard places a restriction on child processes that are created by
multithreaded processes, such that the child may only execute async-signal safe operations until it
calls one of the exec functions. This restriction only affects TETware when using POSIX
threads, not when using Ul threads.

With two exceptions, al of the TETware API functions are not async-signal safe, and if they are
called from a child process of a processthat had called t et _pt hr ead_cr eat e() before the
child was created, then they will report an error to st derr and exit from the child process.
When called from a child of a single-threaded processes all of the API calls behave normally.

The two functions that are async-signal safe are tet _exec() and tet _exit (), which
operate differently, internally, when called from a child of a multithreaded process, to ensure that
they only execute async-signal safe operations.

Note that since the journal reporting functions are not async-signal safe, applications cannot use
them to report at et _exec() failurein achild of a multithreaded process. Suggested methods
for reporting the failure are either to write a message to stderr (using wite(), not
fprintf()),ortocaltet _exit() or _exit() (butnotexit())withaspecia exit code
which will be handled appropriately in the parent on return from thet et _f or k() call.

On some POSIX threads implementations the restriction placed on child processes of
multithreaded processes by the POSIX standard is unnecessary. In order to permit full use of all

Page 126 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

TETware API functions on such systems, there is a build-time configuration option to disable the
restrictions. See the document entitled ‘' TETware Installation Guide for UNIX Operating
Systems”’ for more details.

10.7 API differences
10.7.1 Introduction

The following sections describe differences between the standard and thread-safe APIs, for the
interfaces that are common to both versions.

10.7.2 Thread-specific data

Thevaluesof tet _errno andtet chil d are thread-specific in the thread-safe API. They
must be accessed by using the definitions provided in t et _api . h, and not simply by an
ext er n declaration.

10.7.3 Block and sequence numbers

The thread-safe API has per-thread block and sequence numbers. When a new thread is created a
new block number is assigned to both the new thread and to the caling thread. It is
recommended that acall tot et _set bl ock() should be made after each thread is waited for.

The thread-safe version of tet _setcontext () does not reset the block and sequence
numbers, because another thread might already have a current block number of 1. However, calls
to the POSIX threads version of tet fork(), both versions of tet forkl() and
tet _spawn() do reset the block and sequence numbers in the child, as when these functions
are called there is only one thread in the new process.

The new block number set by t et _set bl ock() is one greater than the number set by the
previoust et _set bl ock() call in any thread, not just the previous cal in the current thread.
The same applies to the t et _set bl ock() calls that are made internally by the API; for
example: in the parent processint et _for k() and in processes executed witht et _exec()
on UNIX systems.

10.7.4 tet _exec()

When POSIX threads are used and t et _exec() is called from a child of a multithreaded
process, the APl has to use static data internally instead of being able to allocate buffer space.
This means thereis alimit on the number of argument strings and environment strings that can be
handled by t et _exec() under these conditions. The default limits are both 256, but they can
be overridden when TETwareis built.

10.75 tet _spawn()

When the thread-safe version of t et _spawn() creates a child process on a UNIX system, it
does so by calling f or k() when POSIX threads are used and by calling f or k1() when Ul
threads are used. Therefore the same considerations regarding resources such as mutexes apply
when calling t et _spawn() as are described for the POSIX version of t et _f or k() and both
versionsof t et _fork1() above.

When POSIX threads are used, and t et _spawn() is called from a multithreaded process, then
the child process created internally by t et _spawn() hasto use static data instead of being able
to alocate buffer space. Thus it has the same limits on the number of argument strings and

May 2000 Page 127
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

environment strings under these conditions as described for t et _exec() above.

10.76 tet _fork()

The method used to time out child processes in the thread-safe version of t et _fork() ona
UNIX system does not use a SI GALRMsignal. Thisis done so as not to interfere with the use of
S| GALRMin other threads.

When Ul threads are used, the child process that is created by acall tot et for k() contains
copies of al the threads that are in the parent process. By contrast, when POSIX threads are
used, the child process that is created by a cal tot et _for k() contains only a copy of the
calling thread that is in the parent process. If it isrequired to create a child process that contains
only a single thread when Ul threads are used, it is necessary to call t et _f or k1() instead of
tet _fork().

10.8 TCM differences
10.8.1 Introduction

The following sections describe differences between the standard and thread-safe TCMSs.

10.8.2 Clean-up of left-over threads on UNIX systems

Each time the main thread returns to the TCM, any other joinable threads that remain are cleaned
up before the TCM continues. Normally thisis done after the following functions return:

e The(*tet _startup)() and(*tet cl eanup) () functions.

o Each test purpose function.

o Thefunctionscalled fromt et _fork() ortet fork1() inthechildprocess.
etet main()

In these cases, no cleaning up is necessary if all threads created usingt et _thr _create() or
tet _pthread create() with the joinable attribute have aready been joined using
tet_thr_join() or tet_pthread_join(), or have been detached using
tet _pthread_detach().

Clean-up can aso be done under abnormal conditions; for example: before skipping to the next
test purpose on receipt of an unexpected signal.

The TCM terminates a thread which does not exit within the grace time specified in the
tet _thr_create() ortet_pthread_create() cal when the thread was created. The
method used to terminate such threads is to arrange for the thread to execute a handler for the
SI GABRT signa which then calls thr_exit() when Ul threads are used, or
pt hread _exit () when POSIX threads are used. If the thread till does not terminate (for
example: becauseit is blocking the S| GABRT signal), then the TCM aborts the test case.®

In order to prevent a thread being ‘‘cleaned up’’ while it holds a resource such as a mutex,
applications should block the SI GABRT signal during the time these resources are held by a

19. Or the process, in the case of a child process.

Page 128 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

non-main thread. The grace time specified when a thread is created should be longer than any
period for which the SI GABRT signal isto be blocked.

The special SI GABRT handler is only installed for long enough to send the signal to the target
thread; however, this represents a small time window where the behaviour of other threads with
respect to SI GABRT may not be as expected. The handler attempts to perform the expected
action if this should occur (by caling the old handler function if there was one or by calling
abort () if theold signal action was SI G_DFL).

When the TCM cleans up a thread after receiving a signal, it terminates the thread immediately
instead of waiting for the grace time that was specified when the thread was created.

10.8.3 Dealing with left-over threads on Win32 systems

Each time the main thread returns to the TCM, it waits for any other threads that remain before
continuing. Thisis done after the following functions return:

e The(*tet_startup)() and(*tet_cl eanup) () functions.
« Each test purpose function.
etet main()

There is no safe way for the TCM forcibly to terminate a thread on a Win32 system. If athread
does not exit within the grace time specified in the t et _begi nt hr eadex() cal, the TCM
reports afatal error after it has finished waiting for all the threads, then aborts the test case.°

10.8.4 Signal handling

On UNIX systems, unexpected signals are managed in the thread-safe TCM in much the same
way as in the standard TCM. Signal handlers are installed by the main thread before the start of
each test purpose. The TCM does not make use of si gwai t (), asthis could interfere with the
use of signalsin the test purpose.

When an unexpected signal is caught by the main thread on a UNIX system, the signal handler
cleans up any other threads as described in the previous section before taking the normal action as
in the standard API. If an unexpected signal is caught by a non-main thread, the signal handler
will forward the signal to the main thread and then cause the calling thread to exit.

The TCM does not attempt to manage unexpected signals on Win32 systems.

10.9 Synchronisation requestsin multi-threaded test cases

In Distributed TETware it is possible for parts of a distributed test case to synchronise with each
other at user-defined points during execution. Since synchronisation is defined in terms of
systems and hot processes, only one process on a particular system may represent that systemin a
particular synchronisation event.

When the thread-safe APIs are used, it is not possible for two threads in the same process to
participate in any sync event at the same time. This restriction is enforced in the API by the use
of mutexes (on UNIX systems) or critical section objects (on Win32 systems). If two threads in

20. Or the process, in the case of achild process.

May 2000 Page 129
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

the same process call one of the synchronisation functions at the same time, one call will be
blocked until the other call has completed. Therefore, if both of the calls refer to the same sync
event by specifying the same system list and (non-zero) sync point number, one of the calls will
block until after the event occurs. As a consequence, when the blocked call finally returns, it will
probably fail with an ER_DONE error.

Page 130 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

11. The Shell and Korn Shell APIs

11.1 Introduction

This chapter describes the Shell and Korn Shell APIswhich are supplied with both TETware-Lite
and Distributed TETware. These APIs may be used to write non-distributed test cases. Thereis
no support for distributed test cases provided by these APIs.

The Shell API is provided for use by test cases written in the language that is defined for the sh
command interpreter in the X/Open Portability Guide Issue3 Volumel. In addition, the
interfaces described here are implemented in the TETware Korn Shell API. The Korn Shell AP
is provided for use by test cases written in the language that is used by the ksh command
interpreter. Both of these APIs make use of commands which are available on POSIX-
conforming systems. Except where noted, the descriptions that follow apply equally to each of
these APIs.

When TETware is used on a Win32 system, these APIs are designed to be used with commands
provided in the MKS Toolkit. The MKS Shell, sh, is based on the Korn Shell and can be used in
conjunction with either of the shell APIs. However, it is recommended that for reasons of
efficiency you only use the Korn Shell APl when writing shell language test cases for use on a
Win32 system. Note that the names of each Shell language and Korn Shell language test case file
must have a. ksh suffix on aWin32 system.

See the chapter entitled **Writing a Shell language API-conforming test suite’’ elsewhere in this
guide for an example of how to write a Shell language based test suite.

11.2 Shell language binding
Support for the Shell language binding is provided through Shell language source files as follows:

o tet-root/ | i b/ xpg3sh/tcm sh contains the support routines for the sequencing and
control of invacable components and test purposes (the Shell TCM).

o tet-root/ | i b/ xpg3sh/tetapi.sh contains the support routines for use by test
purposes (the Shell API).

These files must be ‘*sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Shell TCM also automatically sources the Shell API.

11.3 Korn Shell language binding

Support for the Korn Shell language binding is provided through Korn Shell language source files
asfollows:

o tet-root/ | i b/ ksh/t cm ksh contains the support routines for the sequencing and
control of invocable components and test purposes (the Korn Shell TCM).

o tet-root/ | i b/ ksh/ t et api . ksh contains the support routines for use by test purposes
(the Korn Shell AP).

These files must be ‘‘sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Korn Shell TCM also automatically sources the Korn Shell API.

May 2000 Page 131
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

11.4 TCC dependencies

Test cases built with theses APIs may either be executed stand-alone or under the control of
either TCC version.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTI VI TY
defaultsto 0 and TET_CONFI Gto undefined. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codes is used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when atest case is executed stand-alone.

Page 132 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

11.5 Test case structure and management
11.5.1 Introduction

These variables are used when test cases areinitialised and cleaned up, and in selecting invocable
components and test purposes to execute.

1152 iclist,icn,tet_startupandtet cleanup
Synopsis

i cli st="blank-separated list of invocable component names’

i c1="blank-separated list of test purpose names"
i c2=" blank-separated list of test purpose names"

t et _st art up=startup-procedure

t et _cl eanup=cleanup-procedure

Description

The start up routine, clean up routine and each of the test purposes should be implemented by the
test author as either shell functions or as separate executable shell scripts. These shell functions
or scripts will be called by the shell TCM according to the requested set of invocable
components. Thei cli st definition is provided by the test suite author, and contains a blank
separated list of invocable component names. These invocable component hames are formed by
prefixing each invocable component number with the lettersi c.

When an invocable component is requested by the TCC, the shell TCM executes each name in
the associated list of test purposes. Each of the test purposes is executed in a subshell with the
appropriate signal handling being applied to the subshell.

The TCM does not perform any explicit error checking on the contents of a list of test purposes.
It is the responsibility of the test author to ensure that the names reference shell functions or
executable shell scripts.

The shell variablest et _startup andt et _cl eanup are set to refer to the shell function or
script to be used for test case specific start up and clean up procedures, respectively. The start up
procedure is executed before the first requested invocable component and the clean up procedure
is executed on completion of the last requested invocable component. These routines are
executed irrespective of which invocable components are requested. If no start up or clean up is
required, thet et _startup andt et cl eanup variables may be left unset or set to an empty
string.

The TCM and API are provided as shell scripts which must be sourced by the test suite author
immediately after thet et _startup,tet_cl eanup andi cl i st variables, each of thei cn
variables, and any shell functions used by the test case have been defined. The shell script is
sourced by use of the . (dot) shell built-in command. Note that if atest purpose is written as a
separate shell script, that script must source the shell API in order to have access to APl support
routines.

May 2000 Page 133
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

1153 tet thistest
Synopsis
$tet _thistest

Description

Thet et _t hi st est shell variable contains the name of the currently executing test purpose, as
specifiedinthei cnvariable.

Page 134 May 2000
The Open Group

TET3-PG-1.6

Test Environment Toolkit
TETware Programmers Guide

11.6 Insulating from thetest environment

The following configuration variables are used by the shell TCM to help determine which events
should be handled for the test case, and which should be passed through.

TET_SIG I GN

TET_SI G_LEAVE

defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left with its current disposition (see TET_SI G LEAVE
below), will be caught when raised and the result of the test purpose will be
set to UNRESOLVED because of the receipt of an unexpected signal. A test
purpose may undertake its own signal handling as required for the execution
of that test purpose; the disposition of signals will be reset after the test
purpose has completed. The APl needs to know how many signals the
implementation supportsin order to set up trap statements for these signals.

defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

The implementation does not allow a standard set of signals to be set to be ignored or left
unchanged, as this may pervert test results.

May 2000

Page 135
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

11.7 Makingjournal entries
11.7.1 Introduction

These functions are provided for use by test cases when making entries in the execution results
file.

11.7.2 tet _setcontext andtet set bl ock
Synopsis

t et _set cont ext

tet setbl ock

Description

The t et _set cont ext shell function changes the context of the calling process. When the
current context is not equal to the value of $$ (the shell builtin variable which contains the
shell’s process ID), acall tot et _set cont ext sets the context to the value of $$. Otherwise,
if the current context is already equa to $$, a cal totet_setcontext sets the current
context to a new value. This behaviour enables a context to be established in a subshell with a
different value to that established in a parent shell.?

The current context is stored in the environment variable TET _CONTEXT which is marked for
export. This enables the context to be passed to subsequent processes by using this environment
variable. The tet_set cont ext function should be executed by any application which
executes a background subshell and which wishes to write entries to the execution results file
from both processes. Thet et _set cont ext function must be executed from the child process,
not from the parent. Test suite authors should ensure that t et _set cont ext is only called
when it is necessary to change the context in a subshell. Gratuitous calls to this function should
not be made.

The parent should call t et _set bl ock as appropriate to distinguish its output before, during
and after execution of the child.

Thet et _set bl ock shell function increments the current block ID. The value of the current
block ID isreset to one at the start of every test purpose and after acall tot et _set cont ext
which altered the current context. The sequence ID of the next entry is set to one at the start of
each new block. The current block ID is stored in the shell variable TET_BLOCK which is
marked for export.

21. A subshell is a sequence of shell commands enclosed in parentheses, thus: (...).

Note that the value of $$ is the same in a subshell asit isin the parent shell. Thusit is not possible to use $$ to
determine the value of the process ID of a subshell.

Page 136 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

11.7.3 tet i nfoline
Synopsis

tet _infoline data ...

Description

The t et _i nfoline shell function outputs an information line to the execution results file.
The sequence number is incremented by one after the line is output. If the current context and the
current block ID have not been set, the call tot et _i nf ol i ne causes the current context to be
set using the value of the calling process ID and the current block ID to be set to one. Note that
tet _i nfoline does not process backslash escapes like the shell echo built-in command. If
more than one argument ispassedtot et _i nf ol i ne, each argument is separated from the next
by a space character when the line is written to the execution resultsfile.

11.7.4 tet result
Synopsis

tet _result result

Description

Thetet _result shel function sets the result code that will be output at the end of the test
purpose. Ther esul t argument specifies the name of the result that isto be output. This result
is output to the execution results file by the TCM upon test purpose completion. This ensures
that al informational messages are written out before the test purpose result, and that there is one
(and only one) result generated per test purpose.

If atest purposedoesnot call t et _resul t,the TCM generates aresult of NORESULT. If more
thanonecal tot et _resul t ismade with different result codes, the TCM determines the final
result code by use of precedence rules. The precedence order (highest first) is:

FAI L

UNRESCLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPCORTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t with one of
those codes are ignored except the first such call.

May 2000 Page 137
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

11.8 Canceling test purposes
11.8.1 Introduction

These functions are provided for use when cancelling test purposes.

11.82 tet delete
Synopsis

tet _del ete testnane reason

Description

The shell function t et _del et e marks the test purpose specified by t est nane as canceled.
The TCM will output r eason as the reason for cancellation on the information line that is
generated whenever it attempts to execute this test purpose. The argument t est name matches
the name which is used to call this test purpose. If the requested t est nanme does not match the
name of a test purpose, no action is taken. If the requested t est namne is aready marked as
canceled the reason is changed to r eason and the test purpose remains marked as canceled. If
reason is an empty string then the requested t est nane is marked as active; this enables
previously canceled test purposes to be re-activated.

11.8.3 tet reason
Synopsis

tet _reason testnane

Description

The shell functiont et _r eason prints the reason why the test purpose specified by t est nane
has been canceled and returns a value of 0. The reason is printed on the standard output. If the
test purpose specified by t est name is not marked as canceled or does not match the name of a
test purpose, no reason is printed and the function returns avalue of 1.

Page 138 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

11.9 Accessing configuration variables

There is no explicit shell interface to support this functionality. The API ensures that the
configuration information is available to the test purposes as shell variables marked r eadonl y.
Each of these shell variables can be accessed using the normal shell mechanisms.

Configuration variables are not marked for export by the API. Therefore, if a configuration
variable isto be accessed by a sub-program it must be exported explicitly by the main test case.

11.10 Generation and execution of processes

There is no explicit shell interface to support this functionality. The APl ensures that
tet thistest isavalableinthe environment so that it can be accessed in sub-programs. The
ability to use parentheses to generate a subshell environment enables configuration variables to be
accessed when a subshell is generated. The only facilities that are not provided in the shell are
the ability to timeout a subshell process and the examination of the exit code from the subshell.
The shell provides facilities to accomplish these tasks in arelatively straightforward manner and
thisis considered to be an issue for the application programmer rather than for the API.

11.11 Executed process support

Shell scripts which are executed by atest case written to this API should source the shell API to
include the necessary support routines using the . (dot) shell built-in command. Note that this
will not provide TCM functions (like signal handling and test purpose sequencing). Executed
processes which need this type of support should be test casesin their own right.

May 2000 Page 139
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 140 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

12. The Perl API

12.1 Introduction

This chapter describes the TETware Perl API. The Perl API requires the use of the per | utility
and may be used on Win32 operating systems as well as on UNIX systems. On a Win32 system
the name of a Perl test case must include a . pl suffix if it is to be recognised as such by the
TETware TCC.

Non-distributed test cases written using this APl may be run stand-alone or under the control of
both the Distributed and Lite versions of the TETware TCC. The Perl APl does not support
distributed testing.

12.2 Description

In many respects the Perl language binding is similar to the Shell (xpg3sh) language binding.
Test cases written to this language binding attach themselves to it through the following files:

o tet-root/ | i b/ perl/tcm pl containsthe Test Case Manager.

o tet-root/ | i b/ perl/api. pl containsthe support routines for use by test purposes.

The Perl API isequivaent to the posi x_c API provided in TET 1.10.
The following Perl calling conventions should be observed:

&t et’ set cont ext;

&t et’ set bl ock;

& et’infoline("text");

& et’result("result-name") ;

&t et’ del et e(" test-name" [, "reason"]);
deletion-reason = &t et’ reason(" test-name") ;

The default result code list is PASS, FAI L, UNRESOLVED, NOTI NUSE, UNSUPPORTED,
UNTESTED, UNI NI TI ATED and NORESULT.

The usage of each call and variable is equivalent to the corresponding calls and variables in the
Shell API.

May 2000 Page 141
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Variable references should take the following forms:

@clist=(icl,ic2,...icn);
@cl=("my_tpl");
@c2=("my_tp2", " my_tp3") ;

$tet’ start up="my_startup_routine" ;
$t et’ cl eanup="my_cleanup_routine";

@et’'sig leave list=(...);
@et’'sig ignore_ list=(...);

$tet’' thistest;

A Perl API-compliant program should adhere to the following structure:

seticlist, ICs, optional setup and cleanup routines
code for subroutines
require "SENV{\"TET_ROON"}/Ilib/perl/tcmpl";

Example test suites written in Perl that test the APl ae provided in the
tet-root/ contri b/ suite and tet-root/ contrib/api directories in the TETware
distribution. In addition, a Perl demonstration test suite is provided in the
tet-root/ cont ri b/ per| deno directory in the TETware distribution. Instructions for running
the Perl demonstration test suite are presented in the section entitted ‘‘The Perl API
demonstration’’ in the TETware User Guide.

Page 142 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13. TheJava API

13.1 Introduction

This chapter describes the TETware Java API. Different versions of the Java APl are supplied
with TETware-Lite and Distributed TETware. The Distributed version of the Java APl may be
used when writing both distributed and non-distributed test cases, whereas the Lite version of the
Java APl may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

The Java APl uses the Java Native Interface (JNI) to call functions in the TETware C API. To
the extent that is appropriate, the interfaces described in this chapter enable Java test cases to
access the same facilities as those available to test cases that use the C API. Refer to the chapter
entitted ‘‘The CAPI'" elsewhere in this guide for details of the functions that underly the
interfaces described in this chapter.

This API is only supported on certain platforms. Details of the platforms on which this API is
supported may be found in the TETware Installation Guides.

13.2 Javalanguage binding

Java test cases find the TETware classes in the file tet-root/ | i b/ javal/jet.jar. These
classes belong to the Java package TET.

The following classes form the public API:

Test Case

Si npl eTest Case
Chi | dTest Case
Test Sessi on
Tet Excepti on
Tet Thr ead
SyncMessage
SyncSt at e
SystenEntry

Reference documentation for these classes can be found in tet-root/ doc/ j ava in the TETware
distribution. This documentation is in HTML format and has been generated from the class
source files by the j avadoc program. It may be read using a suitable web browser. The file
tet-root/ doc/ j ava/tree. ht Ml contains an index of the class hierarchy and the file
tet-root/ doc/ j ava/ Al | Nanmes. ht M contains an aphabetical index of al the fields and
methods in the class files. Please note that only non-deprecated public methods and fields which
are described in this Chapter are part of the supported API.

In this guide, classes will often be referred to by an unqualified class name rather than by a fully
qualified name (for example: Si npl eTest Case rather than TET. Si npl eTest Case). In
the Synopsis sections, methods will be presented without the synchroni zed or nati ve
modifiers. Thisis because these modifiers may change between TETware releases and should not
be relied upon.

May 2000 Page 143
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

On UNIX systems the TETware Java classes load one of the following files at runtime:

o tet-root/ | i b/ j aval/l i bj api . so contains the Java TCM and the API support library
for test cases.

o tet-root/ | i b/ javal/li bj api chi |l d. so contains the Java child process controller and
the APl support library for subprograms that test purposes will launch using the
tet jspawn() interface.

On Windows NT systems, these files are named tet-root/ bin/japi.dll and
tet-root/ bi n/ j api chi | d. dl | , respectively.

13.3 TCC dependencies

Test cases built to the Lite version of this API may be either be executed stand-alone or under the
control of either TCC version. Test cases built to the Distributed version of this API require the
Distributed TCC to execute; they cannot be executed stand-alone. This is because the amount of
effort required to establish an environment in which test cases could execute without the TCC is
substantial. This applies especially to the requirement for test purpose synchronisation and result
arbitration.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTI VI TY
defaultsto 0 and TET_CONFI Gto undefined. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codesis used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when atest case is executed stand-alone.

13.4 Processing Javatest cases
13.4.1 Introduction

The subsections that follow describe how to uset cc to build, execute and clean Java test cases.

13.4.2 Thescenariofile
In the scenario file the name of a Javatest case should be specified without the . cl ass suffix.

For example, consider a test case whose source directory ist s/ MyTest Case (relative to the
test suite root directory). If the name of the source file for the test caseis My Test Case. j ava,
the Java compiler leaves the compiled code in MyTest Case. cl ass. Thistest case should be
specified in the scenario file as follows:

al |
/ts/ MyTest Case/ MyTest Case

When a Java test case is specified in this way, t cc is able to use the tools described in the
following subsections to processit in each mode of operation.

Page 144 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.4.3 Building a Java test case

A build tool is included in the TETware distribution for use when building Java test cases. The
name of thistool isj et - bui | d and it islocated in tet-root/ bi n. (On Win32 systems this tool
isnamed | et - bui | d. exe.)

jet-build is provided as a convenience to test suite developers. You can use other
mechanisms to build a Java test case if you want to. Indeed, if the test suite uses an alternate
execution directory or any test case consists of more than one source file, it is likely that a more
complex build tool will be required, such as make together with suitable makefiles. It may
sometimes be appropriate to invoke j et - bui | d from a makefile rule in these cases.

j et - bui | d takes the name of the test case source file as argument, without the . j ava suffix.
It then addsa. j ava suffix to the test case name and invokes the Java compiler j avac.

Normally, jet-buil d searches for javac in the directories specified by the PATH
environment variable in the usual way. However, this can be changed by using a build mode
configuration variable called TET _JAVAC PATH.

For example, if j avac isin/ usr /| ocal / j ava/ bi n, the following assignment in the build
mode configuration file will enablej et - bui | d to find the Java compiler even if that location is
not in the search path:

TET_JAVAC PATH=/usr /| ocal /java/ bi n/j avac

This feature is particularly useful when building a Java test case on a remote system where the
value of PATH inherited fromt ccd does not normally include the location of the Java compiler.

The simplest way to use j et - bui | d is when all the test cases in the test suite are Java test
cases, and each test case consists of a single source file. Simply specify j et - bui | d as the
build tool in the build mode configuration.

For example:

TET_EXPAND_CONF_VARS=t r ue
TET_OUTPUT_CAPTURE=t r ue
TET_BUI LD_TOOL=${ TET_ROOT}/ bi n/j et - bui | d

13.4.4 Executing a Java test case

A Java test case must be executed by the Java interpreter. In addition, certain environment
variables must be set up to enable the Javainterpreter to locate the Java APl components.

An exec tool isincluded in the TETware distribution which performs these functions. It provides
the interface between t cc and the Java interpreter when executing Java test cases. The name of
thistool isj et - exec and it islocated in tet-root/ bi n. (On Win32 systems this tool is named
j et - exec. exe.)

j et - exec takes the name of the test case class file as argument, without the . ¢l ass suffix. It
sets certain environment variables to enable the Java runtime to locate the TCM and the API
library, then invokes the Java interpreter j ava.

Normally, j et - exec searches for j ava in the directories specified by the PATH environment
variable in the usual way. However, this can be changed by using an execute mode configuration
variable called TET _JAVA PATH.

May 2000 Page 145
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

For example, if j ava isin/ usr /1 ocal / j aval bi n, the following assignment in the execute
mode configuration file will enablej et - exec to find the Javainterpreter even if that location is
not in the search path:

TET_JAVA PATH=/ usr/ | ocal /javal bin/java

This feature is particularly useful when executing a Java test case on a remote system where the
value of PATH inherited from t ccd does not normaly include the location of the Java
interpreter.

j et - exec can be used in several ways as follows:
1. When all the test casesin the test suite use the Java API.
Simply specify j et - exec asthe exec tool in the execute mode configuration.
For example:

TET_EXPAND_CONF_VARS=t r ue
TET_EXEC TOOL=${ TET_ROOT}/ bi n/ j et - exec

2. When the test suite contains test cases that use several APIs.

You will need to provide an exec tool that can distinguish between Javatest cases and the
others, and only use j et - exec to execute the Javatest cases. One way to do this would
be to group all the Javatest cases below a common subdirectory.

For example, the following shell script exec tool might be used to do this when all the Java
test casesarebelow t s/ JavaTest s:

determ ne the test case nane
testcase=%${1: ?}
shift

execute test cases bel ow the JavaTests directory using
the Java exec tool;
execute other test cases directly
case "$testcase" in
*[JavaTest s/ *)
${ TET_ROOT: ?}/ bin/jet-exec $testcase ${1: +"$@}

*)
./ $testcase ${1:+"$@}

esac

13.4.5 Cleaning a Java test case

For completeness, a clean tool is provided in the TETware distribution for use when cleaning
Java test cases. The name of this tool isj et - cl ean and it is located in tet-root/ bi n. (On
Win32 systemsthistool isnamed j et - cl ean. exe.)

Generally speaking, when it is appropriate to use j et - bui | d as the build toal, | et - cl ean
may be used as the clean tool.

j et - cl ean takes the name of the test case class file as argument, without the . cl ass suffix.
It then addsa. cl ass suffix to the file name and removes the classfile.

Page 146 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The simplest way to use | et - ¢l ean is when all the test cases in the test suite are Java test
cases, and each test case consists of asingle classfile. Simply specify j et - cl ean asthe clean
tool in the clean mode configuration.

For example:

TET_EXPAND_CONF_VARS=t r ue
TET_OUTPUT_CAPTURE=t r ue
TET_CLEAN _TOOL=${ TET_ROOT}/ bi n/j et -cl ean

May 2000 Page 147
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.5 Test case structure and management

13.5.1 Introduction

These methods are used when test cases are initialised and cleaned up, and in selecting invocable
components and test purposes to execute.

13.5.2 Defining atest case class

The test case author defines a new test case by extending the Si npl eTest Case class or one of
its subclasses. The new test case must provide a static mai n() method which creates an
instance of the test case class and passes control back to the Test Case Manager (TCM).

For example:

public class MyTest Case extends Sinpl eTest Case

{
public static void main(String[] args)
{

mai n(" MyTest Case", args, new MyTest Case());

}

}

The first argument to mai n() isthe name of the test case. This nameisreturned by acall to the
tet _pnane() APl method.

An aternative mai n() method is also provided in Si npl eTest Case which omits the first
argument, and uses the class of the new test case object to determine the test case name.

For example:
/1 Test case name is "M/Test Case"
mai n(args, new MyTest Case());

The API services are provided by the Test Sessi on class. A Test Sessi on object is created
when the test case is initialised and this object is passed to each test purpose method in the test
case.

13.5.3 Defining Invocable Components and Test Purposes

The test suite author should define each test purpose function as a public instance method of the
form:

public void iicnumt tpnum(Test Sessi on ts)

where icnum is the invocable component (IC) number to which the test purpose belongs, and
tpnum s the test purpose (TP) number within that invocable component.

Page 148 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

For example, amethod that is defined as:
public void il1lt2(Test Session ts)
isinterpreted by the TCM as TP 2 within IC 1.

When the TCM processes a particular 1C, it first selects the TP methods whose name contains an
icnum which matches the number of the IC being processed. Then the TCM uses lexical
comparison of the tpnum fields in the selected method names to determine the order in which to
call the TP methods.

A consequence of this is that it would be possible to define methods named i 1t 2() and
i 11 02() , and have the TCM interpret these as different TPs within IC 1. However, this should
be regarded as bad practice since it would be difficult to associate a test purpose method name in
a source file with the test purpose’s information lines and result code in the journa file. Instead,
test case authors should define test purpose method names whose icnum and tpnum fields either
contain no leading zeros or all contain the same number of digit positions. In other words, you
should either name test purpose methods using the style: i 1t 1(),i1t2(),i2t1() ..., or
name them using the style: i 1t 01(),i 1t 02(),i 2t 01() ..., but do not mix these stylesin
the same test case.

The Si npl eTest Case class determines valid test purpose methods using the Java Reflection
API. Any methods which do not have the correct name or signature will be silently ignored by
the TCM.

If atest purpose method throws an exception, the API registers a result of UNRESOLVED for the
test purpose.

13.5.4 startup() andcl eanup()
Synopsis

public void startup(TestSession ts)

public void cl eanup(Test Session ts)

Description
The startup() and/or cl eanup() methods of Si npl eTest Case may be overridden in

the user-supplied test case class. These methods are called by the TCM to perform test case
specific start up and clean up operations, respectively.

startup() is called before the first requested invocable component and cl eanup() is
invoked on completion of the last requested invocable component. If atest case does not need to
perform actions of start up and/or clean up, these methods need not be defined in the new test
case class.

May 2000 Page 149
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

1355 tet _thistest() andtet pnane()
Synopsis

/1 public class Test Session
public int tet thistest()
public String tet_pname()

Description

These methods are defined on the Test Sessi on object passed to the startup(),
cl eanup() and test purpose methods.

The value returned by tet _thistest() is the absolute test number for the currently
executing test purpose. (For a description of the relationship between invocable component
number, test purpose number and absolute test number, see *‘Dynamic test case interface’” in the
chapter entitled *“ The C API’").

During execution of the st art up() and cl eanup() functions, t et _t hi stest () returns
zero.

t et _pnane() returnsthe test case name.

Return value
These methods return the values described above.

Page 150 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.6 Insulating from the environment

Description

On UNIX systems it is possible to use the TET_SI G | GN and TET_SI G_LEAVE variablesin
the execute mode configuration to modify the way in which the TCM should handle unexpected
signals. These variables are described in the corresponding section in the chapter entitled ** The
C API'" elsewherein this guide.

However, users should be aware that the Java run-time system may make use of signals for
various purposes. Therefore the use of configuration variables to alter the handling of a signal
that is used by the Java run-time system can have unpredictable results. In particular, users
should not specify asignal in TET_SI G_| GNthat is used by the Java run-time system.

The set of signalsthat are used by the Java run-time system varies between Java implementations.
The list of signals that may be used by the Java run-time system and thus should be left aone by
the TCM is compiled in to the TCM when the Java API is built. Information on how these
signals are specified is presented in the section entitled *‘ Support for Java’ in the TETware
Installation Guide for UNIX Operating Systems.

Portability
The facilities described here are not provided on Win32 systems.

May 2000 Page 151
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.7 Error handling and reporting

13.7.1 Introduction

When an exception occurs in an APl method in the TET package, the method throws a
Tet Except i on object. This object contains fields and methods that provide information about
the condition that caused the error to occur. Items that only apply to a particular method are
described in the section that describes the method. Items that apply to all methods are described
in the subsections that follow.

It is recommended that APl exceptions are caught by test purposes and appropriate messages
written to the journal. If an unhandled exception occurs in a test purpose function, the API
catches the exception, prints a message to the journal and registers an UNRESOLVED result. If an
unhandled exception occurs in a test case’s startup method, the API cancels al the test purpose
functions.

Classes in the TET package indicate fatal errors by throwing instances of subclasses of
java.lang. Error. A test purpose either should not catch these objects or, if it does, the
catching function should re-throw the error so that the API can catch it and perform the correct
actions before terminating with the appropriate exit status.

In addition to the following fields and methods, thet oSt ri ng() method of Tet Excepti on
may be used in the usual way for Throwable objects; that is. to retrieve the message that
describes the reason for the exception.

13.7.2 tet _errno

Synopsis
/1 public class TetException

public int tet_errno;

Description

The value of thet et _errno field in a Tet Except i on object indicates the reason why the
exception was thrown.

Distributed TETware uses a client/server architecture and calls to severa of the API functions
cause the API to send requests to server processes. A server sends a reply code in response to
each request that it receives. When the reply code indicates that a request has failed, the value
storedint et _err no isderived from the server reply code. A list of the server reply codes and
their meanings is presented in the appendix entitled ‘‘ Server reply codes’ in the TETware User
Guide.

The possible error codes values are defined in the Test Sessi on classaspublic static
fi nal fields, whose names and meanings are as follows:

TET_ER 2BI G Argument list too long.

TET_ER_ABORT Abort TCM on TP end.

TET_ER _CONTEXT Request out of context.

TET_ER_DONE Event finished or aready happened.

TET_ER _DUPS Request contained duplicate IDs.

TET_ER ERR General error code.

TET_ER FID Bad identifier in file i/o request.

Page 152 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

TET_ER FORK Can't fork.

TET_ER I NPROGRESS Event in progress.

TET_ER | NTERN Server internal error.

TET_ER | NVAL Invalid parameter.

TET_ER LOGON Not logged on to server.

TET_ER MAG C Bad magic number in server request.
TET_ER NOENT No such file or directory.

TET_ER _PERM Privilege request/kill error.

TET _ER PID No such process.

TET_ER_RCVERR Receive message error.

TET_ER REQ Unknown request code.

TET_ER _SI GNUM Bad signal number.

TET_ER SNID Bad sync identifier in SYNCD request.
TET_ER_SYNCERR Sync completed unsuccessfully.
TET_ER SYSI D System identifier not in system name list.
TET_ER _TI MEDOUT Request or system call timed out.
TET_ER TRACE Tracing not configured.

TET_ER WAIT Process not yet terminated.
TET_ER XRID Bad execution resultsfile identifier in XRESD request.

Whenever an unsuccessful APl call throws a Tet Excepti on with tet_errno set to
TET_ER _ERR (the general error code), a diagnostic message is generated somewhere which
contains more precise details of the cause of the error. If an error of this type occurs in the API
library, the diagnostic is printed to the execution results file as a TCM/API message if possible; if
thisis not possible, the diagnostic is printed on the test case' s standard error stream.

However, in Distributed TETware, an error of this type can also occur in a server process. Inthis
case the more detailed error message is printed on the server’s standard error stream. The result
of thisisthat when an API call is unsuccessful in Distributed TETwareandt et _errno issetto
TET_ER _ERR, the more detailed error message often appears in a TCCD log file on the local
system or on one of the remote systems that is participating in the test run.

1373 tet _errlist()
Synopsis

/1 public class Test Session

public String[] tet_errlist()

Description

Thearray returned by t et _err | i st () contains short strings which describe each of the values
definedfort et _errno.

Thevaueof tet _errnoinaTet Excepti on object may be used to index the array returned
bytet errlist(). Thevaueof tet errno should be checked against the length of the
array to guard against the possibility that a new error code is added to the API before the
corresponding message is added to the array.

May 2000 Page 153
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Return value

This method returns an array of String objects, each of which contains a description of a
tet _errno vaue

Page 154 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.8 Makingjournal entries
13.8.1 Introduction

These methods are provided in the Test Sessi on class for use by test cases when making
entries in the execution result file.

13.82 tet _setcontext() andtet set bl ock()
Synopsis

/1 public class Test Session

public void tet_setcontext()

public void tet_sethbl ock()
Description

Thetet setcontext() method sets the current context to the value of the current process
ID. The sequence number for the calling thread is reset to 1, but sequence numbers for other
threads remain unchanged, as do al block numbers.

Thet et _set bl ock() method increments the current block ID.

The value of the current block ID isreset to 1 at the start of every test purpose. The sequence ID
of the next entry, a number which is automatically incremented as each entry is output to the
execution resultsfile, is set to one at the start of each new block.

Return value

These methods do not return avalue.

Application notes

The API calls these methods when necessary. It is not usually necessary for user-supplied test
code to call these methods.

1383 tet _infoline() andtet _m nfoline()
Synopsis

/1 public class Test Session
public void tet_infoline(String line)
public void tet_mnfoline(String[] lines) throws Tet Exception

Description

A cal totet _infoline() printsthe information line specified by | i ne to the execution
results file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call to t et _i nf ol i ne() causes the
current context to be set to the value of the calling process ID and the current block 1D to be set
to one.

Acdltotet _m nfoline() printsgroupsof information lines to the execution results file. In
Distributed TETware these lines are printed using a single operation which guarantees that lines
from other test case parts do not appear in between lines printed by a particular call to this
method.

May 2000 Page 155
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Return value
These methods do not return avalue.

Exceptions

tet _mnfoline() throws a Tet Excepti on abject if the APl encounters an error while
printing the lines.

Application notes

Equivalentstotet _printf() andtet _vprintf() inthe CAPI are not provided in the
JavaAPl. Thisis because the C and Javalanguages handle formatted output in different ways.

1384 tet _result()
Synopsis

/1 public class Test Session

public void tet result(int result)

Description

A cdl totet _result() informsthe APl of the result of the test purpose from which it is
called. The API generates a TP result line which is printed to the execution results file by the
TCM upon test purpose completion. This ensures that all the informational messages are written
out before the test purpose result, and that there is one (and only one) result generated per test
purpose. If the result code specified by r esul t isone for which the action specified in the result
codes file is to abort testing, then the TCM will exit after the test purpose has completed. If an
immediate abort is desired, then the test purpose should execute a return statement immediately
afterthecaltotet _result().

If atest purpose doesnot call t et _resul t (), the TCM will generate aresult of NORESULT.
If more than one cal to tet_result() is made with different result codes, the TCM
determines the final result code by use of precedence rules. The precedence order (highest first)
IS

FAI L

UNRESCLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPCORTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t () with one
of those codes are ignored except the first such call.

Thetet result() method should only be called from within the scope of a test purpose
method. It must not be called from atest case start up or clean up method.

Return value
This method does not return avaue.

Page 156 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.9 Cancellingtest purposes
13.9.1 Introduction

These methods are provided for use when cancelling test purposes.

1392 tet _delete()
Synopsis

/1 public class Test Session

public void tet_delete(int testno, String reason)

Description
Acaltot et del et e() marksthetest purpose specified by the absolute test number t est no

as cancelled. If the test purpose specified by t est no is not defined in the test case, a cal to
tet _del et e() hasno effect.

r eason should describe the reason why the test purpose isto be marked as cancelled.

When the TCM prepares to call atest purpose function, it first checks to see if the function has
been marked as cancelled by acall tot et _del et e() . If the test purpose has been marked as
cancelled, the TCM does not call the function but instead prints the line pointed to by r eason to
the execution results file and records aresult of UNI NI TI ATED.

If acal tot et _del et e() namesat est no that has been marked as cancelled by a previous
tet _del ete() cal, the reason for cancellation is changed to the r eason specified in the
current call.

If tet _del ete() iscaled with ar eason parameter of nul |, the test purpose specified by
t est no isreactivated if it has previously been marked as cancelled.

Iftet _del et e() iscaledin adistributed test case, the API notifies other participating TCMs
of the cancellation. This notification occurs when the TCMs synchronise with each other before
attempting to execute the cancelled test purpose. Thus, none of the TCMs execute a distributed
test purpose which has been cancelled on any of the participating systems.

Return value
This method does not return avaue.

Application notes

Thet et _del et e() method can only usefully be called from atop-level test case (that is: atest
case derived from Si npl eTest Case). It has no effect when called from a child test case (that
is: atest case derived from Chi | dTest Case).

May 2000 Page 157
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

1393 tet reason()
Synopsis

/1 public class Test Session

public String tet_reason(int testno)

Description

The method t et _reason() returns a String object which contains the reason why the test
purpose with the specified absolute test number has been cancelled by a previous call to
tet _delete(). If this test purpose is not defined in the test case or is not marked as
cancelled, nul | isreturned.

Return value

If the specified test purpose exists and has been cancelled by apreviouscall tot et _del et e(),
acal totet _reason() returnsthe r eason parameter supplied with thet et _del et e()
cal; otherwise, nul | isreturned.

Application notes

Thet et _reason() method can only usefully be called from atop-level test case (that is: atest
case derived from Si npl eTest Case). It has no effect when called from a child test case (that
is: atest case derived from Chi | dTest Case).

It is not possibletouset et _reason() inadistributed test case to determine whether or not a
test purpose has been cancelled on another system.

Page 158 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.10 Accessing configuration variables
13.10.1 Introduction

This method provides access to configuration variables. A description of how configuration
variables are defined is presented in the chapter entitled ‘* Configuration files’ elsewhere in this
guide. Note that when a test case or tool is processed by the TCC, this method only provides
access to variables that are defined for the current mode of operation.

When Distributed TETware is used, this method provides access to the per-system configuration
defined for the system on which the calling process is running. This method cannot be used to
access configuration variables defined on other systems or distributed configuration variables.

13.10.2 tet _getvar ()
Synopsis

/1 public class Test Session
public String tet_getvar(String nane)
Description
Acdltotet getvar () returnsthe value of the configuration variable nane.

If the variable specified by nane is defined but has no setting, a String object of zero length is
returned. If the variableisundefined, t et _get var () returnsnul | .

Return value
The method returns the values described above.

May 2000 Page 159
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.11 Generating and executing processes

13.11.1 Introduction
These methods enable API-conforming sub-programsto be created and administered.

13.11.2 tet _spawn() andtet j spawn()
Synopsis

/1 public class Test Session

public long tet _spawn(String file, String[] argv, String[] envp)
t hrows Tet Excepti on

public long tet_ jspawn(String classnanme, String[] args, String[] envp)
t hrows Tet Excepti on
Description
A cdl to tet_spawn() creates a new sub-program that will use the CAPI. A cal to
tet j spawn() createsanew sub-program that will use the Java API.

The interface between these methods and the sub-program launched by them has been designed
to enable the sub-program to use a TETware API. Therefore, a sub-program launched by a call to
tet _spawn() must be built with the C API's child process controller. Likewise, the class
specified by cl assnane inacal tot et _j spawn() must be asubclassof Chi | dTest Case
and must use the Java API’ s child process controller.

Return value

Bothtet spawn() and tet j spawn() return the process identifier of the newly created
process.

Exceptions

tet _spawn() and tet_jspawn() each throw a Tet Excepti on object if the API
encounters an error while creating the new sub-program.

Application notes

The implementation of t et j spawn() uses a helper program called j et - spawn which
resides in tet-root/ bi n in the TETware distribution. If this program cannot be executed for any
reason, acal tot et _j spawn() will fail.

Portability
Refer to the corresponding section in the chapter entitled ‘** The C API’’ elsewhere in this guide.

Page 160 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.11.3 tet _wait ()
Synopsis

/1 public class Test Session
public int tet _wait(long pid) throws Tet Exception
Description

Acaltotet wait () waitsfor the processidentified by pi d to terminate. pi d isthe process
identifier returned by a previous successful call tot et _spawn() ortet j spawn() .

Return value
Acadltotet wait () returnsthe exit status of the processidentified by pi d.

Exceptions

tet _wait () throwsaTet Excepti on object if the APl encounters an error while waiting for
the process to terminate.

Portability
Refer to the corresponding section in the chapter entitled ** The C API’" elsewhere in this guide.

13114 tet _Kkill ()
Synopsis

/1 public class Test Session

public void tet kill(long pid, int sig) throws Tet Exception
Description
Acdltotet kill () sendsthesignal specified by si g to the process specified by pi d, which
should be the process identifier returned by a previous successful call to t et _spawn() or
tet_jspawn().
Return value
This method does not return avalue.

Exceptions

tet _Kkill () throws a Tet Excepti on object if the APl encounters an error while sending
the signal to the process.

Portability
Refer to the corresponding section in the chapter entitled ** The C API’" elsewhere in this guide.

Application notes
Refer to the corresponding section in the chapter entitled ** The C API’" elsewhere in this guide.

May 2000 Page 161
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.12 Executed process methods

13.12.1 Introduction

These methods are provided for use by an API-conforming Java test case that is launched by a
cadltotet _j spawn().

The test case author defines a new child test case by extending the Chi | dTest Case class or
one of its subclasses. The new test case must provide a static mai n() method which creates an
instance of the child test case class and passes control to the child process controller.

For example:
public class MyChil dTest Case extends Chil dTest Case
{
public static void main(String[] args)
{
mai n(args, new MyChil dTest Case());
}
}

13.12.2 tet _mai n()
Synopsis

public int tet_main(TestSession ts, String[] args)

Description
The method t et _mai n() is declared abstract in class Chi | dTest Case. A child test case
class must extend Chi | dTest Case and implementt et _mai n() .

The API services are provided by a subclass of Test Sessi on. A Test Sessi on object is
created when the child test case is initialised and this object is passed tot et _mai n() in the
argumentt s.

The current context is preserved from the calling process and the current block number is
incremented beforet et _mai n() iscaled.
Return value

If t et _mai n() returns, its return value becomes the child process' exit status. This status may
be accessed in the parent by acal tot et _wai t () .

Page 162 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13123 tet _exit() andtet | ogoff ()
Synopsis

/1 public class Test Session
public void tet_exit(int status)

public void tet_Ilogoff()

Description

The method tet exit() should be wused instead of Systemexit() (or
Runtinme. exit()) by a child test case that is started by a cal to tet _jspawn(). In
Distributed TETware this method logs off all TETware servers, then exits with the specified
st at us.

The function t et _| ogof f () may be caled by a child process that is started by a cal to
tet _j spawn() which does not need to make any further TETware API calls and is not able to
call tet _exit() at processtermination. t et | ogof f () should only be caled once from
the child process. In Distributed TETware the results are undefined if a process or any of its
descendents makes any TETware API callsaftert et _| ogof f () iscalled.

Return value

A successful call tot et _exi t () doesnot return.
Acdltotet | ogoff () doesnot returnavalue.

Portability
Refer to the corresponding section in the chapter entitled ** The C API’" elsewhere in this guide.

May 2000 Page 163
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.13 Test case synchronization

13.13.1 Introduction

This method enables parts of a distributed test purpose or user-supplied startup or cleanup method
that are running on different systemsto synchronize to an agreed point in the executing code.

Refer to the chapter entitled ‘‘Test case synchronisation’’ in the TETware User Guide for an
overview of TETware synchronisation.

13.132 tet _rensync()
Synopsis

/1 public class Test Session

public void tet_renmsync(long syncptno, int[] sysnanmes, int waittinmne,
int vote, SyncMessage nmsg) throws Tet Exception

Description

Acdltotet _remsync() causesthe caling process s system to synchronise with one or more
of the other systems that are participating in the same distributed test case. The cal can only
succeed if each of the systems specified in the call also expect to synchronise with each other and
with the calling process.

syshanes is a list of IDs of the other systems with which the calling process wishes to
synchronise. The system ID of the calling processisignored if it appearsin the list.

syncpt no specifies the sync point number to which the calling process wishes to synchronise.
If syncptno is zero, a successful call to t et _remsync() returns as soon as al participating
systems have synchronised to the next sync point. If syncpt no is greater than zero, a
successful call to tet _rensync() returns as soon as al participating systems have
synchronised using a sync point number which is not less than syncpt no. Whensyncpt no is
greater than zero, acall tot et _rensync() will fail if async point has already occurred during
the lifetime of the current test case whose number is greater than or equal to syncpt no. The
results are undefined if a negative syncpt no is specified.

wai tti me specifies the number of seconds that may elapse between synchronisation requests
from other participating systems before the calling process times out. If wai tti e is greater
than zero, a cal to tet _rensync() will be successful if al the participating systems
synchronise to the specified sync point with no more than wai tt i me seconds between each
request. If wai ttine iszero, acaltotet renmsync() will return immediately, whether or
not it is successful. If wai tti me isnegative, acal totet rensync() will wait indefinitely
for the specified sync point to occur or until the request fails for some reason. Test suite authors
should be aware of the potential for deadlock if anegativewai tt i nme is specified.

vot e specifies how the caling system wishes to vote in the synchronisation event. This
parameter should be set to one of the defined constants TET_SV_YES or TET_SV_NQ, to
indicate a yes vote or a no vote, respectively. These constants are defined in the Test Sessi on
class. When the calling process specifies a yes vote, acal tot et _rensync() can only be
successful if al the other participating systems also specify ayes vote. When the calling process
specifies a no vote, the APl does not use the votes specified by the other participating systems
when determining whether or not acall tot et _r ensync() inthat processis successful.

Page 164 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

It is possible for a process which callst et _rensync() to exchange sync message data with
other participating systems which synchronise exactly to the sync point specified by syncpt no.
Thisisdone by callingt et _rensync() with anon-null value of meg. When nsg isnon-null,
it refersto a user-supplied SyncMessage object.

Whent et _rensync() iscaled by parts of a distributed test purpose, one system sends data
which may be received by other systems. The API associates the sync message data with the
particular sync point specified by the syncpt no parameter used inthet et _rensync() cal
on the sending system. In order to receive the message data, the syncpt no parameter in calsto
tet_renmsync() on receiving systems must reference this sync point exactly, either by
specifying the same value for syncpt no asthat used on the sending system, or by specifying a
zero syncpt no.

The test purpose part on the sending system should indicate a desire to send sync message data by
creating aSyncMessage object prepared for the transmission of a message, like this:

data = new byte[] { (byte)l, (byte)2, (byte)3 };
nsg = new SyncMessage(data);

The test purpose parts on the receiving systems should indicate their willingness to receive sync
message data by creating a SyncMessage object prepared for the reception of a message, like
this:

nmsg = new SyncMessage(SyncMessage. TET _SMVSGVAX) ;

If thecall tot et _rensync() issuccessful, then on return the SyncMessage object on each
system can be examined to determine the outcome of the data transfer. You can use the
following methods to do this:

nmessage()
truncat ed()
dupl i cat ed()
sender ()

get Sysl ()

If more than one system tries to send sync message data for a particular sync point,
tet _remsync() chooses one system from which to accept data and re-designates the other
sending systems as receiving systems. After the call to tet _rensync() returns, the
SyncMessage objects on al systems will return true on the dupl i cat ed() method and
sender () will return true on the single sending system and false on the re-designated systems.

If aprocesstries to send a message which is larger than the maximum permitted message size, as
defined by SyncMessage. TET_SMVBGVAX, the message is truncated to the maximum size
before sending, and SyncMessage. t runcat ed() will return true on all systems after the
call.

If a process running on a particular systems callst et _rensync() with anull nsg, then the
API regardsit as areceiving system but does not return any message data to it.

Return value
This function does not return avaue.

May 2000 Page 165
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Exceptions

tet _remsync() throws a Tet Excepti on object if the APl encounters an error while
processing the request.

An error can occur asaresult of one of the following conditions:

e Morethanwai t t i me seconds elapse between synchronisation requests from participating
systems.

« A related synchronisation request times out on one of the other participating systems.

o The user-supplied method in a test case on one of the other participating systems returns
control to its TCM before synchronising.

« The sync point specified by syncpt no has aready occurred.

o A yes sync vote is specified in the call but another participating system specifies a no vote
for this sync point.

e sysnanes isnull.
¢ A system ID appears more than oncein the sysnanes array.
« Aninvalid parameter is specified in the call.

« The APl encounters a problem while processing the request.

The Tet Except i on object thrown contains an array of Sync St at e objects in the public field
sync_st at e. The elements of this array give details of the synchronisation states for each of
the other systems participating in the event.

The Sync St at e class contains the following fields:
/**
* System | D
*/
public int tsy sysid;
/**
* State of synchronization. Consists of a bit nask of TET_SS .
* val ues.
*/
public int tsy state;
The TET_SS .. values are defined in the SyncState class. They are:
/**
* Val ue for <code>tsy state</code> indicating that the
* synchroni zati on request was not received.
*/
public static final int TET_SS NOTSYNCED = 1;
/**

* Val ue for <code>tsy state</code> indicating that the systemvoted

* YES.
*/
public static final int TET_SS SYNCYES = 2;
Page 166 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

/**

* Val ue for <code>tsy state</code> indicating that the systemvoted
* NO.

*/

public static final int TET_SS SYNCNO = 3;
/**

* Value for <code>tsy_state</code> indicating that the systemtined
* out.

*/

public static final int TET_SS TI MEDOUT = 4;
/**

* Val ue for <code>tsy state</code>, indicating that the process

* exited.

*/

public static final int TET_SS DEAD = b;

The Tet Except i on object thrown aso contains the following field:
/ * %

* The sync point at which this exception occurred.
*/
public | ong syncpt;

Portability
In TETware-Lite, this method alwaysthrowsaTet Except i on object.

Refer to the corresponding section in the chapter entitled ‘** The C API’’ elsewhere in this guide.

Application notes
Refer to the corresponding section in the chapter entitled ** The C API"" elsewhere in this guide.

May 2000 Page 167
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

13.14 Remote system information

13.14.1 Introduction
These methods are provided in Distributed TETware to enable a test purpose to retrieve
information about remote systems.

13.14.2 tet _rengetlist()
Synopsis
/1 public class Test Session
public int[] tet _rengetlist()

Description

Acdltotet rengetlist() fromaprocesswhichispart of adistributed test case returns an
array containing the system 1Ds of the other systems.

A cdl totet_rengetlist() from a process which is not part of a distributed test case
returnsnul | .

Portability
InTETware-Liteacall tot et _rengetli st () awaysreturnsnul | .

13.14.3 tet _rengetsys()
Synopsis
/1 public class Test Session
public int tet_rengetsys()

Description

Acdltotet _rengetsys() returnsthe system ID of the system on which the calling process
IS executing.

Return value
This method returns the val ue described above.

Portability
InTETware-Liteacall tot et _renget sys() aways returns zero.

Page 168 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.14.4 t et _get sysbyi d()
Synopsis

/1 public class Test Session

public SystenEntry tet getsysbyid(int sysid) throws Tet Exception

Description
Thetet getsysbyi d() method enables a test case to access information contained in the
system definition file. If an entry for the system specified by sysi d can be found in the file,
tet _getsysbyid() returnsaSyst ermkEnt ry object for that system.
The Syst enmEnt r y class contains the following fields:
/**
* The id of the system
*/
public int ts_sysid;
/**

* The nanme of the system
*/
public String ts_nane;

Refer to the section entitled ** System definitions’ elsewhere in this guide for details of the
system definition file.

Return value

A cdl tet _getsysbyid() returns a Syst enEntry object for the system specified by
sysi d.

Exceptions

tet getsyshyi d() throws a Tet Excepti on object if the APl encounters an error while
processing the request.

Portability
In TETware-Lite, this method alwaysthrowsaTet Except i on object.

13145 tet _rentinme()
Synopsis

/1 public class Test Session
public Date tet _rentinme(int sysid) throws Tet Exception

Description
Acdltotet _remtine() returnsthe system time on the system specified by sysi d.

When sysi d specifies the system ID of the calling process, the time is obtained by using an
appropriate system call. However, when sysi d specifies a different system ID, the time is
obtained from an instance of TCCD that is running on the specified system.

May 2000 Page 169
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Return value
This method returns the value described above.

Exceptions

tet _remine() throws a Tet Excepti on object if the APl encounters an error while
processing the request.

Portability

In TETware-Lite, this method alwaysthrowsaTet Except i on object.

Application notes

The Javaversionof t et _renti me() returns aDat e value (hnumber of milliseconds since the
epoch) whereasthe Cversionof t et _renti me() returnsati ne_t vaue (number of seconds
since the epoch).

Page 170 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

13.15 Remote process control
This functionality is deprecated and is not provided in the Java API.

13.16 Usingthreads
13.16.1 Thread creation

When atest purpose creates a new thread it should use the Tet Thr ead class. This can be done
either by subclassing Tet Thr ead or by creating aTet Thr ead object using an object of aclass
which implements j ava. | ang. Runnabl e. The result of using some other means to create a
new thread in a Javatest case is undefined.

The test case should use one of the following constructors:

public Tet Thread(Test Session ts, Runnable target, String nane,
| ong wai t Ti ne)

public Tet Thread(Test Session ts, Runnable target, |ong waitTine)

public Tet Thread(TestSession ts, String name, |ong waitTine)

The target and nane arguments are simply passed to the constructor of the superclass
java. |l ang. Thread.

Thet s argument is used to determine to which thread group the new thread will belong. A new
thread group is created for each test purpose, startup and cleanup method.

The wai t Ti me argument specifies the number of seconds for which the TCM thread cleanup
code will wait for the thread to finish after the main thread returns control to the TCM. The
purpose of this wait time is to alow other threads some grace in the event of an abnormal return
from the main thread. Normally, the test purpose itself should wait for al non-main threads to
terminate by calling Thr ead. j oi n() .

13.16.2 Dealing with left-over threads

Each time the main thread returns to the TCM, any other threads which were created using one of
the supported constructors are cleaned up. Thisis done after the following methods return:

e Thestartup() andcl eanup() methods.

« Each test purpose method.

etet _main().
The API interrupts a thread which does not exit within the grace time specified in the constructor
by calling Thr ead. i nt errupt (). If the thread still does not terminate, the TCM aborts the
test case. Note that the use of Thr ead. st op() is not a recommended way of terminating
threads and is deprecated in Java 2.
13.16.3 Synchronisation requestsin multiple threads

See notes on ‘* Synchronisation requests in multi-threaded test cases’ in the chapter entitled
““The Thread-safe C and C++ APIS".

May 2000 Page 171
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 172 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

14. Test reporting and journaling
14.1 Makingjournal entries

The TETware API journaling facility provides a mechanism for outputting data to the execution
results file. The API ensures that each entry in this file is written atomically and that there is
sequencing information applied to the entry (to enablet cc to reorder data that is produced from
two or more concurrently executing processes started by a single test purpose®®). t cc ensures
that simultaneous execution of test cases are isolated from one another.

In order to alow for the correct sequencing of information the following attributes are defined:
o System identifier.
e The current context.
e The current block.

The current block is a subdivision of the current context and provides a means of ensuring
contiguity, after resequencing, of ablock of datathat needed to traverse severa entries. The need
to traverse severa entries may be caused by the limitations on the atomicity imposed by the
implementation, or may be purely a matter of convenience for the test suite author.

The current context is initialised during test case start-up and should be changed only after a new
process is generated. This enables the author to choose whether a number of concurrently
executing test purposes should have the same context or different ones.

The system identification is used to distinguish entries written from test case parts on the multiple
systems participating in distributed test cases.

The current block is initialised to one by the start-up routines at the commencement of each test
purpose. The test author can increment the current block at any point during the output of entries
in order to distinguish one block of data from another. Each individua entry within a block will
be sequenced starting at one. Use of the journaling support facilities enables data from
concurrently executing test purposesto be ordered correctly by t cc.

14.1.1 Entriesfrom the API

As mentioned above, the TCM handles the sequencing of test purposes as a part of executing
invocable components. The sequencing mechanism outputs invocable component start and end
information and test purpose start information to the execution results file. The test author is
responsible for outputting test information and test results to the execution resultsfile.

All of the data for an entry is transferred atomically to the execution results file. It is the
responsibility of the test suite author to remain within the limitations imposed by the
implementation for a single atomic write operation. TETware guarantees atomicity of writes up
to 512 bytes.

22. Note that the Distributed version of t cc does not re-order journal lines generated by parts of a distributed API-
conforming test case. Thisisdescribed in alater section in this chapter.

May 2000 Page 173
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

If atest purpose executes another process that is built to the TETware API, and that executable is
expected to generate journal messages, the test purpose must use the TETware APl to
communicate the current message context to the executed process.

14.1.2 Entriesfrom test purposes

The API provides functionality for delivering informational messages and results from test
purposes to the execution results file. These messages are in addition to those specified above,
which are provided automatically by the TCM. The content of informational messagesis limited
only by the limit imposed upon the total length of ajournal line. It isexpected that test cases will
use this mechanism to deliver special messages to the journal or for additional reporting
sequences that can be analysed by test suite specific report treatment filters. Test purposes also
deliver results to the execution results file. These results are checked by the API to ensure that
they have been defined by TETware or by the test suite. In the event of an invalid result, the
TCM delivers a message to the execution results file and sets the result to NORESULT. The result
actions are also checked by the API. If atest purpose specifies a result for which the action is
Abor t, then the TCM will not process any more test purposes, call the user-supplied cleanup
function (if one has been defined) and exit.

Note that if a test purpose neglects to generate a result via the API, the TCM will supply a result
of NORESULT for that test purpose.

14.2 Journal files
14.2.1 Description

Result files are written by test cases, build tools and clean tools when run with output capture
mode disabled. These result files are then transferred into the journal file by t cc. The format of
linesin thesefilesisidentical.

The API ensuresthat the total length of ajournal line does not exceed 512 bytes.

14.2.2 Journal line parameters

Each journal line is made up of a message type, the parameters for that message, and a message
area (the format of which is unconstrained). Each message may have zero or more parameters
associated with it. These parameters (strings or integers represented by no more than ten decimal
digits), are blank separated and contained between | characters (a vertical bar). Possible
parameters include:

o The TCC activity nhumber (activity).

This number is incremented each time an activity performed by t cc. Each build, execute
or clean-up of atest caseis considered an individual activity.

« Theinvocable component number (ICnumber).
« Aninvocable component count (ICcount).

This is the number of invocable components executed in each test case (expected or actual
as specified).

o Thetest purpose number (TPnumber).

This number uniquely identifies the test purpose within atest case.

Page 174 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

o Thetest purpose count (TPcount).
Thisisthe number of test purposes that make up an invocable component.
« The message context (context).

This field represents the process that generated the journal line. It consists of an optional
three digit system ID, followed by a value which identifies the process that initiated the
entry.

Normally this identifier value is the process D, but there are some circumstances when use
of the processID for this purpose is inappropriate or not possible. In respect of Win32
systems, this issue is discussed in the appendix entitled ‘‘Implementation notes for
TETware on Win32 systems”’ in the TETware User Guide. In respect of the Shell APIs,
this issue is discussed in the description of t et _set cont ext in the chapter entitled
““The Shell and Korn Shell APIS’ elsewherein this guide.

o The message block number (block).

This number is set to one a the start of each test purpose or new context, and is
incremented each time the test purpose requests it. This number, along with the process
identifier and message number (below) is used by t cc to order the data in an execution
result file prior to transferring that file into the journal.

« The message sequence number (sequence).

This number is set to one at the start of each block, and isincremented each time a message
iswritten to the result file.

« The current time (time).
Times are given using the notation HH: MM: SSwith a 24 hour clock.
« The current date (date).

Dates are given using the notation YYYYMMDD; for example, 19910610 for 10th June
1991.

o A test case hame (testcase).

Thisisthe test case name as given in the scenario file.
¢ A path name (pathname).

The full path name of afile.

e Thet cc execution mode (mode); possible values for this parameter are as follows:

0 Build
1 Execute
2 Clean-up

3 Pseudo-mode value used when reporting distributed configuration variables
o A completion status (status).

A non-negative value is the value returned to t cc by the operating system after execution
of atest case or tool. Negative values are reserved for use by TETware.

May 2000 Page 175
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following values may be used by t cc to indicate some problem when processing atest

case:
Statusvalue M eaning
-1 Thetest case or tool could not be executed by t cc
-2 Thetest case or tool wastimed out by t cc
-3 One or more locks could not be obtained by t cc
-4 t cc encountered some other error while processing the test case

14.2.3 Journal line descriptions

A description of each type of journal line that may be produced by TETware processes is
presented in the appendix entitled ** TETware journal lines” in the TETware User Guide.

14.3 Result file processing

14.3.1 Execution results from an API-conforming test case

When atest case using an API which does not support distributed testing® is executed (whether
stand-alone or under the control of t cc), the API writes journal lines to an execution results file
caledt et _xres whichresidesin the test case execution directory.

When a test case using an APl which supports distributed testing is executed by the Distributed
version of t cc, the API sendsjournal lines to the Execution Results daemon (t et xr esd) which
writes them to an execution results file. t et xr esd maintains a separate execution results file
for use by each non-distributed test case and a single (or combined) execution results file for use
by al parts of adistributed test case.

14.3.2 Processing results from a non API-conforming test case

When t cc executes atest case which does not use an AP, it pretends that the test case consists
of a single invocable component which contains a single test purpose. Before the test case is
executed, t cc writesa TCM Start message, an |C Start message and a TP Start message to the
journal. When the test case finishes execution, t cc writes a TP Result message and an IC End
message to the journal. The result contained in the TP Result line is determined by the test case’s
exit status; zero status causes PASS to be reported and non-zero status causes FAI L to be
reported.

Note that t cc does not perform automatic result generation when it executes a non API-
conforming build or clean tool.

23.The C, C++ and Java APIs in Distributed TETware support distributed testing. The other APIs in Distributed
TETware and al the APIsin TETware-Lite do not support distributed testing.

Page 176 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

14.3.3 Processing results from a non-distributed API-confor ming test
case

When atest case run under the control of t cc finishes execution, t cc reads the execution results
file (wherever thefileis) and transfersits contents to the journal. When the Distributed version of
t cc executes a non-distributed test case, it has to be aware of the possibility that the APl might
either write journal linesto thet et _xr es file or send them to t et xr esd. Therefore, when
such a test case finishes execution, t cc first inspects the execution results file maintained by
t et xresd. If the file contains at least one ling, t cc uses this file. Otherwise, if the file is
empty, t cc looks for at et _xr es filein the test case execution directory and uses that instead.
When the Distributed version of t cc decides to use at et xres file produced by a non-
distributed test case that has been executed on aremote system, it must first transfer the file to the
local system before it can be used.

Once t cc has identified the location of an execution results file that has been generated by a
non-distributed test case (by whatever means), it transfers lines from that file to the journal.
When t cc performs this operation, it inspects the type of each line read from the execution
results file and processesit asfollows:

1. Whilethelineisnot aTP Start line, it issimply copied to the journal.

2. WhenaTP Start lineisfound, it istransferred to the journal. Then subsequent linesup to a
TP Result line?* are ordered as follows:

a. tcc inspects the type of the first un-transferred line in the range. If the lineis not a
Test Case Information Line, it istransferred to the journal and step (a) is repeated. If
the line is a Test Case Information Line, it is transferred to the journal and the
context and block numbers are remembered.

b. tcc then inspects al the other un-transferred lines in the range and identifies lines
with the same context and block numbers. These lines are transferred to the journal
in order of ascending sequence number.

c. When t cc reaches the end of the range, it returns to step (a). This process is
repeated until all linesin the range are transferred.

3. Then t cc copies the TP Result line to the journal. If no TP Result line appears, t cc
supplies one which contains a result of NORESULT.

These steps are repeated until the end of the execution results file is reached.

14.3.4 Processing results from a distributed API-conforming test case

When a distributed test case is run under the control of the Distributed version of t cc, parts of
the test case which run on each participating system each send execution results lines to
t et xresd for processing. The APl ensures that only one part of the test case generates the
TCM Start, IC Start, IC End and TP Start lines that must appear in the execution resultsfile.

Each part of adistributed test purpose is expected to generate a Test Purpose Result. t et xr esd
arbitrates between all the partial results and generates a single consolidated result for each test

24. Or another line type which indicates the end of the scope of the current test purpose, or end-of-file.

May 2000 Page 177
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

purpose. If atest purpose part does not supply at least one result, t et xr esd records a partial
result of NORESULT on behalf of that system before performing the result arbitration.

When t cc copies the execution results file generated by a distributed test case to the journal, it
does not reorder Test Purpose Information lines; instead, they are copied to the journal in the
order in which they were received by t et xr esd. Therefore, test case authors should ensure
that, when two or more Test Purpose Information Lines from a particular process are required to
appear in the journal without being separated by lines from another process, the lines are
presented to the APl using a function which instructs t et xr esd to write al the lines to the
execution results file in asingle operation.

14.4 Support for user-supplied report writers

As indicated previously, TETware generates a journa file using a well-defined format. It is
expected that test suite authors will provide a report writer which presents the information
contained in the TETware journal in a format which is appropriate for the type of testing being
undertaken.

Each line in the journal file consists of three fields; each field is separated from the next by a |
character (a vertical bar). The value in the first field of each line indicates the type of the line.
For convenience of test suite authors who wish to write a report writer using the C language,
these values are defined in a header file which is supplied with the TETware distribution. The
name of thisfileist et _j rnl . h anditresidesinthetet-root/ i nc/ t et 3 directory.

Page 178 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

15. Writing a C language API-conforming test suite
15.1 Introduction

This chapter describes a sample non-distributed test suite that conformsto TETware' s C language
binding of the API. The source code for the test suite can be found in the appendix entitled
‘“*Example C language API test suite source files’ at the end of this guide. This test suite has
been designed to run on a UNIX type of operating system.

This sample test suite is designed to illustrate how a non-distributed test suite can be structured
under TETware, as well as how individual test cases and their test purposes relate to each other
and to the API. The test suite has been deliberately kept simple and redlistic. For example, one
test purpose compares the returned error code against an expected error code of a failed system
cal, while another test purpose in the same test case checks the successful execution of the
system call.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ‘* Example C language
API test suite sourcefiles'” at the end of this guide to see the codein its entirety.

15.2 Defining atest suite

Test suites reside in subdirectories of tet-root. As explained in the chapter entitled “* Testing
structure’” earlier in this guide, the name of the subdirectory and the test suite are the same.

May 2000 Page 179
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called C- API :

$TET_ROOT

tetbuild. cfg tetdist.cfg tetcl ean.cfg
tet _code tet _scen t et exec. cfg results
ts
cl eant ool i nstall
chnod fileno st at unane
A—tc. c Aﬁ makeé\ makeé\
makefil e makefil e fileno-t4.c unane-tc.c stat-tc.c

Figure 17. Directory structure for the example C language test suite

The make-up of this test suite is similar to the demonstration test suite as defined for the master
system and contains the following files:

o Aninstall script and clean tool in the bi n directory.

« Configuration files for test build, execution, and cleanup.

« A control file,t et _scen.

o A result codesfile t et _code.

o Severa test casesin adirectory structure under the directory t s.
o A results directory.

If this test suite is run using TETware-Lite, thet et di st . cf g file is not required. If this test
suite is run on the local system using Distributed TETware, a syst ens file is required. In
addition, the t et di st . cf g file is required when this test suite is run on a remote system or
when Distributed TETware is built to use XTI as the network transport.

Page 180 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The control file, t et _scen, lists the components of the test suite; and its contents determine the
scenarios that can be used in running the test suite. The control file, t et _scen, for the C- API
test suite contains the following lines:

chnod, fileno, stat, uname test suite

al |
"Starting Full Test Suite"
/ts/chnod/ chnod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/ unanme/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/chnod/ chnod-tc
"Fi ni shed chnod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Fi nished fileno Test Case"

st at
"Starting stat Test Case"
/ts/stat/stat-tc
"Fi ni shed stat Test Case"

unane
"Starting unane Test Case"
/ts/ unanme/ unane-tc
"Fi ni shed unane Test Case"

EOF

The control file lists five scenarios for the test suite: al | (required), chnod, fi | eno, st at

and uname. Since the test suite is composed of four test cases, one for the chnod() system
call, one for the fil eno() system cal, one for the stat () system cal, and one for the
uname() system call, the control file has been written to allow each test case to be handled as a
separate scenario, or for the whole test suite to be run at once with theal | scenario.

The lines enclosed in double quotes (") are optional information lines that get passed into the
journal file. The lines that begin with a slash or stroke character (/) name the executable test
cases associated with each scenario. Note that, even though these lines begin with a dash
character, the location of the test cases is interpreted relative to the local directory (the root
directory for the test suite). In thisinstance, the test cases arein a subdirectory namedt s.

The clean tool is used to remove unwanted files after the build of each test case. It isinvoked in
the source directory of the test case. In this case it is set to exec make cl ean to remove
unwanted object files as defined in each makefi | e.

May 2000 Page 181
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

15.3 Defining common test case functions and variables

Since most test suites lend themselves to lots of code redundancy, making an effort to group
together common functions and variables can greatly simplify the writing and debugging of atest
suite. With the C- API test suite (which is very small), no common functions and variables other
than the standard onesint et api . h were created.

One additional result code was invented, however, which would normally be defined in a test
suite specific header file. But because it is only used within one test case in this very small test
suite, it isinstead defined within unane-t ¢. ¢ asfollows:

#undef TET_ | NSPECT /* nust undefine because TET_is reserved prefix */
#define TET _INSPECT 33 /* this would normally be in a test suite header */

15.4 Initialising test cases

Every test case requires some minimum initialisation of functions and variables. The
fil eno-t c test case providesagood illustration of how this initialisation can be handled.

/* fileno-tc.c : test case for fileno() interface */

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

#i ncl ude <tet_api.h>
extern char **environ

static void cleanup();
static void tpl(), tp2(), tp3(), tp4(), ch4();

/* Initialise TCM data structures */
void (*tet_startup)() = NULL;

void (*tet_cl eanup)() = cleanup

struct tet_testlist tet_testlist[] = {

{ tpl, 11},
{ tp2, 2},
{ tp3, 31},
{ tp4, 41},
{ NULL, 0}
}s
/* Test Case Wde Declarations */
static char nsg[256]; /* buffer for info lines */

After the #i ncl ude statements, several functions are declared. As described in the chapter
entitled *‘The C API"" earlier in this guide, TETware provides the option of naming both a startup
and a cleanup function. The named startup function will be called before the first test purposeis
executed; and the cleanup function will be called after all test purposes have been executed. In

Page 182 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

this test case, only the cleanup function is named. The cleanup function cl eanup() removes
files created during the course of the test case.

The st at -t c test case includes a more substantial cleanup function, as well as a startup
function. It requires that a file be created before the first test purpose, so this is handled by the
startup function; this same file, as well as another file and a directory created during the tests, is
then removed in the cleanup function. See the appendix entitled ‘‘ Example C language API test
suite sourcefiles'’ at the end of this guide for acomplete code listing of the st at - t ¢ test case.

The fil eno-tc test case includes four test purposes, contained in the functions t p1(),
tp2(),tp3() andt p4d() . First the functions are declared (including an extra function which
is a child process started by tp4()), as shown above. Then they are listed in the
tet testlist array with the invocable component to which they belong. In this case, each
test purpose can be executed individually, so they are assigned to separate invocable components.
If, say, t p2() depended on prior execution of t p1() , then they would be assigned the same IC
number. After the array is set, any test case wide declarations are made. This commonly
includes a buffer to use for constructing information lines to be output witht et _i nf ol i ne() .

15.5 Controlling and recording test case execution results

Identifying and executing highly specific tests is central to any test case. Each test purposein a
test case typicaly targets one specific test that is loosely or strongly related to the other test
purposes contained in the test case. The central purpose of each of these test purposesis to relay
information about the execution of the test for the tester to examine later. This relaying of
information can take the form of informational messages describing the test being executed, fatal
or non-fatal errors that were encountered, and specific test execution results, such as PASS or
FAI L.

The chnod- t ¢ test case contains test purposes as follows:
t pl A successful chnod of afile, expecting areturn code of 0.

t p2 A faled chnod of a non-existent file, expecting a return code of -1 and err no set to
ENOENT.

t p3 A failed chnod of afile that contains a non-directory path component, expecting a return
code of —1 and er r no set to ENOTDI R.

Functionst p1() andt p2() areshown here and are described below.

static void
tpl() /* successful chnod of file: return 0 */

{
int ret, err;
node_t node;

tet _infoline("SUCCESSFUL CHMOD OF FI LE");
/* change node of file created in startup function */

errno = 0;
if ((ret=chnod(tfile, (nbde_t)0)) != 0)
{
err = errno;
(void) sprintf(nsg, "chnod(\"%\", 0) returned %l, expected 0",

May 2000 Page 183
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

tfile, ret);
tet_infoline(nmsg);
if (err 1= 0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(msg);

}

tet result(TET_FAIL);

return;

}

/* check node was changed correctly */

if (stat(tfile, &buf) == -1)
{
(void) sprintf(nsg,
"stat(\"%\", buf) failed - errno %", tfile, errno);
tet _infoline(nsg);
tet result(TET_UNRESCOLVED)
return,
}

node = buf.st node & O ACCMODE
if (mode !'= 0)

{
(void) sprintf(nsg, "chnod(\"%\", 0) set node to 0% o, expected 0"
tfile, (long)node);
tet _infoline(nmsg);
tet _result (TET_FAIL);
}
el se
tet result(TET_PASS)
}
static void
tp2() /* chnod of non-existent file: return -1, errno ENOENT */
{

int ret, err;
tet _infoline("CHVOD OF NON-EXI STENT FILE");
/* ensure file does not exist */

if (stat("chnod. 2", &uf) !'= -1 & unlink("chnod.2") == -1)
{

tet _infoline("could not unlink chnod.2");
tet result(TET_UNRESCOLVED)
return;

}

/* check return value and errno set by call */

errno = 0O;
ret = chnmod("chnod. 2", (node_t)O0);

Page 184 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

if (ret !'= -1]| errno != ENCENT)
{
err = errno;
if (ret !'=-1)
{
(void) sprintf(nsg,
"chrmod(\"chrmod. 2\", 0) returned %, expected -1", ret);
tet _infoline(msg);
}
if (err != ENCENT)
{
(void) sprintf(nsg,
"chrmod(\"chrmod. 2\", 0) set errno to %l, expected %l (ENCENT)",
err, ENOCENT);
tet _infoline(msg);
}
tet result(TET_FAIL);
}
el se

tet result(TET_PASS)
}

The comments for the code should clarify what is happening on each line. However, it is
important to note that a lot of useful diagnostics have been written right into the tests. If any of
the system calls fail, whether it is the one being specifically tested or one that the test relies on,
that failure will be reported. Also, the tests begin the same, with a message about the test’s
purpose; and they end the same, with a pass/fail result being reported.

This sort of consistency yields two important benefits:
o Test purposes will be easier to write when they follow some sort of template.

o Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

15.6 Resultsthat must be verified by the user

Some test cases may require user verification of information generated by a test case. An
example of this can be found in the unane- t ¢ test case when system specific information is
being reported.

static void
tpl() /* successful unane: return 0 */

{

int ret, err;
struct utsnane nane;

tet _infoline("UNAME OQUTPUT FOR MANUAL CHECK");
/* The test cannot deternine automatically whether the infornmation

returned by unane() is correct. It therefore outputs the
informati on with an I NSPECT result code for checking manually. */

May 2000 Page 185
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

errno = 0;
if ((ret=unane(&nane)) != 0)
{
err = errno;
(void) sprintf(nsg, "unane() returned %, expected 0", ret);
tet _infoline(msg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet result(TET_FAIL);

}

el se

{
(void) sprintf(nsg, "System Name: \"%\"", nane.sysnane);
tet _infoline(nsg);
(void) sprintf(nmsg, "Node Nane: \"o%s\"", nane.nodenane);
tet _infoline(nsg);
(void) sprintf(nsg, "Release: \"%\"", nane.release);
tet _infoline(nsg);
(void) sprintf(nsg, "Version: \"%8\"", nanme.version);
tet _infoline(nsg);
(void) sprintf(nsg, "Machine Type: \"%\"", nane. nmachine);
tet _infoline(nsg);
tet result(TET_I NSPECT);

}

}

Since the information from unanme() will be different on every machine, the output needs to be
reported and then verified. Here the information is simply being printed out for the tester to see
and check, but no attempt has been made to interact with the tester to receive verification of the
information and then use that verification to set the pass/fail result. Instead, a result code of
I NSPECT has been used.

15.7 Child processes and subprograms

Some test purposes require the creation of a child process or execution of a subprogram.
TETware provides several interfaces to facilitate this, asfollows:

tet _fork() an APl function called by test purposes to create a child process and perform
processing in parent and child concurrently.

tet _exec() anAPI function called by child processesto execute subprograms.
tet _main() a user-supplied function to be defined in subprograms executed by
tet _exec().

An example of their use can be found in test purposet p4 of thef i | eno test case:

Page 186 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

static void
t p4() /* on entry to main(), streamposition of stdin, stdout and
stderr is sane as fileno(strean) */

{
tet_infoline("ON ENTRY TO MAIN, STREAM PCSI TI ON OF STDI N, \
STDOUT AND STDERR');
/* fork and execute subprogram so that unique file positions can be
set up on entry to main() in subprogram*/
(void) tet fork(ch4, TET_NULLFP, 30, 0);
}
static void
ch4()
{
int fd, ret;

static char *args[] ={ "./fileno-t4", NULL };

/* set up file positions to be inherited by stdin/stdout/stderr
i n subprogram */

for (fd = 0; fd < 3; fd++)

{
(void) close(fd);
if ((ret=open("fileno.4", O RDWR O CREAT, S IRWU)) != fd)
{
(void) sprintf(nsg, "open() returned %l, expected %", ret, fd);
tet _infoline(nmsg);
tet _result(TET_UNRESOLVED);
return;
}
if (lseek(fd, (off _t)(123 + 45*fd), SEEK SET) == -1)
{
(void) sprintf(nsg, "lseek() failed - errno %", errno);
tet _infoline(nmsg);
tet _result(TET_UNRESOLVED);
return;
}
}

/* execute subprogramto carry out renai nder of test */
(void) tet_exec(args[O0], args, environ);

(void) sprintf(nsg, "tet_exec(\"%\", args, env) failed - errno %",
args[0], errno);
tet _infoline(nmsg);
tet _result(TET_UNRESOLVED);
}

All the testing is done in the child, so the function t p4() simply calstet fork() and
ignores the return value. If it needed to do any processing after the call totet _fork(), it
should check that the return value was one of the expected child exit codes before continuing.

May 2000 Page 187
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Theargumentstot et _fork() areasfollows:
o A function to be executed in the child.

« A function to be executed in the parent. In this case no parent processing is required, so the
null function pointer TET_NULLFP (definedint et _api . h) isused.

« A timeout period in seconds.
o A bitwise OR of the valid child exit codes. Inthis case the only valid exit codeis zero.
Thefilefi | eno-t 4. c containsthe definition of t et _mai n() , asfollows:
i nt
tet _main(argc, argv)
int argc;
char **argv;
{
long ret, pos;
int fd, err, fail = 0;

FI LE *streans[3];
static char *strnanes[] = { "stdin", "stdout", "stderr" };

/* initialise the streans[] array */
st reans[0] stdin;
streans[1] st dout ;
st reans[2] stderr;

/* check file positions of streanms are sanme as set up in parent */

for (fd = 0; fd < 3; fd++)
{
pos = 123 + 45*fd; /* nust match |seek() in parent */
errno = O;
if ((ret = ftell(streans[fd])) != pos)
{
err = errno;
(void) sprintf(nsg, "ftell (%) returned % d, expected %d",
strnanes[fd], ret, pos);
tet _infoline(nsg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);
}
fail = 1;

}

if (fail == 0)

tet _result (TET_PASS)
el se

tet _result(TET_FAIL);

return O;

Page 188 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Thetet fork() API function relies for its operation on the f or k() system call which is
provided by the UNIX operating system. Since f or k() is not available on Win32 operating
systems, thetet fork() andtet exec() API functions are not provided when TETware
runs on Win32 systems.

In order to assist test suite authors in writing test cases which are portable to both UNIX and
Win32 systems, TETware providesthet et _spawn() andtet _wait () API functions which
may be used to facilitate subprogram execution. These functions are available on UNIX systems
aswell ason Win32 systems.

15.8 Cleaning up test cases

Since test cases often change and/or create data, it isimportant to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware's t et _cl eanup utility. The cleanup function named in the st at -t c test case
provides a good example.

static void
cl eanup()

/* renove file created by start-up */
(void) unlink(tfile);

/* renove files created by test purposes, in case they don't run
to conpletion */
(void) rndir("stat.d");
(void) unlink("stat.p");
}

The cl eanup function is called when all the test purposes have finished executing. Asshown, it
simply removes the files and directory that were created during the test.

May 2000 Page 189
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 190 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

16. Writing a Shell language API-conforming test suite

16.1 Introduction

This chapter describes a sample non-distributed test suite that conforms to TETware's shell
language binding of the API. The source code for the test suite can be found in the appendix
entitled ** Example Shell API test suite sourcefiles” at the end of this guide.

This test suite has been designed to run on a UNIX type of operating system. Some minor
changes may be required in order to make this test suite function correctly on Win32 operating
systems.

The test suite described in this chapter usesthe Shell (xpg3sh) TCM and API. It can be adapted
to use the Korn Shell (ksh) TCM and API by changing the single line in each test case which
determines which TCM isto be used. Thisis possible because test cases in the test suite do not
use syntax which is specific to either type of shell.

This sample test suite, like the one in the chapter entitled ‘*Writing a C language API-conforming
test suite’’, is designed to illustrate how atest suite can be structured under TETware, as well as
how individual test cases and their test purposes relate to each other and to the API. Like the
C- API test suite, this test suite has been deliberately kept simple and realistic. However, instead
of system calls being tested, the equivalent user-level commands are tested. Sample tests include
checking a returned error code and error message against an expected error code and expected
error message and printing out system specific information for verification by the tester.

Note that no support for distributed test cases is provided by the Shell APl in Distributed
TETware. It ispossible to execute test caseson alocal system or on one or more remote systems,
but no synchronisation between test parts on multiple systems is possible. When Distributed
TETwareisused it is necessary to supply asyst ens file. Inaddition, it is necessary to supply a
tetdist.cfqg file if the test suite is to be processed on remote systems or if Distributed
TETware has been built to use the XTI network transport.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ** Example Shell API test
suite sourcefiles'’ at the end of this guide to see the code in its entirety.

16.2 Defining atest suite

As explained in the chapter entitled ‘*Writing a C language API-conforming test suite’’, test
suites reside in subdirectories of tet-root. The name of the subdirectory and the test suite are the
same.

May 2000 Page 191
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called SHELL- API :

$TET_ROOT

SHELL- API

tet code tet _scen tetdist.cfg results
bin tetbuild. cfg tetcl ean.cfg ts_exec
ts /\
buiId{;;:///W\\\::;;ﬁtool t et exec. cfg lib
i nstall
chnod unane

makefile chnod-tc.sh makefile unane-tc.sh shf uncs

Figure 18. Directory structure for the example Shell language test suite

The make-up of this test suiteis similar to the C- API test suite and contains the following files:
o Aninstall script, build tool and clean tool in the bi n directory.
« Some configuration files for test build, execution, and cleanup
o A control file, t et _scen.
o A result codesfile, t et _code.
o Severa test casesin adirectory structure under the directory t s.
« An alternate execution directory t s_exec.
o A resultsdirectory.

The contral file, t et _scen, is similar to the control file for the C- APl test suite. See the
chapter entitled ‘*Writing a C language API-conforming test suite’’ for a description of the
control file and how its structure relates to the scenarios that can be run.

The installation utility i nst al | creates the directory structure under the alternate execution
directory to match the structure under the t s directory. For the purpose of this example the
location of the alternate execution directory is fixed as $TET_ROOT/ SHELL- APl / t s_exec
but in general it would be obtained from the user and could be located anywhere.

Page 192 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The build tool is used to build each test case. It isinvoked in the source directory of the test case
and installs the relevant files under the alternate execution directory. It does this by calling
make, setting TET_EXECUTE to the correct value on the nake command line in order to
override the default value in each makefi | e.

The clean tool is used to remove the installed files from under the alternate execution directory.
It works in the same way as the build tool except it executes a make cl ean instead of just
make.

16.3 Defining common test case functions and variables

Just as with the C- API test suite, it makes good sense to minimise code redundancy by grouping
together common functions and variables. In the process of writing the SHELL- API test suite,
several common functions were created. This code was collected into a file named shf uncs,
which isin thel i b subdirectory of thet s_exec directory. The shf uncs fileis sourced into
each of the two test cases using the shell built-in. (dot) command. The required TETware Shell
APl file, tcm sh (which in turn sources in the other required TETware Shell APl file
t et api . sh) is aso sourced into each of the two test cases. It isimportant to note the point at
which these files are sourced in. Since the TETware API files read definitions and begin
execution when they are sourced in, they must be sourced in as the very last part of each test case.
Therefore, the last line of each of the test cases sourcesint cm sh.

shf uncs contains the following functions:

shfuncs : test suite common shell functions

tpstart() # wite test purpose banner and initialise variables

{

tet_infoline "$*"

FAI L=N
}
tpresult() # give test purpose result
{
$1 is result code to give if FAIL=N (default PASS)
if [SFAIL = N]
t hen
tet_result ${1-PASS}
el se
tet result FAIL
fi
}

check _exit() # execute conmand (saving output) and check exit code

{

$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=$?

if [$2 = 0 -a $CODE -ne 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 !'=0 -a $CODE -eq 0]

t hen

May 2000 Page 193

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

tet _infoline "Command ($1) gave exit code $CODE, expected non-zero"

FAI L=Y
fi
}
check_nostdout () # check that nothing went to stdout
{
if [-s out.stdout]
t hen
tet _infoline "Unexpected output witten to stdout, as shown bel ow "
infofile out.stdout stdout:
FAI L=Y
fi
}
check_nostderr() # check that nothing went to stderr
{
if [-s out.stderr]
t hen
tet _infoline "Unexpected output witten to stderr, as shown bel ow "
infofile out.stderr stderr
FAI L=Y
fi
}

check _stderr() # check that stderr matches expected error

{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty

case $1 in

")

if [! -s out.stderr]

t hen
tet _infoline "Expected output to stderr, but none witten"
FAI L=Y

fi

*) L
expfile="3$1"
K=Y

exec 4<&0 0< "$expfile" 3< out.stderr
whi | e read expline
do
if read Iine <&3
t hen
if expr "$line" : "$expline" > /dev/nul
t hen

el se
K=N
br eak
fi
el se

Page 194 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

fi

done

exec 0<8&4 3<& 4<&-
if [3K = N]

t hen

tet _infoline "Incorrect output witten to stderr, as shown bel ow
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAI L=Y
fi

esac

}

infofile() # wite file to journal using tet_infoline

{

$1 is file name, $2 is prefix for tet_infoline

prefix=$2
while read |ine
do
tet_infoline "$prefix$line"
done < $1

}

Since these functions perform commonly required tasks, they are better defined once rather than
twice. Also, should they ever need to be changed, this means changing only onefile.

Executing the test for each test purpose in some common, controlled way can make writing the
tests and checking their results much easier. The function check_exi t waswritten to:

— execute acommand in agiven argument ($1);

— capture both standard error and standard output in separate files (in case one or both need to
be checked);

— record the exit code in avariable called $CODE;
— output amessage to the journal if an unexpected exit code is found.
Thisfunction is coded as follows:

check _exit() # execute conmand (saving output) and check exit code

{
$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=%$"

if [$2 = 0 -a $CODE -ne 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 !'=0 -a $CODE -eq 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAI L=Y

fi

}
May 2000 Page 195

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

16.4 Initialising test cases

Every test case requires some minimum initialisation of functions and variables. The
unane- t ¢ test case provides agood illustration of how thisinitialisation can be handled.

unanme-tc.sh : test case for unane command

tet startup="" # no startup function

tet cl eanup="cl eanup” # cleanup function
iclist="icl ic2" # list invocabl e conponents
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2

As described in the chapter entitled * The Shell and Korn Shell APIS” elsewhere in this guide,
TETware provides the option of naming both a startup and cleanup function. The named startup
function will be called before the first test purpose is executed; and the cleanup function will be
called after al test purposes have been executed. Here, only a cleanup function is named, by
settingt et _cl eanup equal to the name of the function that will be used.

A cl eanup function is used by both of the test cases.

cl eanup() # clean-up function

rm-f out.stdout out.stderr out.experr

}

It simply removes the files containing the actual standard output, actual standard error and
expected standard error for the test.

Thei cl i st variable must contain a space-separated list of the invocable components contained
in the test case. Thislist must be in the form shown above, meaning: i c1,i c2, and soon. No
other names can be used. The next lines define the correspondence between invocable
components (i cn) and the test purpose(s) that they contain. In this test case, each test purpose
can be executed individually, so they are assigned to separate invocable components. If, say,
t p2 depended on the prior execution of t p1, then the definitions would be:

iclist=icl # list invocabl e conponents
icl="tpl tp2" # functions for icl

16.5 Controlling and recording test case execution results

As shown above, alot of effort has been taken to report on the processing of each test case, and
even on the individual test purposes. The chnod-t ¢ test case, presented below, shows how
information about the processing of atest case can be handled.

Thechnod- t ¢ test case contains test purposes as follows:
t pl successful chnod of afile with an expected exit code of 0.
t p2 failed chnod of anon-existent file with an expected exit code of non-zero

t p3 failed chnod dueto invalid syntax with an expected exit code of hon-zero.

Functiont p1 is shown here and is described below.

Page 196 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

tpl() # sinple chnod of file - successful: exit O

{
tpstart "SIMPLE CHMOD OF FILE: EXIT O"
echo x > chnod. 1 2> out.stderr # create file
if [! -f chnod. 1]
t hen
tet _infoline "Could not create test file: chnod. 1"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return
fi
check _exit "chnod 777 chnod. 1" 0 # check exit val ue
MODE='Ils -1 chnmod.1 |cut -d" " -f1° # get and check node of file
if [X'$MODE" !'= X"-rwxrwxrwx"]
t hen
tet _infoline "chmod 777 set node to $MODE, expected -rwxrwxrwx"
FAl L=Y
fi
check _nost dout # shoul d be no stdout
check_nostderr # shoul d be no stderr
t presult # set result code
}

The comments for the code should clarify what is happening on each line. Like the C- APl test
cases, this test purpose begins with reporting information about what the test has been designed to
check and ends with setting the test result. In this case, thisis done by the functiont presul t,
where the test status variable $FAI L is tested and reported on. [f the file that is needed for the
test cannot be created, the test outputs diagnostics to the journal and returns a result of
UNRESCLVED. Note that in addition to checking the exit code, the file itsalf is checked to make
sure that the mode set by chnod was actually set. Also, since a successful execution of this
command means that nothing is written to standard error or standard output, functions contained
inshf uncs are used to make sure that no data was output by the command.

In the test purpose, t p2, much of the same function calls are used, even though in this test
chnod is expected to fail.

tp2() # chnod of non-existent file : exit non-zero

{

tpstart "CHMOD OF NON- EXI STENT FILE: EXI T NON- ZERO'

ensure test file does not exist

rm-f chnod. 2 2> out. stderr

if [-f chrod. 2]

t hen
tet _infoline "Could not renmove test file: chnod. 2"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return

fi

May 2000 Page 197

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

check_exit "chnod 777 chnod. 2" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr # check error message
tpresult # set result code

}

Again, the description of the test is reported, the exit code is checked against that expected by
check_exit,tp_result iscalled to report the test result, and check _nost dout is used
to make sure no data was sent to standard output. In this case, however, an error message should
be produced; so the expected message is captured in afile in order that it can be later compared
with the error message received. This is done through the function check_st derr which is
definedin shf uncs and is shown here.

check_stderr() # check that stderr matches expected error

{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty
case $1 in
")
if [! -s out.stderr]
t hen
tet _infoline "Expected output to stderr, but none witten"
FAl L=Y
fi
*)
expfile="3$1"
K=Y
exec 4<&0 0O< "$expfile" 3< out.stderr
whil e read expline
do
if read Iine <&3
t hen
if expr "$line" : "$expline" > /dev/nul
t hen
el se
OK=N
br eak
fi
el se
OK=N
fi
done
exec 0<&4 3<& 4<&-
if [&K = N
t hen
tet_infoline "lIncorrect output witten to stderr, as shown bel ow'
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAl L=Y
fi
Page 198 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

esac

}

The two files, one containing the expected error output in regular expression form, and the other
containing the received error output, are compared line-by-line and, if they are identical, nothing
is done. However, if they differ, it isimportant to know how they differ; therefore, both files are
printed for the tester to evaluate later and the status of the test purpose is set to show a failed
result.

As shown here, a lot of useful diagnostics have been written right into the tests. If any of the
commands fail, whether it is the one being specifically tested or one that the test relies on, that
failure will be reported. Also, each test case and test purpose begins with information reported in
aconsistent format; and they end the same, with a pass/fail (or other) result being reported.

Aswith the C- API test suite, this sort of consistency yields two important benefits:
o Test purposes will be easier to write when they follow some sort of template.

o Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

16.6 Resultsthat must be verified by the user

Some test cases may require user verification of information generated by a test case. An
example of this can be found in the unamne- t ¢ test case when system specific information is
being reported.

tpl() # sinple unane of file - successful: exit O

{ tpstart "UNAME OUTPUT FOR MANUAL CHECK"
check _exit "uname -a" 0 # check exit val ue
i nfofile out.stdout # send output to journal
check_nostderr # shoul d be no stderr
tpresult | NSPECT # set result code

}

Since the output from unanme will be different on every machine, this information needs to be
reported and then verified. Here the information is being printed out for the tester to see and
check; the test purpose result is| NSPECT to indicate that the tester must inspect the output in the
journal.

16.7 Cleaning up test cases

Since test cases often change and/or create data, it isimportant to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware' st et _cl eanup utility. Thecl eanup function isthe most practical place to specify
the removal of temporary files.

May 2000 Page 199
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 200 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

17. Thedistributed demonstration test suite
17.1 Introduction

This chapter describes the official TETware demonstration test suite. The demonstration consists
of simple distributed test cases which use the C API. Each test caseis designed to execute on the
local (or master) system and a remote (or slave) system. This test suite is useful in that it helps
to delineate the basic components of adistributed test suite in its simplest form.

The distributed demonstration test suite has been designed to run on a pair of UNIX systems, a
pair of WindowsNT systems, or on one UNIX and one WindowsNT system. When the
demonstration is configured to run between a UNIX and a WindowsNT system, you may
configure either type of system to act as either master or slave.

Since thisis adistributed test suite, it must be processed using Distributed TETware. It cannot be
used with TETware-Lite.

Source files for this test suite is included below the directory tet-root/ src/ t et 3/ deno in the
TETware distribution. Instructions for building, installing and running the demonstration are
presented in the chapter entitled **Running the TETware demonstrations” in the TETware User
Guide. An example of the journal file produced when the test caseis build, executed and cleaned
by Distributed TETware is presented in the appendix entitled ‘‘ TETware demonstration journal
file’, asointhe TETware User Guide.

Examples of non-distributed test cases, are presented in the chapters entitled ‘*Writing a
C language API-conforming test suite’”” and ‘‘Writing a Shell language API-conforming test
suite’” elsawherein this guide.

17.2 Test suitefiles

The following figure shows the file structure of the distributed demonstration test suite on the
master system. The same structure is replicated on the dlave system except that the
tetdist.cfg,tet code andtet _scen files are not present. It is not necessary for the
value of tet-root to be the same on each system because configuration variables are available to
define it separately for each system.

Each file in the test suite is described in the sections that follow. For ease of reference, listings of
al thefilesin this test suite are presented in the appendix entitled ** Example distributed test case
source files” at the end of this guide. You should refer to these listings when reading the
following sections.

May 2000 Page 201
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The following figure shows the component files of the example distributed test suite:

$TET_ROOT

deno syst ens

tet _code tetbuild.cfg tetdist.cfg tetclean.cfg
tet_scen ts tetexec. cfg
makefil e tcl.c tc2.c tc3.c

Figure 19. Directory structure for the distributed demonstration test suite

17.2.1 Thesyst ens file

This file contains the mappings that assign system identifiers to host names. The file must be
located in the tet-root directory on each system participating in the test.

In the distribution it contains the following lines:

Exanpl e systemfile for denonstration
000 mast er
001 sl ave

Y ou must edit thisfile to contain values that are appropriate for your installation.

If you are using a version of TETware that uses the socket network interface, you only need to
replace the names mast er and sl ave with host names suitable for your instalation. In
addition, you should ensure that these host names are in the hosts databases on both systems.

If you are using a version of TETware that uses XTI as the network transport interface you will
need to add a third field to each entry in thisfile. The extrafield should contain the address of the
Test Case Controller daemon (t ccd) on each system. The format of this addressis described in
the section entitled ** System definitions'’ elsewherein this guide.

Page 202 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

17.2.2 Thet et code file

Thet et _code fileislocated in the test suite root directory on the master system and contains
result code definitions for the test suite.

Thisfile contains the following lines:

tet _code file for the TETware denobnstration

TET reserved codes
" PASS"

"FAlI L"

" UNRESOLVED"

" NOTI NUSE"

" UNSUPPORTED"

" UNTESTED"

"UNI NI TI ATED"

" NORESULT"

NO O~ WNEFEOH* H*HH#

Test suite additional codes
101 " FATAL" Abor t
102 " | NSPECT"

The first group of lines define the standard result codes that are specified in IEEE Std 1003.3-
1991. The second group of lines define some extra result codes for use with this particular test
suite. Note that when the action indicator field (the third field) is not present, a default action of
Cont i nue isassumed.

17.2.3 Thet et _scenfile

Thet et _scen fileislocated in the test suite root directory on the master system and contains
the test suite’ s scenario, or control, definitions.

Thisfile contains the following lines:

scenario file for the TETware denonstration
#
al |
"starting scenario"
. renot e, 000, 001:
/ts/tcl
/ts/tc2
"next is the last test case"
/ts/tc3
;. endr enpot e
"done"

This file controls the execution sequence of the test suite. The first non-comment line (al |)
defines the name of the scenario. Subsequent lines contain directives, scenario information lines
and test case names. The lines in double quotation marks are scenario information lines that are
printed into the journa file. Test case lines list names of test cases to be processed. Although
each test case name looks like an absolute path name, it isinterpreted relative to the test suite root
directory.

May 2000 Page 203
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The : renpt e, 000, 001: and : endr enot e: directives tell TETware to process the test
cases specified between them on the systems designated 000 and 001 in the syst ens file on
the local system.?® The fact that system 000 is specified with the r enpt e directive tells
TETware to process the test cases as distributed test cases. The fact that system 000 appears
first in the system list tells TETware to treat system 000 (the local system) as the master system.

17.2.4 Thetetbuil d. cf gfile

The tetbuil d. cfg file contains variable definitions which determine the way in which
TETware processes each test case in build mode. One of these filesis provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_BUI LD_TOOL=nake
TET_BUI LD FI LE=-f makefile
TET_OUTPUT_CAPTURE=TT ue

The meanings of these variables are as follows:

TET_BUI LD TOOL specifies the command to use for building the test cases.
TET_BUI LD FI LE specifies arguments to pass to the build tool before the test case
name.

TET_OUTPUT_CAPTURE isused here to specify that all build tool standard output and standard
error should be captured and recorded in the journa file, rather than
being sent to the default place.

The values specified for these variables in the build configuration file instruct TETware to invoke
the following command in the test case source directory when it builds each test case:

make -f makefil e test-case

Setting the value of TET_OUTPUT_CAPTURE to Tr ue provides default values of Fal se for
TET_API _COWPLI ANT and True for TET_PASS TC NAME. The vaues of these two
variables tell TETware that the build tool does not use the API and that the test case name should
be passed as an argument to the build tool after the argument specified by TET _BUI LD _FI LE.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

The values defined in each file are correct when both of the systems are UNIX systems. The
comments in the file on each system show how these values may be changed to support other
combinations of system types. Note the way in which the default value of each variable in the
slave system is taken from the corresponding value defined on the master system. Also, note the
way in which the precedence of variable definitions is used to provide the correct values when
either system isaWindows NT system, with the minimum of reconfiguration.

When the test suite is built on a Windows NT system, the file nt bui | d. ksh is used as the
build tool. Thisfileis ashell script which ensuresthat MKS Make uses the correct configuration

25. That is: the system on which t cc isinvoked.

Page 204 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

file, then it appends a . exe suffix to its last argument (the test case name). Finaly it invokes
make with al its arguments. This method of providing portability between UNIX and
Windows NT systems enables the number of changes that must be made during the porting
operation to be kept to a minimum.

17.25 Thet et cl ean. cf g file

The t et cl ean. cf g file contains parameters which determine the way in which TETware
processes each test case in clean mode. One of thesefilesis provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_CLEAN _TOOL=rm
TET_CLEAN FI LE=-f
TET_OUTPUT_CAPTURE=TT ue

The meanings of these variables are the same as those described in the previous section.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

When TETware processes each test case in clean mode, the following command will be executed
in the test case source directory:

rm-f test-case
Again, the default values in each file are correct when both of the systems are UNIX systems.

The comments in the file on each system show how these values may be changed to support other
combinations of system types.

When the test suite is cleaned on a Windows NT system, the file nt cl ean. ksh is used as the
clean tool. This file is a shell script which simply appends a . exe suffix to its last argument,
then invokes r mwith al its arguments.

17.2.6 Thet et exec. cf g file

The t et exec. cf g file contains variable definitions which determine the way in which
TETware processes each test case in execute mode. One of these files is provided on each
system.

In the distribution the following variables are defined in this file on the master system:

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC_| N_PLACE=Tr ue

The meanings of these variablesis asfollows:

TET_OUTPUT_CAPTURE Setting this variable to Fal se tells TETware not to record test case
output in the journa file.

TET_EXEC I N PLACE Setting this variable to Fal se tells TETware to copy al the filesin
the test case source directory to a location below the temporary
execution directory before executing the test case. Thislocation then
becomes the test case execution directory.

Since no value has been specified for TET _EXEC TOOL, TETware executes each test case

May 2000 Page 205
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

directly. Test case execution takes place in the test case execution directory. Setting the value of
TET _OQUTPUT _CAPTURE to False provides a default value of True for
TET_API _COVPLI ANT. Thevalue of thisvariable tells TETware that test cases use the API.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used. The values defined in these files in the distribution are
correct for both UNIX systems and Windows NT systems.

17.2.7 Thetetdi st. cf g file

This file is only provided on the master system. It contains variable assignments that specify
parameters for slave systems that are equivalent to those parameters on the master system that
t cc obtains from environment variables or deduces from the current working directory. It may
a so be used to define network-related parameters when TETware is built to use the XTI network
interface.

In the distribution the following variables are defined in thisfile:

TET_REMDO1_TET_ROOT=/ home/ t et
TET_REMDO1_TET_TSROOT=${ TET_ROOT}/ deno

When you install the demonstration you must change the value of the first variable to a value that
is correct for your system.

TET_REMDO1_ is avariable name prefix used to define a variable' s value for a particular slave
system (in this case, a dave with system designation 001). The name of the variable being
defined is the part of the name after this prefix.

The variables defined in this file enable TETware to locate the test suite on the remote system, as
follows:

TET_REMDO1_TET_ROOT Thelocation of thetet root directory on the slave system.

TET_REMDO1 TET TSROOT The location of the test suite root directory on the slave system.
t cc replaces the string ${ TET_ROOT} in this variable’'s value
with the value of TET_ROOT on system 1 (that is: the value
assigned to TET_REMDO1_TET_ROOT in thisfile).

When Distributed TETware is built to use the XTI network transport, the following variables are
also defined in thisfile:

TET_XTI _TPI =/ dev/tcp
TET_XTI _MODE=t cp
TET_LOCALHOST=01. 02. 03. 04

When you install the demonstration you must change the values of al these variables to values
that are correct for your system. When the XTI network transport is used, these variables enable
TETware to obtain information to be used by the network transport interface, as follows:

TET_XTI _TPI The name of the transport provider interface.
TET_XTI _MODE The type of transport provider to use.
TET _LOCALHOST When the transport provider is TCP/IP, the master system’'s

externa |1P addressin dotted-decimal notation.

Page 206 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Note that these variables are not required when TETware is built to use the socket interface. In
particular, TET LOCALHOST should not normally be defined when the socket interface is used.

17.2.8 Thenmakefi | e file
Thenakef i | e isused by the build tool (make) when building each test case.

This file is provided in the test case source directory on each system and contains the following
lines:

include file and library locations - don't change
LIBDDR = ../../lib/tet3
INCDOR = ../../inc/tet3

SGS definitions - custom se as required for your system

nane of the C conpiler

cC = cc

the following is appropriate when using the defined build environnent
on a Wndows NT system

CC = cl -nol ogo

flags for the C conpiler
CFLAGS = -1$(INCDIR)

systemlibraries:

the socket version on SVR4 and Sol aris usually needs -Isocket -Insl
the XTI version usually needs -1 xti

the Wndows NT version needs wsock32.1ib

SYSLI BS =

suffixes - customi se as required for your system
object file suffix - .o on UNIX, .obj on Wndows NT

O=.0

archive library suffix - .a on UNIX, .lib on wi ndows NT
A= _.a

executable file suffix - blank on UNI X, .exe on Wndows NT
E =

all: t c1$E t c2$E t c3$E

t c1$E: tcl.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tcl1$E tcl.c $(LIBDIR)/tcnBO $(LIBDIR)/ i bapi $A \
$(SYSLI BS)

t c2$E: tc2.c $(INCDIR)/tet_api.h
$(CC $(CFLAGS) -0 tc2$E tc2.c $(LIBDIR)/tcn$BO $(LIBDIR)/Iibapi $A \
$(SYSLI BS)

t c3$E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDIR)/tcnBO $(LIBDI R)/1ibapi $A \
$(SYSLI BS)

Thisisatypical makefile which contains dependencies and rules for building each individual test
case. Note the use of variables to specify the different libraries and file name suffixes that are
used on different types of system.

The default values are correct when TETware is built to use the socket network interface on an
arbitrary UNIX system. You will probably need to customise each makefile for use on any
particular type of system.

May 2000 Page 207
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

17.29 Thetcl. c file
On each system thefilet c1. ¢ isthe sourcefile for the first test casein the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a single
test case information line to the journal file by callingt et _i nf ol i ne() and records a PASS
result by callingt et _resul t (). The dave part of the test purpose does the same. Therefore
the consolidated result of the test purpose is PASS.

17.2.10 Thet c2. c file
On each system thefilet c2. ¢ isthe source file for the second test case in the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a number
of information lines to the journal file by calling t et _ni nfoline() and records a PASS
result by callingtet _result(). The dave part of the test purpose prints a single test case
information line to the journal file by callingt et _i nf ol i ne() and records a FAI L result by
callingt et _resul t (). Thereforethe consolidated result of the test purposeis FAI L.

This test purpose illustrates how t et _mi nf ol i ne() may be used to print several lines to the
journal as a single operation. If the lines had been printed by calling tet _i nfoline() a
number of times from the master test purpose part, it is likely that the line printed by the slave
test purpose part would have appeared somewhere in between the lines printed by the master part.

17.2.11 Thet c3. c file

On each system the filet ¢3. ¢ isthe source file for the third test case in the test suite. This test
case contains two test purposes. Recall that TETware performs automatic synchronisation
between each part of a distributed test case at the start and end of each test purpose. Each test
purpose in this test case demonstrate how API functions can be used to perform synchronisation
at user-defined points during test purpose execution.

The master and slave parts of the first test purpose each print a message to the journal. Then they
synchronise with each other by calling thet et _r emsync() API function using sync point 101,
a sync vote of YES and a timeout value of 10 seconds. If the synchronisation request is
successful, each test purpose part reports a PASS result. Otherwise, diagnostics are printed to the
journal and each test purpose part reports an UNRESOLVED result.

The master and slave parts of the second test purpose each print a message to the journal. Then
they synchronise with each other by callingthet et _r enmsync() API function using sync point
201, a sync vote of YES and a timeout value of 10 seconds. In addition, the master test purpose
part sends message data with the request and the slave test purpose part expects to receive
message data when the call returns. This is done by initialising members of at et _synnsg
structure and passing a pointer to this structure as one of the argumentstot et _rensync() . If
the synchronisation request is successful, each test purpose part reports a PASS result.
Otherwise, diagnostics are printed to the journa and each test purpose part reports an
UNRESCLVED result. In addition, the master test purpose part prints the message data before it
calstet _rensync() andthe dave test purpose part prints the message data received after the
successful return of thet et _renmsync() cal.

A common function — error () — isused in both parts of the test case to print a diagnostic
when an API call is unsuccessful. The first parameter to this function is the value of the global
tet _errno variable which is set by the APl whenever an API function call is unsuccessful.
The error () function uses this value to index thet et _errlist[] aray, provided by the

Page 208 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit

TETware Programmers Guide

API, which contains short message strings describing each API error that can occur. The API
provides a global variable tet nerr which contains the number of entries in the
tet _errlist[] array. Note that the error () function uses this value to check that the

value obtained from tet _errno refers to an entry which is within the bounds of the
tet_errlist[] aray.

For more information on how TETware synchronisation works, see the chapter entitled *‘ Test
case synchronisation’” in the TETware User Guide.

May 2000 Page 209

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 210 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

18. Writing a Java API-conforming test suite
18.1 Introduction

This chapter describes a sample non-distributed test suite that conforms to TETware's Java
language binding of the API. The source code for the test suite can be found in the appendix
entitled ‘' Example Java language API test suite source files” at the end of this guide. This test
suite has been designed to run on all systems for which the Java APl is supported.

This sample test suite is primarily intended to illustrate those features of test suite design and
structure specific to the Java API. For this reason, it has been kept deliberately ssimple. The
sample test cases verify afew features of some of the Java Language Core API classes. For more
examples of test suite writing, see the chapter entitled ‘*Writing a C language API-conforming
test suite”” elsewherein this guide.

Segments of code from the test suite appear in the following sections to help illustrate specific
points. Refer to the appropriate section in the appendix entitled ‘‘ Java language APl test suite
sourcefiles’ at the end of this guide to see the codein its entirety.

18.2 Defining atest suite

As explained in the chapter entitled **Writing a C language API-conforming test suite’’, test
suites reside in subdirectories of tet-root. The name of the subdirectory is the same as the name
of the test suite.

The following figure shows the component files of the sample test suite, called j deno:

$TET_ROOT

j demo

tet _scen t et exec. cfg tetcl ean.cfg
tetbuild. cfg ts results

I nt eger TC StackTC Syst enilC

I ntegerTC. j ava SystenilC. j ava
St ackTC. j ava

Figure 20. Directory structure for the Java demonstration test suite

May 2000 Page 211
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

The make-up of thistest suite is similar to the C-API test suite. It contains the following files:
o Configuration files for test build, execution and cleanup.
e A scenariofile, t et _scen.
o Severa test casesin adirectory structure under the directory t s.
o A results directory.
The scenario file t et _scen is similar to the scenario file for the C-API test suite. See the

chapter entitled ‘*Writing a C language API-conforming test suite’”’ for a description of the
scenario file and how its structure rel ates to the scenarios that can be run.

The test suite uses the sample build, execute and clean tools supplied with the Java API. These
are caled jet-build, jet-exec and j et -cl ean. See the chapter entitled ‘‘The Java
API"’ for more information about these tools.

Each test case class is built and executed in its source directory below t s, rather than below an
aternate execution directory. Because of this, the TET _EXECUTE environment variable should
not be set when this test suite is being processed.

18.3 Defining atest case

A new test case is created by defining a class which extends TET. Si npl eTest Case. The
| nt eger TCtest case provides an example of this. Its outline structureis as follows:

public class IntegerTC extends SinpleTest Case
{

public static void main(String[] args)

{
}

mai n(args, new IntegerTC());

public void ilt1(TestSession ts)
{

}

public void i2t1(TestSession ts)
{

}

public void i3t1l(TestSession ts)
{

}
}

The | nt eger TC class defines a static mai n() method. This has the exact signature as
expected by the Java virtua machine when it is invoked for this class. The mai n() method
invokes the mai n() method of its superclass, which passes control to the test case manager
services of the Java API.

Page 212 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Three test purpose methods are defined for this class, namely: i 1t 1(),i 2t 1() andi 3t 1() .
These belong to the invocable components 1, 2 and 3 respectively, as indicated by the method
names.

No test case start up or clean up code is required, so thistest case does not definest art up() or
cl eanup() methods.

18.4 Controlling and recording test case execution results

The | nt eger TC test case verifies functionality of the class j ava. | ang. | nteger. It
contains test purposes as follows:

i 1t 1 Verifiesthat | nt eger. i nt Val ue() returnsthe value of this Integer asan int.

I 2t 1 Verifiesthat | nt eger.toString() returnsastring representation of the value of this
object in base 10.

i 3t 1 Verifiesthat | nt eger. parsel nt (String) throwsaNunber For mat Excepti on
when the string argument does not contain avalid integer.

Methodi 1t 1() isshown hereand is described below.

/**
* Test purpose nethod for <code>lnteger.intVal ue()</code>.
* Verifies that <code>lnteger.intVal ue()</code> returns the val ue of
* this <code>l nteger</code> as an <code>i nt </ code>.
*
* @aram ts t he <code>Test Sessi on</code> object for this
* test run.
*

~

public void i 1lt1(Test Session ts)

{
I nteger testlnt;
int val;
/1l Create a new I nteger object using a int val ue.
testlint = new Integer(T1_VALUE);
/1 Call intValue() on the new I nteger object and verify it
/1 returns the sane value that was used in its creation.
val = testlnt.intValue();
if (val == T1_VALUE)
{
ts.tet_result(ts. TET_PASS);
}
el se
{
ts.tet_infoline("intValue() returned " + val
+ ", expected " + T1 VALUE);
ts.tet _result(ts. TET_FAIL);
}
}

The comments for the code should clarify what is happening. In the test purpose method
i 3t 1(), similar API calls are made using the Test Sessi on object, but in this method we are
passing an invalid argument and checking that an exception is thrown.

May 2000 Page 213
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

* 0% kX kX X F F

~

*

pur pose net hod for <code>l nteger. parselnt(String)</code>.

Verifies that <code>l nteger.parselnt(String)</code> throws a
<code>j ava. | ang. Nunber For nat Except i on</ code> when the string
argunent does not contain a parsable integer

@ar am ts t he <code>Test Sessi on</code> object for this

test run.

public void i3t1(TestSession ts)

{

}

int val

try

{
/1 Call Integer.parselnt(), passing a string argunent
/1 which does not contain a parsable integer
val = Integer.parsel nt(T3_STRI NG ;

}

catch (Number For mat Exception e)

{
/1 We caught the exception we expected.
ts.tet_result(ts. TET_PASS)
return;

}

catch (Exception e)

{
/1 We caught sonme other, unexpected exception, so the
/1 test did not conplete as expected, and hence has an
/1 UNRESOLVED result.
ts.tet_infoline("Integer.parselnt(\"" + T3_STRI NG

+ "\") threw an unexpected exception: " + e);
ts.tet_infoline(" expected a NunberFormat Exception”
+ " to be thrown");

ts.tet_result(ts. TET_UNRESCLVED)
return;

}

/1 1f we reach here, no exception was thrown, so the test has
/] failed.
ts.tet_infoline("Integer.parselnt(\"" + T3_STRI NG
+ "\") succeeded, expecting a Nunber For mat Exception to"
+ " be thrown");
ts.tet _result(ts. TET_FAIL);

The code contains at r y block which only contains the method call under test. This ensures that
the only exceptions caught by the corresponding catch statements are those thrown by the method
under test. It is not strictly necessary to catch unexpected Exceptions as the API will catch these
and mark an UNRESOL VED result code against that test purpose. However, when an exception is
caught by the test purpose it is possible to write more specific informational messages to the

journal.

Page 214

May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

18.5 Subprograms

Some test purposes require the creation of a subprogram. The Test Sessi on class provides
two methods to facilitate this, asfollows:

tet _spawn() Createsanew subprogram that will usethe C API.
tet jspawn() Createsanew subprogram using a Java class that will use the Java API. The
class in the new subprogram must be a subclass of Chi | dTest Case.

Anexampleuseof t et _j spawn() canbeseeninthei 1t 1() method of the Syst enilC test
casel

~
*

L I T I

~

Test purpose nmethod for <code>System exit (int)</code>.

Verifies that <code>Systemexit(int)</code> termnates the currently
runni ng Java Virtual Machine with status given by the integer

ar gunent .

aram S e <code>Test Sessi on</ code> obj ec or is
t th de>Test S / cod bj ect f th
test run.

public void il1lt1(TestSession ts)

{
| ong pid;
i nt status;
i nt expStat us;

/1 Fire off a new child process using tet_jspawn().

try
{
pid = ts.tet_jspawn(CH LD _CLASS,
new String[] { Integer.toString(T1_VALUE) },
nul 1);
}
catch (Tet Exception e)
{
ts.tet_infoline("tet_jspawn() failed: " + e);
ts.tet_result(ts. TET_UNRESCLVED) ;
return;
}
/1l Use tet_wait() to wait for the process to conplete.
try
{
status = ts.tet_wait(pid);
}
catch (Tet Exception e)
{
ts.tet_infoline("tet_wait() failed: " + e);
ts.tet_result(ts. TET_UNRESCLVED) ;
return;
}

/1 Verify that the exit status is as expected.
expStatus = exitValueToStatus(T1_VALUE);

May 2000 Page 215
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

if (status == expStatus)

{
ts.tet _result(ts. TET _PASS)

}

el se

{
ts.tet_infoline("Child exited with status " + status

+ ", expecting " + expStatus);

ts.tet_result(ts. TET_FAIL);

}

}

The test purpose method i 1t 1() usestet jspawn() to start a new subprogram using the
Javainterpreter. Theargumentstot et j spawn() areasfollows:

cl assnane Name of the Java class to execute in a new process.

args Argument array to passto mai n() method of the class in the subprogram. Note
that ar gs[0] isthe first actual argument to be passed to mai n() , not the name
of the interpreter or the name of the class.

envp Environment data to pass to the new process. If thisisnul | or has length O, the
current environment is used.

The parent process usesthe method t et _wai t () towait for the child processto complete.

The class used in the child process, SysChi | dTC, isdefined inthe same. j ava file.
/**
* Child part of SystenTC test case. Tests
* <code>j ava. |l ang. System exi t (i nt)</code>.
*/
cl ass SysChi | dTC extends Chil dTest Case
{

/**

* Entry point for this class.

* Calls <code>Chil dTest Case. nai n() </ code>
* to pass control to TET.

*

* @aram args conmmand |ine argunents.
*/
public static void main(String[] args)

{
}
/

mai n(args, new SysChil dTC());

*

Run child test case.

Calls <code>Systemexit(int)</code> with status
passed as first argunent.

Overrides <code>Chil dTest Case. tet_nuai n() </ code>

@ar am ts t he <code>Test Sessi on</ code> obj ect
for this test run

@ar am args comand |ine argunments as passed from
t he parent process.

b S T R B

Page 216 May 2000
The Open Group

TET3-PG-1.6

}

Test Environment Toolkit
TETware Programmers Guide

* @eturn 0 for success, non-zero on failure.

public int tet nmain(TestSession ts, String[] args)

{

i nt status;

/1 Verify the parent test case passed us one argunent,
/1 which is the exit status we shoul d use.
if (args.length != 1)

{
ts.tet_infoline("Child received " + args.length
+ " argunents, expected 1");
ts.tet_result(ts. TET_UNRESOLVED);
return 1;
}
status = Integer.parselnt(args[0]);

/1 Log off TETware.
ts.tet_logoff();

/1 Call Systemexit().
System exit (status);

/1 If we get this far, Systemexit() didn't work,
/1 but we can’t use nore TETware functions as we’'ve
/1 already called tet_logoff().
Systemerr.printin("Error in SysChildTC tet_main():"

+ " Systemexit(int) didn't termi nate process");
return 1;

Note that the argument list passed to the call tot et _j spawn() , and the argument list passed
intot et _mai n() each follow the pattern of the argument list to Java' s static mai n() methods
and do not contain the name of the program or class as the first element.

18.6 Packages and test case classes

Test case classes must belong to the unnamed default package; that is: the . j ava file must not
contain apackage statement. As well as simplifying the building and execution of test cases,
this ensures that the name of the test case is the same as the name of the class. This restriction
applies only to the test case classes themselves, and not to other classes used which may be in any
package. This should not cause namespace problems as each test case is executed in a new
process, and hence in a separate Java virtual machine.

May 2000

Page 217
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 218 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

19. Using shared API libraries

19.1 Introduction

When the C and C++ APIs are built, the libraries created by the build process are static libraries
(sometimes known as archive libraries). On some systemsit is also possible to build shared API
libraries (sometimes known as shared objects or dynamic libraries).

There is no standard which specifies the way in which shared libraries are to be implemented, and
so the implementation is different on different systems. This chapter describes how to use shared
API libraries on several different systems.

19.2 Supported systems

In the TETware distribution, support is provided to generate shared API libraries on the following
types of operating system:

o Systemsthat use the SV R4 dynamic linking scheme;
these systems include UnixWare, Solaris and Linux

e HP-UX
o AIX
o Win32 systems
It may be that shared API libraries are available on other operating systems as well, depending on

what facilities are provided by the operating system and whether the person who built TETware
was able to perform the necessary configuration before the source was compiled.

19.3 Advantages and disadvantages of linking test cases with
shared API libraries

There are advantages and disadvantages associated with linking test cases with shared API
libraries. It is recommended that you consider carefully whether you actually need to use shared
AP libraries before using them.

Advantages include the following:
— the amount of disk space occupied by atest suite is reduced,

— when multiple test cases are executed simultaneously (for example: during a stress test
run), the total amount of memory required for all the test cases to execute is al'so reduced;

whereas disadvantages include the following:

— since the names of shared library files are different on different systems, it makes writing
portable test suites more difficult;

26. However, this might not be as great an advantage as might at first appear since, by definition, the objective of a
stress test is to exercise a system under load and running a given number of concurrent test cases which use shared
API libraries would tend to reduce the load on the system rather than increase it.

May 2000 Page 219
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

— adifferent method for locating the shared API library at runtime must be implemented by
the test case author on each system;

— an additional cause of failure is introduced when test cases are executed — this is
compounded by the fact that not all operating systems print a meaningful diagnostic
message when a runtime link error occurs or when a shared library cannot be found at
runtime.

19.4 Shared API library components

The structure of atest caseis described in the section entitled *“ Test case structure’” earlier in this
guide. A diagram which accompanies the text shows that a test case executable consists of three
parts. the TCM and API library that is supplied by TETware and the test purpose functions that
are supplied by the test suite author. A similar situation exists in respect of child processes that
are started by callstot et _exec(),tet _spawn() ortet renexec().

When a C language test case is linked statically, it is linked with an object file (t cm 0) and an
archive library (I i bapi . a). In practice, much of the TCM actually resides in the archive
library and is linked into the test case executable as required, depending on what type of
executable is being built.

When a shared AP library is built, the relationship between TETware-supplied and user-supplied
components, together with the constraints imposed by the different shared library scheme
implementations on different systems, mean that only the API functions can be put in the shared
portion of the APl library. The part of the TCM that is in the static version of the APl library
cannot be put in the shared version of the API library; instead it must be put in a static TCM
library. Therefore when a shared API library is used, the corresponding TCM is contained in two
files: an object file and a static library file.

As when static API libraries are used, there is one TCM object file for each type of process that
may be built (that is: test case, child process and remote executed process). In addition, thereisa
single static TCM library for use with each threads model that may be used (that is: single-
threaded and thread-safe).

Page 220 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

This relationship isillustrated in the following diagram:

TCM or child process or remote process
controller controller
calls calls calls
static TCM
library
calls
calls user-supplied

test functions

calls

library

) shared AP ‘

Figure21. Relationship between the APl components and the user-supplied code when a shared
AP library isused

19.5 API component nameswhen shared libraries are used
19.5.1 Introduction

In order to distinguish between shared library components and static library components, the
basename of each shared library component has a _s suffix appended to it. Shared library files
are denoted by different file name suffixes on different systems.

There follows a subsection for each of the types of operating system on which shared API
libraries are supported in the TETware distribution. Each subsection contains a table which lists
the names of API components when static API libraries are used, together with the names of the
corresponding APl components when shared API libraries are used.

Where shared API libraries have been built on systems other than those described here, you will
need to consult the appropriate SGS documentation in order to determine what file name suffix is
used to denote a shared library file.

May 2000 Page 221
The Open Group

Test Environment Toolkit
TETware Programmers Guide

19.5.2 UNIX systems
19.5.2.1 Systemsthat usethe SVR4 dynamic linking scheme

On these systems a shared library is denoted by afile namewith a. so suffix.

TET3-PG-1.6

Component names

Component names

Executable type Component when using a when using a
static API library shared API library
C test case TCM tcmo tcms.o
and libtcms. a

API library l'i bapi.a i bapi _s. so

C child process childprocess |tcnthild. o tcnchild s.o
controller and libtcms. a
API library i bapi.a i bapi _s.so

C remote process® | remote process | t cnt em o tcnrems. o
controller and libtcms. a
AP library i bapi.a i bapi _s.so

multi-threaded TCM thrtcmo thrtcms.o

C test case and libthrtcms. a
API library i bthrapi.a i bthrapi_s.so

multi-threaded childprocess |thrtcnthild.o |thrtcnchild_ s.o

C child process controller and libthrtcms. a
API library l'ibthrapi.a i bthrapi_s.so

C++ test case TCM Gcmo Gdcms.o

and libtcms. a

API library l'i bapi.a l'i bapi _s. so

C++ child process | childprocess | Ctcnthil d. o Ctenthild_s.o
controller and libtcms. a
API library i bapi.a i bapi _s. so

multi-threaded TCM Chrtcmo Chrtcms. o

C++ test case and libthrtcms. a
APl library libthrapi.a i bthrapi_s.so

multi-threaded childprocess | Cthrtcnthild.o |[Chrtcnchild_s.o

C++ child process | controller and libthrtcms. a
API library libthrapi.a i bthrapi_s.so

28. But see the section entitled ** Considerations for remote executed processes”’ later in this chapter.

Page 222

The Open Group

May 2000

TET3-PG-1.6

19.5.2.2 HP-UX

Test Environment Toolkit
TETware Programmers Guide

On HP-UX systems a shared library is denoted by afile namewith a. sl suffix.

Component names

Component names

Executabletype | Component when using a when using a
static API library shared API library
C test case TCM tcmo tcms.o
and libtcms. a

API library l'i bapi.a l'i bapi _s. sl

C child process childprocess |tcnthild. o tcnchild_s. o
controller and libtcms. a
AP library i bapi.a I i bapi _s. sl

C remote process> | remote process | t cnt em o tcnrems. o
controller and libtcms. a
APl library l'ibapi.a l'i bapi _s. sl

multi-threaded TCM thrtcmo thrtcms.o

C test case and libthrtcms. a
API library i bthrapi.a ['i bt hrapi _s. sl

multi-threaded childprocess |thrtcnthild.o |thrtcnchild s.o

C child process controller and libthrtcms. a
API library i bthrapi.a ['i bt hrapi_s. sl

C++ test case TCM Gcmo GGcms.o

and libtcms. a

APl library i bapi.a I i bapi _s. sl

C++ child process | childprocess | Ctcnthil d. o Ctcenthild_s.o
controller and libtcms. a
API library l'i bapi.a l'i bapi _s. sl

multi-threaded TCM Cthrtcmo Chrtcms.o

C++ test case and libthrtcms. a
APl library libthrapi.a i bthrapi_s. sl

multi-threaded childprocess | Cthrtcnthild.o |[Chrtcnchild_s.o

C++ child process | controller and libthrtcms. a
APl library libthrapi.a i bthrapi_s. sl

30. But see the section entitled ** Considerations for remote executed processes”’ later in this chapter.

May 2000

The Open Group

Page 223

Test Environment Toolkit
TETware Programmers Guide

19.5.2.3 AIX

On AIX systems a shared library is a file that is a member of an archive library. Therefore the
name of the shared library that is used when linking hasa. a suffix.

TET3-PG-1.6

Component names

Component names

Executable type Component when using a when using a
static API library shared API library
C test case TCM tcmo tcms.o
and libtcms. a

APl library i bapi.a libapi_s.a

C child process childprocess |tcnthild. o tcnchild s.o
controller and libtcms. a
API library l'i bapi.a i bapi_s.a

C remote process™ | remote process | t cnrem o tcnrems. o
controller and libtcms. a
API library l'i bapi.a libapi _s.a

multi-threaded TCM thrtcmo thrtcms.o

C test case and libthrtcms. a
APl library libthrapi.a libthrapi_s.a

multi-threaded childprocess |thrtcnchild.o |thrtcnchild_s.o

C child process controller and libthrtcms. a
API library i bthrapi.a 'ibthrapi_s.a

C++ test case TCM Gcmo aGcms.o

and libtcms. a

API library l'i bapi.a i bapi _s.a

C++ child process | childprocess | Ctcnthil d. o Ctcenthild_ s.o
controller and libtcms. a
APl library i bapi.a libapi_s.a

multi-threaded TCM Chrtcmo Chrtcms. o

C++ test case and libthrtcms. a
API library libthrapi.a libthrapi_s.a

multi-threaded childprocess | Cthrtcnthild.o |[Chrtcnchild_s.o

C++ child process | controller and libthrtcms. a
AP library libthrapi.a libthrapi_s.a

32. But see the section entitled ** Considerations for remote executed processes”’ later in this chapter.

Page 224

The Open Group

May 2000

TET3-PG-1.6 Test Environment Toolkit

TETware Programmers Guide

19.5.3 Win32 systems

On Win32 systems a shared library has two parts; each part is in a separate file. One file — the
import library — is used when linking a process. An import library is denoted by a file name
witha. | i b suffix. The other file — the DLL — is used by the process at runtime. A DLL is
denoted by a file name with a . dl | suffix. Since it is the import library that is used when
linking, the name of the API library shown in the following table is the name of the import
library.

On Win32 systems, functions in the TETware APl library make calls to functions in the
Microsoft C runtime support library. The way that shared libraries (DLLS) are implemented on
Win32 systems requires all symbols to be resolved at compile time. This means that when the
DLL version of the TETware API library is built, it must be linked with a DLL version of the
C runtime support library. Since the only DLL version of the Cruntime support library on
Win32 systems is a multi-threaded one, it follows that only the thread-safe version of the shared
API libraries can be built on these systems. Therefore, single-threaded versions of the shared

TCM and API components are not provided on Win32 systems.

Component names Component names
Executabletype | Component when using a when using a
static API library shared API library
C test case TCM t cm obj N/A
API library [ibapi.lib
C child process child process | tcnthil d. obj N/A
controller
API library [ibapi.lib
C remote process | remote process | t cnr em obj N/A
controller
API library libapi.lib
multi-threaded TCM t hrt cm obj thrtcm.s. obj
C test case and libthrtcms.lib
API library libthrapi.lib libthrapi _s.lib
multi-threaded childprocess | thrtcnthil d. obj thrtcnchil d_s. obj
C child process controller and libthrtcms.lib
APl library libthrapi.lib libthrapi _s.lib
C++ test case TCM Ct cm obj N/A
API library [ibapi.lib
C++ child process | child process | Ct cnthi | d. obj N/A
controller
API library [ibapi.lib
multi-threaded TCM Ct hrt cm obj Cthrtcm s. obj
C++ test case and libthrtcms.lib
API library libthrapi.lib libthrapi _s.lib
multi-threaded childprocess | Cthrtcnchild.obj | Cthrtcnthil d_s. obj
C++ child process | controller and libthrtcms.lib
API library libthrapi.lib libthrapi _s.lib

May 2000

The Open Group

Page 225

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

19.6 Buildingtest casesto use shared API libraries

19.6.1 Introduction

The method used to build a test case to use a shared library is different on different operating
systems. There follows a subsection for each of the types of operating system on which shared
AP libraries are supported in the TETware distribution. Each subsection contains an example
makefile for a simple test case and describes how to convert it to build the test case to use shared
API libraries. Each example includes asingle test case and a child process.

On some systems the way in which API functions and data items are declared int et _api . h
must be changed when a test case is built to use a shared APl library. In order to make these
changes visible you must compile test case source code with TET_SHLI B defined.

19.6.2 UNIX systems
Here is the example makefile which builds the test case to use the static API library:

locations of the include files and libraries

INC=../../../lib/ltet3
LiIB=../../../lib/ltet3

nane of the C conpiler
CC = cc

flags for the C conmpiler
CFLAGS = -1 $(INC
LDFLAGS =

nanme of the TCM and API library
TCM = $(LIB)/tcmo

TCMCHI LD = $(LIB)/tcnchild. o

LI BAPI = $(LIB)/libapi.a

main targets
all: tcl tclchild

tcl: tcl.o
$(CC) $(LDFLAGS) -0 $@tcl.o $(TCM S$(LIBAPI)

tclchild: tclchild.o
$(CC $(LDFLAGS) -0 $@tclchild.o $(TCMCH LD) $(LIBAPI)

Page 226 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Here is the same makefile after modification to build the test case to use the shared API library.
The changes consist of adding a compiler flag and changing the names of the TCM and API
components. An additional linker option is required on HP-UX systems; the reason for this will
be described in alater section.

The lines that have been changed are marked with a — character in the right margin.

|l ocations of the include files and libraries
INC=../../../lib/tet3
LIB=../../../lib/tet3

nane of the C conpiler
CC = cc

flags for the C conpiler
CFLAGS = -1$(INC) -DTET_SHLIB
LDFLAGS =

HP-UX requires the foll ow ng
LDFLAGS = -W, +s

name of the TCM and API library

TCM = $(LIB)/tcms.o $(LIB)/libtcms.a

TCMCHI LD = $(LIB)/tcnthild_s.o $(LIB)/libtcms.a
LIBAPI = -L $(LIB) -lapi_s

main targets
all: tcl tclchild

tcl: tcl.o
$(CC) $(LDFLAGS) -0 $@tcl.o $(TCM $(LIBAPI)

tclchild: tclchild.o
$(CC) $(LDFLAGS) -0 $@tclchild.o $(TCMCH LD) $(LIBAPI)

May 2000 Page 227
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

19.6.3 Win32 systems

Here is the example makefile which builds the test case to use the static API library using the
defined build environment: >3

locations of the include files and libraries
INC=../../../lib/tet3

LIB=../../../lib/tet3

nanme of the C conpiler
CC = cc

flags for the C conpiler
CFLAGS = -1$(1 NC)
LDFLAGS =

nanme of the TCM and API library
TCM = $(LIB)/tcm obj

TCMCHI LD = $(LIB)/tcnthild. obj
LIBAPI = $(LIB)/libapi.lib

main targets
all: tcl.exe tclchild. exe

tcl.exe: tcl. obj
$(CC) $(LDFLAGS) -0 $@tcl.obj $(TCM $(LIBAPI)

tclchil d. exe: tclchil d. obj
$(CC $(LDFLAGS) -0 $@tcichild.obj $(TCMCH LD) $(LIBAPI)

33.That is. Microsoft Visua C++, the MKS Toolkit and the version of the compiler configuration file
conpi | er. ccg that is supplied with the TETware distribution.

Page 228 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Here is the same makefile after modification to build the test case to use the shared API library.
The changes consist of adding some compiler flags and and changing the names of the TCM and
APl components. Note that it has been necessary to use the thread-safe API libraries even though
the example test case does not use multiple threads.

The lines that have been changed are marked with a — character in the right margin.

|l ocations of the include files and libraries
INC=../../../lib/tet3
LIB=../../../lib/tet3

nane of the C conpiler
CC = cc

flags for the C conpiler
CFLAGS = -1$(INC) -MD - DTET_THREADS - DTET_SHLI B
LDFLAGS = -MD

name of the TCM and API library

TCM = $(LIB)/thrtcms.obj $(LIB)/libthrtcms.lib
TCMCHI LD = $(LIB)/thrtcnchild_s.obj $(LIB)/libthrtcms.lib
LIBAPI = $(LIB)/libthrapi_s.lib

main targets
all: tcl.exe tclchild. exe

tcl.exe: tcl. obj
$(CC) $(LDFLAGS) -0 $@tcl.obj $(TCM $(LIBAPI)

tclchil d. exe: tclchil d. obj
$(CC) $(LDFLAGS) -0 $@tclchild.obj $(TCMCH LD) $(LI BAPI)

19.7 Locating ashared API library at runtime

19.7.1 Introduction

When a program that uses a shared library is executed, the operating system must locate any
shared libraries that are used by the program. The method used to do this varies between
systems. The way in which this is best done for TETware test cases is described in the
subsections that follow.

19.7.2 UNIX systems

Most UNIX systems can use one of severa methods to locate a shared library at runtime as
follows:

o Locate the library using a path name that was built into the program at compile time. This
isusually the default when a shared library is specified by path name.

« Search for the library using a path specified by an environment variable.
e Search for the library in a list of standard places (for example, in /Iib and/or
[usr/1ib). Thisismost suitable for libraries that are supplied with the system.
Since test cases may be executed below an alternate execution directory or with

May 2000 Page 229
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

TET_EXEC | N _PLACE set to False, the first method can't be used. And since the TETware
API libraries are not normally installed in one of the standard places, the last method can’t be
used.

This meansthat it is necessary to arrange for the linker not to build a path name into atest case at
compile time, and to set up an environment variable that tells the operating system where to
locate the shared API library when atest case is executed. That is why the name of the shared
AP library was specified using -1 and - L options in the example makefiles presented earlier,
and not by path name.

The name of the environment variable that is used for this purpose varies between systems. The
following table lists the names used by the UNIX systems that are described in this chapter:

Operating system type Environment variable name
Systems that use the SVR4 dynamic linking scheme | LD LI BRARY PATH
HP-UX SHLI B_PATH
AlIX LI BPATH

Note that on HP-UX systems the +s option must be passed to the linker when the program is
built in order for SHLI B_PATH to be used to locate a shared library at runtime.

One way for a test suite author to ensure that the correct value of the appropriate environment
variable is always available when a test case is executed is to provide an exec tool for use with
the test suite. For example, the following simple exec tool will provide the correct values for
these environment variables on all the systems described previously:

#!/ bi n/ sh

the |ocation of the shared APl libraries
LI B_TET3=${ TET_ROOT: ?}/lib/tet3

this works for systens that use the SVR4 dynanic |inking schenme
LD LI BRARY_PATH=$LI B TET3
export LD LI BRARY_PATH

this works on HP-UX systens where the test case has been conpil ed
with cc -W, +s

SHLI B_PATH=$LI B_TET3

export SHLI B_PATH

this works on Al X systens
LI BPATH=$LI B_TET3
export LI BPATH

finally, execute the test case
prog=%${1: ?}

shift

exec ./$prog ${1:+"3@}

Page 230 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

19.7.3 Win32 systems

Win32 systems use the PATH environment variable to locate DLLSs that are used by a program.
On a Win32 system the DLL parts of the shared AP libraries are installed in tet-root/ bi n. So,
provided that the user’'s PATH includes tet-root/ bi n (as would normally be the case when
someone invokes t cc on a local system or t ccdst art on aremote system), the operating
system will always be able to locate the shared API libraries without the need to provide exec
tools or set extra environment variables.

19.7.4 Considerationsfor remote executed processes

When a remote processis launched by acal tot et _remexec() in Distributed TETware, it is
not practicable for the calling process to specify an environment variable that can be used to
locate a shared API library on the remote system.

Therefore it is recommended that processes that are to be launched by a call to
tet _remexec() areawayslinked with the static version of the API library.

If you must link a remote executed process with the shared version of the API library for some
reason, you will need to specify a runtime search path when you build the process. A remote
executed process is executed in the alternate execution directory if one has been specified,
otherwise it is executed in the tet root directory. In order to ensure portahility, the path that you
specify should be relative to the place where the remote process is to be executed.

The method that you use to specify a runtime search path depends on which compiler is used to
build the remote process. Y ou will need to consult the appropriate SGS documentation in order
to determine what method should be used on your system.

May 2000 Page 231
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 232 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

APPENDICES

May 2000 Page 233
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 234 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

A. TheTETware end-user licence

++++++++++++++++HHH TET END USER LICENCE +++++++++HH -+

BY OPENING THE PACKAGE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT.
IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL
THE PRODUCT AND RETURN IT TO THE PLACE OF PURCHASE FOR A FULL REFUND.

TETWARE RELEASE 3.5END USER LICENCE
REDISTRIBUTION NOT PERMITTED

This Agreement has two parts, applicable to the distributions as follows:
A. Freebinary evaluation copies — valid for 90 days, full functionality — no warranty.
B. Freebinary restricted versions — no warranty, limited functionality.

C. Licenced versions — full functionality, warranty fitness as described in documentation, includes
source, binary and annual support.

PART | (A & B above) - TERMS APPLICABLE WHEN LICENCE FEES NOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE).

GRANT.
X/Open grants you a non-exclusive licence to use the Software free of charge if

a. you are astudent, faculty member or staff member of an educational institution (K-12, junior college,
college or library) or an employee of an organisation which meets X/Open’s criteria for a charitable
non-profit organisation; or

b. your use of the Software is for the purpose of evaluating whether to purchase an ongoing licence to
the Software.

The evaluation period for use by or on behalf of a commercial entity is limited to 90 days; evaluation use
by others is not subject to this 90 day limit. Government agencies (other than public libraries) are not
considered educational or charitable non-profit organisations for purposes of this Agreement. If you are
using the Software free of charge, you are not entitled to hard-copy documentation, support or telephone
assistance. If you fit within the description above, you may use the Software for any purpose and without
fee.

DISCLAIMER OF WARRANTY.
Free of charge Software isprovided onan ‘*AS IS’ basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
X/OPEN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

May 2000 Page 235
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

PART Il (C above) - TERMS APPLICABLE WHEN LICENCE FEES PAID.

GRANT.

Subject to payment of applicable licence fees, X/Open grants to you a non-exclusive licence to use the
Software and accompanying documentation (** Documentation’’) as described below.

Copyright 0 1996,1997 X/Open Company Ltd.
Copyright 0 1998,1999 The Open Group

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated
as directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted. Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open.
Distribution of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is permitted subject to the
following conditions:

— this copyright notice is included unchanged with any binary distribution;
— the company distributing binary versions notifies X/Open;

— the company distributing binary versions holds an annual TET support agreement in effect with
X/Open for the period the product is being sold, or a one off binary distribution fee equal to four years
annual support is paid.

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

Portions of thiswork contain code and documentation derived from other versions of the Test Environment
Toolkit, which contain the following copyright notices:

Copyright 0 1990,1992 Open Software Foundation

Copyright 0 1990,1992 Unix International

Copyright 0 1990,1992 X/Open Company Ltd.

Copyright O 1991 Hewlett-Packard Co.

Copyright O 1993 Information-Technology Promotion Agency, Japan
Copyright O 1993 SunSoft, Inc.

Copyright 0 1993 UNIX System Laboratories, Inc., a subsidiary of Novell, Inc.
Copyright 0 1994,1995 Uni Soft Ltd.

The unmodified source code of those works is freely available from ft p. xopen. or g. The modified
code contained in TETware restricts the usage of that code as per this licence.

e o S

Page 236 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

B. Example C language API test suite sourcefiles

B.1 Introduction

This appendix contains listings for the files that comprise the example C language test suite
presented in the chapter entitled ‘* Writing a C language A PI-conforming test suite’”.

This test suite has been designed to run on a UNIX type of operating system.

B.2 tet code

TET reserved codes
0 " PASS"

1 "FAIL"

2 " UNRESOLVED"

3 " NOTI NUSE"

4 " UNSUPPCORTED"
5 "UNTESTED"

6 "UN N Tl ATED"
7 " NORESULT"

#

3

Test suite additional codes
3 "1 NSPECT"

B.3 i nstall

echo This is the CGAPI test suite install tool

B.4 cl eant ool

exec make cl ean

B.5 tet _scen

chnod, fileno, stat, unane test suite.

al |
"Starting Full Test Suite"
/ts/ chnod/ chnod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/ unane/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/ chnod/ chnod-tc
"Fi ni shed chnmod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Finished fileno Test Case"

st at

May 2000 Page 237

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

"Starting stat Test Case"
/ts/stat/stat-tc
"Fi ni shed stat Test Case"

unane
"Starting unane Test Case"
/ t s/ unanme/ unane-tc
"Fi ni shed unane Test Case"
EOF

B6 tetbuild.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_BUI LD_TOOL=nake
TET_BUI LD FI LE=-f makefile

B.7 tetexec. cfg
TET_OUTPUT_CAPTURE=Fal se

The nane of a character device file (or "unsup" if not supported)
CHARDEV=/ dev/ nul |

The nane of a block device file (or "unsup" if not supported)
BLOCKDEV=unsup

B.8 tetclean.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_CLEAN TOOL=cl eant ool
TET_CLEAN FI LE=

B.9 Makefilefor chnod-tc. c

TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CcC = ccC
CFLAGS = -1$(INCDIR) -D_POSI X_SOURCE
chnod-tc: chnod-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 chnod-tc chnod-tc.c $(LIBDIR)/tcmo \
$(LIBDIR) /i bapi.a
-rm-f chnod-tc.o
cl ean:
rm-f chnod-tc chnod-tc. o
lint:
lint $(CFLAGS) chnod-tc.c -ltcm
Page 238 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

B.10 chnod-tc. c

/* chnod-tc.c : test case for chnod() interface */

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i ncl ude <tet_api.h>

static void tpl(), tp2(), tp3();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet _startup)() = startup;

void (*tet _cleanup)() = cleanup;
struct tet testlist tet testlist[] = {

{ tpl, 11},

{ tp2, 2},

{ tp3, 31},

{ NULL, 0}
1
/* Test Case Wde Declarations */
static char *tfile = "chnod. 1"; /* test file name */
static char *tndir = "chnod. 1/chnod. 1"; /* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char nsg[256]; /* buffer for info lines */
static void
startup()
{

int fd;

static char *reason = "Failed to create test file in startup”

if ((fd=creat(tfile, S IRWU)) < 0)

{

(void) sprintf(nsg,
"creat(\"%\", S IRWKU) failed in startup - errno %",
tfile, errno);

tet _infoline(nmsg);

/* Prevent tests which use this file from executing */
tet _delete(l, reason);
tet _del ete(3, reason);

}
el se
(void) close(fd);
}
static void
cl eanup()
{
/* renove file created by start-up */
(void) unlink(tfile);
}
May 2000 Page 239

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

static void
tpl() /* successful chnod of file: return O */

{

int ret, err;
node t node;

tet _infoline("SUCCESSFUL CHMOD OF FI LE");
/* change node of file created in startup function */
errno = 0;

if ((ret=chnod(tfile, (nbde_t)0)) != 0)
{

err = errno;
(void) sprintf(nsg, "chnod(\"%\", 0) returned %l, expected 0",

tfile, ret);
tet _infoline(nsg);
if (err 1= 0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

}

tet_result (TET_FAIL);

return;

}

/* check node was changed correctly */

if (stat(tfile, &uf) == -1)
{
(void) sprintf(nsg,
"stat (\"%\", buf) failed - errno %", tfile, errno);
tet _infoline(nmsg);
tet _resul t (TET_UNRESOLVED);
return;

}

node = buf.st_node & O ACCMODE;
if (mode !'= 0)

{
(void) sprintf(nsg, "chnod(\"%\", 0) set node to 0% o, expected 0"
tfile, (long)node);
tet _infoline(nmsg);
tet _result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
tp2() /* chnod of non-existent file: return -1, errno ENOCENT */
int ret, err;
tet_infoline("CHVMOD OF NON EXI STENT FILE");
/* ensure file does not exist */
if (stat("chnod. 2", &uf) !'= -1 & & unlink("chnod.2") == -1)
Page 240 May 2000

The Open Group

TET3-PG-

}

st at
tp3(
{

May 2000

1.6 Test Environment Toolkit

TETware Programmers Guide

tet _infoline("could not unlink chnod.2");
tet result(TET_UNRESCOLVED)
return;

}

/* check return value and errno set by call */

errno = 0;
ret = chnmod("chnod. 2", (node_t)O0);

if (ret '= -1 || errno != ENCENT)
{

err = errno;
if (ret !'=-1)

(void) sprintf(nsg,

"chrmod(\"chrmod. 2\", 0) returned %, expected -1", ret);
tet _infoline(msg);
}
if (err != ENOENT)
(void) sprintf(nsg,
"chrmod(\"chnmod. 2\", 0) set errno to %, \
expected %d (ENCENT)", err, ENOCENT);
tet _infoline(nsg);
}
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
ic void
) /* non-directory path conponent: return -1, errno ENOTDI R */
int ret, err;
tet_infoline("CHVOD OF NON DI RECTORY PATH PREFI X COVPONENT") ;
/* tndir is a pathname containing a plain file (created by the
startup function) in the prefix */
errno = 0;
ret = chnmod(tndir, (node_t)O0);
/* check return value and errno set by call */
if (ret !'=-1 || errno != ENOID R
{
err = errno;
if (ret !=-1)
(void) sprintf(nsg,
"chrmod(\"%\", 0) returned %, expected -1", tndir, ret);
tet _infoline(nmsg);
}
Page 241

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

if (err !'= ENOID R

{
(void) sprintf(nsg,
"chrmod(\"%\", 0) set errno to %l, expected % (ENOTD R)",
tndir, err, ENOID R);
tet _infoline(msg);
}
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
B.11 Makefilefor fil eno-tc.c
TET_ROOT = ../../..
LIBDOR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
cC = ccC
CFLAGS = -13$(INCDIR) -D PGCsI X SOURCE
fileno-tc: fileno-t4 fileno-tc.c $(INCDIR)/tet_api.h

$(CC $(CFLAGS) -o fileno-tc fileno-tc.c $(LIBDIR)/tcmo \
$(LIBDIR)/1ibapi.a
-rm-f fileno-tc.o

fil eno-t4: fileno-t4.c $(INCDIR)/tet_api.h
$(CC) PB(CFLAGS) -o fileno-t4 fileno-t4.c \
$(LIBDIR)/tcnchild.o $(LIBDIR)/1ibapi.a
-rm-f fileno-t4.0

cl ean:
rm-f fileno-tc fileno-tc.o fileno-t4 fileno-t4.0

lint:

lint $(CFLAGS) fileno-tc.c -ltcm
lint $(CFLAGS) fileno-t4.c -ltcnt

B.12 fil eno-tc.c

/* fileno-tc.c : test case for fileno() interface */

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i nclude <fcntl. h>

#i ncl ude <tet_api.h>
extern char **environ

static void cleanup();
static void tpl(), tp2(), tp3(), tp4(), ch4();
/* Initialize TCM data structures */

Page 242 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

void (*tet_startup)() = NULL;
void (*tet _cleanup)() = cleanup
struct tet testlist tet testlist[] = {
{ tpl, 11},
{ tp2, 2},
{ tp3, 31},
{ tp4, 41},
{ NULL, O}
i

/* Test Case Wde Decl arations */
static char nsg[256]; /* buffer for info Iines */

static void
cl eanup()

(void) unlink("fileno.1");
(void) unlink("fileno.4"),

}
static void
tpl() /* successful fileno: return fd associated with stream */
FILE *fp
struct stat bufl, buf2;
tet_infoline("FD RETURNED BY FI LENO REFERS TO FI LE OPEN ON STREAM');
/* open streamto test file */
if ((fp=fopen("fileno.1", "w')) == NULL)
{
(void) sprintf(nsg, "fopen(\"fileno.1\", \"w") failed - errno %",
errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
/* check device and inode numbers fromfile descriptor associated
with the streammatch those fromthe file itself */
if (stat("fileno.1", &bufl) == -1)
{
(void) sprintf(nsg, "stat(\"fileno.1\", bufl) failed - errno %",
errno);
tet _infoline(msg);
tet_result(TET_UNRESOLVED);
return;
}
if (fstat(fileno(fp), &buf2) == -1)
(void) sprintf(nsg, "fstat(fileno(fp), buf2) failed - errno %",
errno);
tet _infoline(nsg);
tet _resul t(TET_FAIL);
}
else if (bufl.st_ino !'= buf2.st_ino || bufl.st_dev != buf2. st_dev)
May 2000 Page 243

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

{
tet_infoline("fileno(fp) does not refer to sane file as fp");
(void) sprintf(nsg, "st_dev, st_ino of file: Ox%x, %d",
(1 ong) buf1.st_dev, (long)bufl.st_ino);
tet _infoline(nsg);
(void) sprintf(nsg, "st_dev, st_ino of fileno(fp): Ox%x, %d",
(1 ong) buf 2. st _dev, (Iong)buf2.st_ino);
tet _infoline(nsg);
tet result(TET_FAIL);
}
el se

tet result(TET_PASS);

(void) fclose(fp);

}
static void
tp2() /* fileno on stdin/stdout/stderr: return 0/1/2 */
{
int fd, fail = 0;
tet _infoline("FILENO ON STDI N STDOUT/ STDERR") ;
/* check return value of fileno() for stdin/stdout/stderr */
/* this code relies on the fact that the TCM does not interfere
with these streans */
if ((fd = fileno(stdin)) !'= 0)
{
(void) sprintf(nsg, "fileno(stdin) returned %, expected 0", fd);
tet _infoline(nsg);
tet result(TET_FAIL);
fail = 1;
}
if ((fd = fileno(stdout)) != 1)
{
(void) sprintf(nsg, "fileno(stdout) returned %, expected 1", fd);
tet _infoline(nmsg);
tet _result(TET_FAIL);
fail = 1;
}
if ((fd = fileno(stderr)) != 2)
{
(void) sprintf(nsg, "fileno(stderr) returned %, expected 2", fd);
tet _infoline(nmsg);
tet_result(TET_FAIL);
fail = 1;
}
if (fail == 0)
tet_result(TET_PASS);
}
static void
tp3() /* on entry to main(), stdin is readable, stdout and stderr
are witable */
{
Page 244 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

int flags, fail = 0;

tet _infoline("ON ENTRY TO MAIN, STDIN | S READABLE, STDOUT AND STDERR \
ARE WRI TABLE") ;

/* this code relies on the fact that the TCM does not interfere
with these streans */

/* check file descriptor associated with stdin is readable */

if ((flags = fentl (fileno(stdin), F GETFL)) == -1)

(void) sprintf(nsg, "fcntl(fileno(stdin), F GETFL) failed - errno %",
errno);

tet _infoline(nmsg);

tet result(TET_UNRESOLVED);

return;

}

flags & O_ACCMODE;
if (flags !'= O RDONLY && flags != O RDWR)

{
tet _infoline("stdin is not readable");
fail = 1;
}
/* check file descriptor associated with stdout is witable */
if ((flags = fentl (fileno(stdout), F_GETFL)) == -1)
{
(void) sprintf(nsg, "fcntl (fileno(stdout), F_GETFL) failed - errno %",
errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}

fl ags & O ACCMODE;
if (flags !'= O WRONLY && flags != O ROWR)

{
tet _infoline("stdout is not witable");
fail = 1;
}
/* check file descriptor associated with stderr is witable */
if ((flags = fentl (fileno(stderr), F_GETFL)) == -1)
{
(void) sprintf(nmsg, "fcntl(fileno(stderr), F_GETFL) failed - errno %",
errno);
tet _infoline(nsg);
tet _result (TET_UNRESCLVED);
return;
}

flags & O _ACCMODE;

if (flags '= O WRONLY && flags != O RDWR)

{
tet_infoline("stderr is not witable");
fail = 1;

May 2000 Page 245
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

}
if (fail == 0)
tet _result(TET_PASS);
el se
tet result(TET_FAIL);
}
static void
t p4() /* on entry to main(), streamposition of stdin, stdout and
stderr is sane as fileno(strean) */
{
tet_infoline("ON ENTRY TO MAIN, STREAM PCSI TI ON OF STDI N, STDOUT \
AND STDERR') ;
/* fork and execute subprogram so that unique file positions can be
set up on entry to main() in subprogram*/
(void) tet_fork(ch4, TET_NULLFP, 30, 0);
}
static void
ch4()
{
int fd, ret;
static char *args[] ={ "./fileno-t4", NULL };
/* set up file positions to be inherited by stdin/stdout/stderr
i n subprogram */
for (fd = 0; fd < 3; fd++)
{
(void) close(fd);
if ((ret=open("fileno.4", O RDWR O CREAT, S IRWKU)) != fd)
{
(void) sprintf(nsg, "open() returned %l, expected %", ret, fd);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
if (Iseek(fd, (off_t)(123 + 45*fd), SEEK SET) == -1)
{
(void) sprintf(nsg, "lseek() failed - errno %", errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
}
/* execute subprogramto carry out renainder of test */
(void) tet_exec(args[O0], args, environ);
(void) sprintf(nsg, "tet_exec(\"%\", args, env) failed - errno %",
args[0], errno);
tet _infoline(msg);
tet_result(TET_UNRESOLVED);
}
Page 246 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

B.13 fil eno-t4.c

/* fileno-t4.c : child programof test purpose 4 for fileno() */

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <errno. h>

#i ncl ude <tet_api.h>

static char nsg[256]; /* buffer for info Iines */

/* ARGSUSED */

i nt

tet _main(argc, argv)

int argc;

char **argv;

{
long ret, pos;
int fd, err, fail = 0;
FI LE *streans[3];

static char *strnanes[] = { "stdin", "stdout", "stderr" };

/* initialise the streans[] array */
streans[0] stdin;
streamns[1] stdout ;
streamns| 2] stderr;

/* check file positions of streanms are sanme as set up in parent

for (fd = 0; fd < 3; fd++)
{
pos = 123 + 45*fd; /* must match | seek() in parent
errno = 0;
if ((ret = ftell(streanms[fd])) != pos)
{

err = errno;

(void) sprintf(nsg, "ftell (%) returned %d, expected % d",

strnanes[fd], ret, pos);
tet_infoline(nsg);
if (err 1'=0)
{
(void) sprintf(nsg, "errno was set to %",
tet_infoline(nsg);
}
fail = 1;

}

if (fail == 0)

tet _result(TET_PASS)
el se

tet _resul t (TET_FAIL);

return O;

May 2000
The Open Group

*/

err);

Page 247

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

B.14 Makefilefor stat-tc.c

TET ROOT = ../../..

LIBDOR = $(TET_ROOT)/lib/tet3

INCDIR = $(TET_ROOT)/inc/tet3

CcC = ccC

CFLAGS = -13$(INCDIR) -D PGCsI X SOURCE

stat-tc: stat-tc.c $(INCDIR)/tet_api.h
$(CC $(CFLAGS) -0 stat-tc stat-tc.c $(LIBDIR)/tcmo \

$(LIBDIR)/1ibapi.a

-rm-f stat-tc.o

cl ean:
rm-f stat-tc stat-tc.o

lint:

lint $(CFLAGS) stat-tc.c -ltcm

B.15 stat-tc.c

/* stat-tc.c : test case for stat() interface */

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

#i ncl ude <tet_api.h>

static void tpl(), tp2(), tp3(), tpd(), tp5(), tp6(), tp7();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet_startup)() = startup

void (*tet_cleanup)() = cleanup

struct tet testlist tet testlist[] = {

{ tpl, 11},
{ tp2, 2},
{ tp3, 31},
{ tp4, 41},
{ tp5, 51},
{ tp6, 6},
{ tp7, 7},
{ NULL, 0}
I
/* Test Case Wde Declarations */
static char *tfile = "stat.1"; /* test file name */
static char *tndir = "stat.1l/stat.1"; /* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char nsg[256]; /* buffer for info lines */
static void
startup()
{
int fd;
static char *reason = "Failed to create test file in startup"
Page 248 May 2000

The Open Group

TET3-PG-

{
(void) sprintf(nsg,
"creat(\"%\", SIRWU) failed in startup - errno %",
tfile, errno);
tet _infoline(msg);
/* Prevent tests which use this file from executing */
tet _delete(l, reason);
tet _delete(7, reason);
}
el se
(void) close(fd);
}
static void
cl eanup()
{
/* renove file created by start-up */
(void) unlink(tfile);
/* renove files created by test purposes, in case they don't run
to conpletion */
(void) rndir("stat.d");
(void) unlink("stat.p");
}
static void
tpl() /* successful stat of plain file: return 0 */
{
int ret, err;
tet _infoline("SUCCESSFUL STAT OF PLAIN FILE");
/* stat file created in startup function and check node indicates
a plain file */
errno = O;
if ((ret=stat(tfile, &uf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"9%\", buf) returned %, expected 0"
tfile, ret);
tet _infoline(nmsg);
if (err 1= 0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet_infoline(nsg);
tet_result(TET_FAIL);
}
else if (!SI SREE buf.st_node))
{
tet _infoline("S_ | SREG st_npde) was not true for plain file");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st_node);
tet _infoline(nmsg);
tet_result(TET_FAIL);
}
May 2000 Page 249

1.6 Test Environment Toolkit
TETware Programmers Guide

if ((fd=creat(tfile, S_IRWKU)) < 0)

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

el se
tet result (TET_PASS);
}
static void
tp2() /* successful stat of directory: return 0 */
{
int ret, err;
char *tdir = "stat.d";
tet _infoline("SUCCESSFUL STAT OF DI RECTORY");
/* create a test directory */
if (nkdir(tdir, S_IRWU == -1)
{
(void) sprintf(nsg,
"nkdir(\"9%\", SIRWU failed in startup - errno %",
tdir, errno);
tet _infoline(nsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
/* stat the directory and check node indicates a directory */
errno = 0;
if ((ret=stat(tdir, &buf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",
tdir, ret);
tet _infoline(nmsg);
if (err 1= 0)
(void) sprintf(nsg, "errno was set to %", err);
tet_infoline(nsg);
}
tet _result(TET_FAIL);
}
else if (IS _ISD R(buf.st_node))
{
tet_infoline("S_ISDI R(st_npde) was not true for directory");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st_node);
tet _infoline(nmsg);
tet _result(TET_FAIL);
}
el se
tet_result(TET_PASS);
(void) rmdir(tdir);
}
static void
t p3() /* successful stat of FIFOfile: return 0 */
int ret, err;
char *tfifo = "stat.p";
Page 250 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

tet _infoline("SUCCESSFUL STAT OF FI FO');
/* create a test FIFO */

if (nkfifo(tfifo, S IRWU == -1)
{
(void) sprintf(nsg,
"nkfifo(\"%\", S IRWU) failed in startup - errno %",
tfifo, errno);
tet _infoline(msg);
tet _result(TET_UNRESOLVED);
return;

}
/* stat the FI FO and check npde indicates a FIFO */

errno = O;
if ((ret=stat(tfifo, &ouf)) != 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",

tfifo, ret);
tet _infoline(nsg);
if (err '=0)

{

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet_resul t (TET_FAIL);

}
else if (!S_|ISFIFQ buf.st_node))
{
tet _infoline("S ISFIFQ(st_node) was not true for FIFO file");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(msg);
tet result(TET_FAIL);
}
el se

tet _resul t (TET_PASS)
(void) unlink(tfifo);

}
static void
t p4() /* successful stat of character device file: return 0 */
{
int ret, err;
char *chardev;
tet_infoline("SUCCESSFUL STAT OF CHARACTER DEVI CE FI LE");
/* obtain device name from execution configuration paraneter */
chardev = tet_getvar (" CHARDEV");
if (chardev == NULL || *chardev == "\0")
{
tet _infoline("paraneter CHARDEV is not set");
tet_resul t (TET_UNRESCLVED);
return;
May 2000 Page 251

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

}

/* check if paraneter indicates character devices are not supported */

if (strcnp(chardev, "unsup") == 0)

{
tet _infoline("paraneter CHARDEV is set to \"unsup\"");
tet _result(TET_UNSUPPORTED) ;
return;

}

/* stat the device and check nopde indicates a character device */

errno = O;
if ((ret=stat(chardev, &buf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",
chardev, ret);
tet _infoline(msg);
if (err 1= 0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(msg);

tet_resul t (TET_FAIL);

}
else if (!SI SCHR(buf.st node))
{
(void) sprintf(nsg, "S | SCHR(st_ node) was not true for \"%s\"",
char dev) ;
tet _infoline(nsg);
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(nsg);
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
t p5() /* successful stat of block device file: return 0 */
int ret, err;
char *bl ockdev;
tet _infoline("SUCCESSFUL STAT OF BLOCK DEVI CE FILE");
/* obtain device name from execution configuration paraneter */
bl ockdev = tet_getvar (" BLOCKDEV");
if (blockdev == NULL || *blockdev == "\0")
{
tet _infoline("paranmeter BLOCKDEV is not set");
tet_result(TET_UNRESOLVED);
return;
}
/* check if paraneter indicates block devices are not supported */
Page 252 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide
if (strcnp(bl ockdev, "unsup") == 0)

tet_infoline("parameter BLOCKDEV is set to \"unsup\"");
tet result(TET_UNSUPPORTED) ;

return;
}
/* stat the device and check nopde indicates a bl ock device */
errno = 0O;
if ((ret=stat(blockdev, &buf)) !'= 0)
{

err = errno;

(void) sprintf(nsg, "stat(\"9%\", buf) returned %, expected 0",
bl ockdev, ret);

tet _infoline(nmsg);

if (err '=0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

}
tet _result (TET_FAIL);

}
else if (IS ISBLK(buf.st node))
{
(void) sprintf(nsg, "S |ISBLK(st_ node) was not true for \"%\"",
bl ockdev) ;
tet _infoline(nmsg);
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(nsg);
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
t p6() /* stat of non-existent file: return -1, errno ENOCENT */
{
int ret, err;
tet _infoline("STAT OF NO\ EXI STENT FILE");
/* ensure file does not exist */
if (stat("stat.6", &buf) I'= -1 & & unlink("stat.6") == -1)
{
tet_infoline("could not unlink stat.6");
tet_resul t (TET_UNRESCLVED) ;
return;
}
/* check return value and errno set by call */
errno = O;
ret = stat("stat.6", &buf);
if (ret !'=-1]| errno != ENCENT)
{
May 2000 Page 253

The Open Group

Test Environment Toolkit
TETware Programmers Guide

err = errno;
if (ret !'=-1)
{
(void) sprintf(nsg,
"stat(\"stat.6\", 0)
tet _infoline(msg);

returned %,

}
if (err

{

I = ENCENT)

(void) sprintf(nsg,
"stat(\"stat.6\", 0)
err, ENOCENT);

tet _infoline(nsg);

set errno to %,

}

tet _result (TET_FAIL);
}

el se
tet _resul t (TET_PASS)

}

static void
tp7()
{

/* non-directory path conponent:

int ret, err;

expected -1",

return -1,

TET3-PG-1.6

ret);

expected %d (ENOCENT)",

errno ENOTDI R */

tet_infoline("STAT OF NON- DI RECTORY PATH PREFI X COVPONENT") ;

/* tndir
startup function) in the prefix */

errno = 0O;

ret = stat(tndir, &buf);
/* check return value and errno set

I= -1]| errno !'= ENOTDI R

by call */

if (ret
{
err = errno;
if (ret !'=-1)
{
(void) sprintf(nsg,
"stat(\"%\", 0)
tet_infoline(nsg);

returned %,

}
if (err

{

I = ENOTDI R)

(void) sprintf(nsg,
"stat(\"%\", 0) set errno to %,
tndir, err, ENOTDIR);

tet _infoline(msg);

}

tet _result(TET_FAIL);
}

el se
tet _result(TET_PASS)

Page 254
The Open Group

expected -1",

is a pathnane containing a plain file (created by the

tndir, ret);

expected % (ENOTDIR)",

May 2000

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

}

B.16 Makefilefor unane-tc. c

TET ROOT = ../../..

LIBDOR = $(TET_ROOT)/lib/tet3

INCDIR = $(TET_ROOT)/inc/tet3

cC = ccC

CFLAGS = -I1$(INCDIR) -D PCSI X SOURCE

unane-tc: uname-tc.c $(INCDIR)/tet_api.h
$(CC $(CFLAGS) -0 unane-tc unane-tc.c $(LIBDIR)/tcmo \

$(LIBDIR)/1ibapi.a

-rm-f uname-tc.o

cl ean:
rm-f unane-tc unanme-tc.o

lint:

lint $(CFLAGS) unane-tc.c -ltcm

B.17 unane-tc.c

/* uname-tc.c : test case for uname() interface */

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/utsnane. h>

#i ncl ude <tet_api.h>

#undef TET_I NSPECT /* must undefine because TET_ is reserved prefix */
#define TET_INSPECT 33 /* this would normally be in a test suite header */

static void tpl();

/* Initialize TCM data structures */
void (*tet_startup)() = NULL; /* no start-up function */

void (*tet_cl eanup) () = NULL; /* no clean-up function */
struct tet testlist tet _testlist[] = {
{ tpl, 11},
{ NULL, 0}
}
/* Test Case Wde Declarations */
static char nsg[256]; /* buffer for info lines */

static void
tpl() /* successful unane: return 0 */

int ret, err;
struct utsnane nane;
tet _infoline("UNAVE QUTPUT FOR MANUAL CHECK");

/* The test cannot deternine automatically whether the infornmation
returned by unane() is correct. It therefore outputs the
infornmati on with an I NSPECT result code for checking manually. */

May 2000 Page 255
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

errno = 0;
if ((ret=unane(&nane)) != 0)
{
err = errno;
(void) sprintf(nsg, "unane() returned %, expected 0", ret);
tet _infoline(msg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet result(TET_FAIL);

}

el se

{
(void) sprintf(nsg, "System Name: \"%\"", nane.sysnane);
tet _infoline(nsg);
(void) sprintf(nmsg, "Node Nane: \"o%s\"", nane.nodenane);
tet _infoline(nsg);
(void) sprintf(nsg, "Release: \"%\"", nane.release);
tet _infoline(nsg);
(void) sprintf(nsg, "Version: \"%8\"", nanme.version);
tet _infoline(nsg);
(void) sprintf(nsg, "Machine Type: \"%\"", nane. nmachine);
tet _infoline(nsg);
tet _result(TET_I NSPECT);

}

}
Page 256 May 2000

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

C. Example Shell API test suite sourcefiles

C.1 Introduction

This appendix contains listings for the files that comprise the example Shell test suite presented
in the chapter entitled ‘* Writing a Shell language API-conforming test suite’”.

This test suite has been designed to run on a UNIX type of operating system. Changes to some of
the support files may be required in order to make this test suite function correctly on Win32
operating systems using utilities provided in the MK S Toolkit.

The changes required include at |east the following:

« The names of the build tool, clean tool and i nst al | scripts need a. ksh suffix in order
to make them executable. The tool definitionsint et bui | d. cfg andt et cl ean. cfg
must be updated to reflect this change.

e The name of each test case must include a . ksh suffix. The install target in each test
case’ s makefile, must be updated to reflect this change, as should each test case name listed
inthet et _scen file.

e The rule in each test case's makefile which installs the test case must be modified so that
the name of the test case after installation has a. ksh suffix. The chnmpod command is not
required in theinstall rule and may be removed.

¢ It isrecommended that each test case should be modified to use the Korn Shell API.

When testing command output, some of the test purposes in this test suite make assumptions
about the format of the output which are not correct for Win32 systems. Therefore some of the
test purposes which report a PASS result when run on a UNIX system can be expected to report a
FAI L result when the test suite is run on a Win32 system.

C.2 tet _code

TET reserved codes
0 " PASS"

1 "FAIL"

2 " UNRESOLVED'
3 " NOTI NUSE"

4 " UNSUPPORTED"
5 "UNTESTED'

6 "UN N Tl ATED'
7 " NORESULT"

#
3

Test suite additional codes
3 " | NSPECT"

May 2000 Page 257
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

C3install
echo Installing SHELL-API test suite
cd SHELL-API || exit 1

create alternate execution directory hierarchy
find ts -type d -print
while read d
do
if test ! -d ts_exec/"$d"
then nkdir ts_exec/"$d"
fi
done

C.4 bui | dt ool

Check TET_EXECUTE i s set
if [-z "$TET_EXECUTE"]
t hen
echo >& "No alternate execution directory supplied to buildtool"
exit 1
fi

Set TET_EXECUTE on comand |ine to override default value in nakefile
exec make TET_EXECUTE="S$TET_EXECUTE"

C.5 cl eant ool

Check TET_EXECUTE i s set
if [-z "$TET_EXECUTE"]
t hen
echo >& "No alternate execution directory supplied to cl eantool"
exit 1
fi

Set TET_EXECUTE on comand |ine to override default value in nakefile
exec nmake TET_EXECUTE="$TET_EXECUTE" cl ean

Cb6tet _scen

chnmod, unane test suite
al |
"Starting Full Test Suite"
/ts/chnod/ chnod-tc
/ts/ unanme/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/chnod/ chnod-tc
"Fi ni shed chnod Test Case"
unane

"Starting unane Test Case"

Page 258 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

/ t s/ unanme/ unane-tc
"Fi ni shed unane Test Case"
EOF

C7tetbuild.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_BUI LD_TOOL=bui | dt ool

C8 tetexec.cfg

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC | N_PLACE=Tr ue

COtetclean.cfg

TET_OUTPUT_CAPTURE=Tr ue
TET_CLEAN TOOL=cl eant ool

C.10 shf uncs — common functionsused in the Shell API
test suite

shfuncs : test suite common shell functions

tpstart() # wite test purpose banner and initialize variables

{

tet _infoline "$*"

FAI L=N
}
tpresult() # give test purpose result
{
$1 is result code to give if FAIL=N (default PASS)
if [SFAIL = N
t hen
tet_result ${1-PASS}
el se
tet result FAIL
fi
}

check_exit() # execute conmand (saving output) and check exit code

{
$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=$7

if [$2 = 0 -a $CODE -ne 0]

t hen
tet_infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 1= 0 -a $CODE -eq O]

t hen
tet_infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAI L=Y

May 2000 Page 259

The Open Group

Test Environment Toolkit
TETware Programmers Guide

fi

TET3-PG-1.6

}
check_nostdout () # check that nothing went to stdout
{
if [-s out.stdout]
t hen
tet _infoline "Unexpected output witten to stdout, as shown bel ow "
infofile out.stdout stdout:
FAI L=Y
fi
}
check _nostderr() # check that nothing went to stderr
{
if [-s out.stderr]
t hen
tet _infoline "Unexpected output witten to stderr, as shown bel ow "
infofile out.stderr stderr
FAl L=Y
fi
}
check _stderr() # check that stderr matches expected error
{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty
case $1 in
")
if [! -s out.stderr]
t hen
tet _infoline "Expected output to stderr, but none witten"
FAl L=Y
fi
*) L
expfil e="$1"
K=Y
exec 4<&0 0< "S$expfile" 3< out.stderr
whi |l e read expline
do
if read Iine <&3
t hen
if expr "$line" "$expline" > /dev/nul
t hen
el se
OK=N
br eak
fi
el se
=N
fi
done
exec 0<&4 3<& 4<&-
May 2000

Page 260

The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

if [K = N]

t hen
tet _infoline "Incorrect output witten to stderr, as shown bel ow
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"

FAI L=Y
fi
esac
}
infofile() # wite file to journal using tet_infoline
{
%1 is file name, $2 is prefix for tet_infoline
prefix=$2
while read |ine
do
tet_infoline "$prefix$line"
done < $1
}
C.11 Makefilefor chnod-tc. sh
TET_EXECUTE = ../../ts_exec
| NSTALL_DI R = $(TET_EXECUTE)/t s/ chnod

$(I NSTALL_DI R)/ chnod-tc: chnod-tc. sh clean
cp chnod-tc.sh $@
chnod 755 $@

cl ean:
rm-f $(INSTALL_DI R)/chnod-tc

C.12 chnod-tc. sh

chnod-tc.sh : test case for chnpbd command

tet_startup="" # no startup function
tet _cl eanup="cl eanup” # cl eanup function
iclist="icl ic2 ic3" # list invocabl e conponents
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2
ic3="tp3" # functions for ic3
tpl() # sinple chnod of file - successful: exit O
{
tpstart "SIMPLE CHMOD OF FILE: EXIT 0"
echo x > chnod. 1 2> out.stderr # create file
if [! -f chnod. 1]
t hen
tet _infoline "Could not create test file: chnod. 1"
tet infoline ‘cat out.stderr’
tet_result UNRESOLVED
return
May 2000 Page 261

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

fi

check_exit "chnod 777 chnmod. 1" O # check exit val ue
MDE='Ils -1 chnmod.1 |cut -d" " -f1° # get and check node of file
if [X'$MODE" !'= X"-rwxrwxrwx"]
t hen
tet _infoline "chmod 777 set node to $MODE, expected -rwxrwxrwx"
FAl L=Y
fi
check_nost dout # shoul d be no stdout
check_nostderr # shoul d be no stderr
t presult # set result code

}

tp2() # chnod of non-existent file : exit non-zero

tpstart "CHMOD OF NON-EXI STENT FI LE: EXIT NON-ZERO'

ensure test file does not exist
rm-f chnod.2 2> out.stderr
if [-f chrod. 2]
t hen
tet _infoline "Could not renove test file: chnod. 2"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return
fi

check_exit "chnod 777 chnod. 2" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr # check error nmessage
tpresult # set result code

}

tp3() # chnod with invalid syntax: exit non-zero

{
tpstart "CHMOD W TH | NVALI D SYNTAX: EXI T NON ZERO'
expected error nmessage
echo "chnod: illegal option -- :\n.*" > out.experr
check_exit "chnod -:" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr out.experr # check error message
t presult # set result code

}

cl eanup() # clean-up function

{

rm-f out.stdout out.stderr out.experr
rm-f chnod. 1
}

source comon shell functions
$TET_EXECUTE/ | i b/ shf uncs

Page 262 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

execute shell test case nanager - nust be last |ine
$TET_ROOT/ | i b/ xpg3sh/tcm sh

On a UNIX system this test case can be converted to use the Korn Shell APl simply by changing
thefirst linein thisfile to:
#!/ bi n/ ksh
and the last linein thisfile to:
$TET_ROOT/ | i b/ ksh/tcm ksh

C.13 Makefilefor unane-tc. sh

TET_EXECUTE = ../../ts_exec
| NSTALL_DI R = $(TET_EXECUTE) / t s/ unane

$(I NSTALL_DI R)/ unane-tc: uname-tc.sh clean
cp unane-tc.sh $@
chnod 755 $@

cl ean:
rm-f $(INSTALL_DI R)/ unane-tc

C.14 unane-tc. sh

unanme-tc.sh : test case for unane command

tet_startup="" # no startup function

tet cl eanup="cl eanup” # cleanup function
iclist="icl ic2" # list invocabl e conponents
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2

tpl() # sinple unane of file - successful: exit O

tpstart "UNAME QUTPUT FOR MANUAL CHECK"

check_exit "unanme -a" 0 # check exit val ue
infofile out.stdout # send output to journa
check_nostderr # shoul d be no stderr
tpresult | NSPECT # set result code

}

tp2() # unane with invalid syntax: exit non-zero

{ tpstart "UNAVE W TH | NVALI D SYNTAX: EXI T NON- ZERO!
expected error nessage
echo "unane: illegal option -- :\n.*" > out.experr
check_exit "unane -:" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr out.experr # check error nessage
t presult # set result code

May 2000 Page 263

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

}
cl eanup() # clean-up function
{
rm-f out.stdout out.stderr out.experr
}

source common shell functions
$TET_EXECUTE/ | i b/ shf uncs

execute shell test case nanager - nust be last |ine
$TET_ROOT/ | i b/ xpg3sh/tcm sh
On aUNIX system this test case can be converted to use the Korn Shell APl simply by changing
thefirst line in thisfile to:
#!/ bi n/ ksh
and the last linein thisfile to:
$TET_ROOT/ | i b/ ksh/ tcm ksh

Page 264 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

D. Exampledistributed test case sourcefiles

D.1 Introduction

This appendix contains listings for the files that comprise the distributed demonstration test suite
presented in the chapter entitled ** The distributed demonstration test suite’’.

This test suite has been designed to run on a pair of UNIX systems, a pair of WindowsNT
systems, or on one UNIX and one Windows NT system. When the demonstration is configured
to run between a UNIX and a Windows NT system, you may configure either type of system to
act as either master or slave.

As distributed these files contain values which are appropriate when you run the demonstration
on two UNIX systems. You must edit some of these these files if you run either part of the
demongtration on a WindowsNT system. Details of the changes that you must make are
presented in comments contained in each file.

D.2 Filessupplied on the master system
D.21 tet code

tet code file for the TETware denonstration

TET reserved codes
" PASS"

"FAI L"

" UNRESOLVED"

" NOTI NUSE"

" UNSUPPORTED"

" UNTESTED"

"UNI NI TI ATED'

" NORESULT"

NO O~ WNE O H#H H* H

Test suite additional codes
101 " FATAL" Abor t
102 " | NSPECT"

D.2.2 tet _scen

al |
"starting scenario"
:renot e, 000, 001:
/ts/tcl
/ts/tc2
"next is the last test case"
/ts/tc3
:endrenpte
"done"

May 2000 Page 265
The Open Group

Test Environment Toolkit
TETware Programmers Guide

D23 tetbuild.cfg

denpnstrati on

the build too

if both naster and
set TET _BU LD TOOL

if both naster and
set TET _BU LD TOOL

if the master is a
set TET _BU LD TOOL
set TET _BU LD TOOL

if the master is a
set TET _BU LD TOOL
set TET_REMDOO_TET

TET_BUI LD_TOOL=nake
TET_BUI LD _TOOL=./nt

HHEIFHFHFHHFEHFHEHFHHEHFFEHFET OHHH

TET3-PG-1.6

mast er system build node configuration file for the TETware

slave are UNI X-1i ke systens,
to "make" in this file

sl ave are Wndows NT systens,
to "./ntbuild.ksh” in this file

UNI X-1i ke systemand the slave is a Wndows NT system
to "make" in this file and
in tetbuild.cfg on the slave systemto "./ntbuild. ksh"

W ndows NT system and the slave is a UNl X-1ike system

to "make" in this file and
BU LD TOOL in this file to "./ntbuild. ksh"

bui | d. ksh

TET_REMDOO_BUI LD _TOOL=./nt bui | d. ksh

don’t change
TET_BUI LD FI LE=-f mak
TET_OUTPUT_CAPTURE=TTr

D.24 tetcl ean.cfg

denpnstrati on

the clean too

if both naster and
set TET_CLEAN TOOL

if both naster and
set TET_CLEAN TOOL

if the master is a
set TET_CLEAN TOOL
set TET_CLEAN TOOL

if the master is a
set TET_CLEAN TOOL
set TET_REMDOO_TET

TET_CLEAN TOOL=rm

HHEIFHFEHFHHEHFHEHFHHEHFEHFEH OHHH

Page 266

efile
ue

mast er system cl ean node configuration file for the TETware

slave are UNI X-1i ke systens,
to "rm inthis file

sl ave are Wndows NT systens,
to "./ntclean.ksh” in this file

UNI X-1i ke system and the slave is a Wndows NT system
to "rm inthis file and
in tetclean.cfg on the slave systemto

./ ntcl ean. ksh"

W ndows NT systemand the slave is a UNI X-1i ke system
to "rm in this file and
CLEAN TOCOL in this file to "./ntcl ean. ksh"

May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

TET_CLEAN TOOL=./ntcl ean. ksh
TET_REMDOO_CLEAN TOOL=./ntcl ean. ksh

don’t change
TET_CLEAN FI LE=-f
TET_OUTPUT_CAPTURE=Tr ue

D.25 tetdist.cfg

exanpl e distributed configuration file for the TETware denonstration

Pl ease refer to the chapter entitled "Running the TETware
denonstration” in the TETware User Guide for
instructions on how to custom se this file for your installation

H o H R

TET_REMDO1_TET_ROOT=/ hore/ t et
TET_REMDO1_TET_TSROOT=${ TET_ROOT}/ deno

The follow ng variables are referenced only by XTl-based versi ons of
TETware - you should not define themif you built TETware to use the socket
network interface

TET_XTI _TPI =/ dev/tcp
TET_XTI _MODE=t cp
TET_LOCALHOST=01. 02. 03. 04

H o HHHHH

D.2 et exec. cfg

6t
mast er system exec node configuration file for the TETware
denonstration

#

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC_| N_PLACE=Fal se

D.2.7 ts/ makefil e

include file and library locations - don’t change
LI BD R ..l../lib/ltet3
| NCDI R ..l..linc/tet3

SGS definitions - customise as required for your system

nane of the C conpiler

CcC = ccC

the following is appropriate when using the defined build environment
on a Wndows NT system

CC = cl -nol ogo

flags for the C compiler
CFLAGS = -1$(INCDIR)

systemlibraries:

the socket version on SVR4 and Sol aris usually needs -|socket -Ilns
the XTI version usually needs -Ixti

the Wndows NT version needs wsock32.1ib

SYSLIBS =

suffixes - custom se as required for your system

May 2000 Page 267
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

object file suffix - .o on UNLX, .obj on Wndows NT

O=.0

archive library suffix - .a on UNNX, .lib on wi ndows NT
A= .a

executable file suffix - blank on UNI X, .exe on Wndows NT
E =

all: t c1$E t c2$E t c33E

tcl$E: tcl.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tcl$E tcl.c $(LIBDI R)/tcn$bO $(LIBDIR)/1ibapi $A \
$(SYSLI BS)

tc23E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc2$E tc2.c $(LIBDIR)/tcn$O $(LIBDIR)/ i bapi $A \
$(SYSLI BS)

tc33E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDIR)/tcn$O $(LIBDIR)/|ibapi $A \
$(SYSLI BS)

D28 ts/tcl.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();
struct tet testlist tet testlist[] ={ {tpl,1}, {NULL, O} };

void tpl()
{

tet_infoline("This is the first test case (tcl)");
tet _resul t (TET_PASS)

}

D29 ts/tc2.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;

void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL,O} };
void tpl()

{

static char *lines[] = {
"This is the second test case (tc2, naster).",

"The nmaster part of this test purpose reports PASS'
"but the slave part of this test purpose reports FAIL",
"so the consolidated result of the test purpose is FAIL.",

"The lines in this block of text are printed by a single",
"call to tet_minfoline() in the master part of the test",
"purpose so output fromthe slave part of the test purpose"

Page 268 May 2000
The Open Group

TET3-PG-1.6

}

Test Environment Toolkit
TETware Programmers Guide

"won't be mxed up with these |ines."
1
static int Nlines = sizeof lines / sizeof lines[0];
tet_minfoline(lines, Nines);
tet _result(TET_PASS)

D.210 ts/tc3.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <tet_api.h>

#define TI MEQUT 10 /* sync tinme out */

int sysi[] ={ 1 }; /* systemIDs to sync with */

static void error(err, rptstr)

int err; /* tet _errno value, or zero if NA*/
char *rptstr; /* failure to report */
{
char *errstr, *colonstr =": ";
char errbuf[20];
if (err == 0)
errstr = colonstr ="";
else if (err >0 & err < tet_nerr)
errstr = tet _errlist[err];
el se {
(void) sprintf(errbuf, "unknown tet_errno value %", tet_errno);
errstr = errbuf;
}
if (tet_printf("%%%", rptstr, colonstr, errstr) < 0) {
(void) fprintf(stderr, "tet _printf() failed: tet_errno %\ n",
tet _errno);
exit (EXI T_FAI LURE) ;
}
}
static void tpl()
{
tet infoline("This is tpl in the third test case (tc3, naster)");
(void) tet _printf("sync with slave (sysid: %)", *sysl);
if (tet_remsync(101L, sysl1, 1, TIMEQUT, TET_SV_YES,

(struct tet_synnsg *)0) !'= 0) {
error(tet_errno, "tet_rensync() failed on master");
tet _resul t (TET_UNRESCLVED) ;

}
el se
tet _result (TET_PASS)
}
static void tp2()
{
i nt rescode = TET_UNRESOLVED
May 2000 Page 269

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

struct tet_synnmsg nsg;
static char tdata[] = "test data"

tet _infoline("This is tp2 in the third test case (tc3, nmaster)");

(void) tet _printf("send nessage
tdata, *sysl);

nsg.tsm flags = TET_ SMSNDVBG
nsg.tsmdl en si zeof (tdata);
nsg.tsmdata = tdata

if (tet_rensync(201L, sysl, 1, TIMEQUT, TET _SV_YES, &nsg) != 0)
error(tet_errno, "tet _remsync() failed on nmaster");
else if ((nmeg.tsmflags & TET _SMSNDVBG == 0)
error(0, "tet _remsync() cleared TET_SMSNDVSG flag on nmaster™)
else if (nsg.tsmflags & TET_SMIRUNC)
error(0, "tet _remsync() set TET _SMIRUNC flag on nmaster");

el se
rescode = TET_PASS;

tet result(rescode);

}
void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;

struct tet testlist tet testlist[] ={ {tpl,1}, {tp2,2}, {NULL, O} };
D.3 Filessupplied on the slave system
D31ltetbuild.cfg

sl ave system build node configuration file for the TETware
denonstration

nost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

the build tool

HHH OFHHHHHHFHH

when the slave is a UNI X-1i ke systemor both naster and sl ave systens

are of the same type, the value of TET_BU LD TOOL to use is the one

inherited fromthe naster system

#

when the nmaster is a UNI X-1i ke systemand the slave is a Wndows NT system
set TET_BUILD TOOL to "./ntbuild.ksh" in this file, thus:

#

TET_BUI LD TOOL=./ntbuil d. ksh

Page 270 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

D.32 tetcl ean.cfg

sl ave system cl ean node configuration file for the TETware
denonstration

nost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

the cl ean tool

HHH OFHHHHHHHH

when the slave is a UNI X-1ike systemor both master and sl ave systens

are of the sanme type, the value of TET_CLEAN TOOL to use is the one

inherited fromthe naster system

#

when the master is a UNI X-li ke system and the slave is a Wndows NT system
set TET_CLEAN TOOL to "./ntclean.ksh" in this file, thus:

#

TET_CLEAN TOOL=./ntcl ean. ksh

D.33 tetexec. cfg

sl ave system exec node configuration file for the TETware
denonstration

nmost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

H o HHH R

D.34 ts/ makefil e

include file and library locations - don’t change
LIBDOR = ../../lib/tet3
INCDIR = ../../inc/tet3

SGS definitions - customise as required for your system

nane of the C conpiler

CcC = ccC

the following is appropriate when using the defined build environment
on a Wndows NT system

CC = cl -nol ogo

flags for the C compiler
CFLAGS = -1$(INCDIR)

systemlibraries:

the socket version on SVR4 and Sol aris usually needs -|socket -Ilns
the XTI version usually needs -Ixti

the Wndows NT version needs wsock32.1ib

SYSLIBS =

May 2000 Page 271
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

suffixes - custom se as required for your system
object file suffix - .o on UNLX, .obj on Wndows NT

O=.0

archive library suffix - .a on UNNX, .lib on wi ndows NT
A= .a

executable file suffix - blank on UNI X, .exe on Wndows NT
E =

all: t c1$E t c2$E t c33E

tcl$E: tcl.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tcl$E tcl.c $(LIBDI R)/tcn$O $(LIBDIR)/1ibapi $A \
$(SYSLI BS)

tc23E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc2$E tc2.c $(LIBDIR)/tcn$bO $(LIBDIR)/ i bapi $A \
$(SYSLI BS)

tc33E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDIR)/tcn$O $(LIBDIR)/|ibapi $A \
$(SYSLI BS)

D35ts/tcl.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;

void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL, O} };
void tpl()

{

tet_infoline("This is the first test case (tcl)");
tet _resul t (TET_PASS)

}

D36 ts/tc2.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL,O} };

void tpl()
{

tet_infoline("This is the second test case (tc2, slave)");
tet _result (TET_FAIL);

Page 272 May 2000
The Open Group

TET3-PG-1.6

D.37ts/tc3.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <tet_api.h>

#defi ne TI MEQUT 10

/* sync tine out

Test Environment Toolkit
TETware Programmers Guide

*/

int sysO[] ={ 0 }; /* systemIDs to sync with */
static void error(err, rptstr)
int err; /* tet_errno value, or zero if NA */
char *rptstr; /* failure to report */
{
char *errstr, *colonstr =": ";
char errbuf[20];
if (err == 0)
errstr = colonstr ="";
else if (err >0 & err < tet_nerr)
errstr = tet _errlist[err];
el se {
(void) sprintf(errbuf, "unknown tet_errno value %", tet_errno);
errstr = errbuf;
}

if (tet_printf("%%%",
(void) fprintf(stderr,

tet _errno);

exit (EXI T_FAI LURE) ;

rptstr,

colonstr, errstr) < 0) {
"tet _printf() failed: tet_errno %\ n",

}
}
static void tpl()
{
tet infoline("This is tpl in the third test case (tc3, slave)");
(void) tet _printf("sync with master (sysid: %)", *sysO);
if (tet_rensync(101L, sysO, 1, TIMEQUT, TET _SV_YES,
(struct tet_synnsg *)0) !'= 0) {
error(tet_errno, "tet _remsync() failed on slave");
tet _result (TET_UNRESCLVED) ;
}
el se
tet _result(TET_PASS)
}
static void tp2()
{
i nt rescode = TET_UNRESOLVED;
struct tet_synnsg nsg;
char rcvbuf[TET_SMVEGVAX] ;
tet_infoline("This is tp2 in the third test case (tc3, slave)");
(void) tet_printf("sync with master (sysid: %) and receive data"
*sys0);
May 2000 Page 273

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

}

nsg.tsm flags = TET SMRCVMBG
nsg.tsmdl en = sizeof (rcvbuf);
nsg.tsm dat a rcvbuf;

if (tet_remsync(201L, sysO, 1, TIMEQUT, TET_SV_YES, &msg) != 0)
error(tet_errno, "tet _remsync() failed on slave");
else if (nBg.tsmsysid == -1)
error(0, "tet _remsync() set tsmsysid to -1 on slave");
else if (msg.tsmflags & TET_SMIRUNC)
error(0, "tet _remsync() set TET _SMIRUNC flag on sl ave");
else if (msg.tsmdlen <= 0)
error(0, "tet _remsync() set tsmdlen <= 0 on slave");

el se
{
(void) tet_printf("received nessage
nsg.tsmdl en, rcvbuf);
rescode = TET_PASS;
}

tet _result(rescode);

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
struct tet testlist tet testlist[] ={ {tpl,1}, {tp2,2}, {NULL,O} };

D.4 Filessupplied on both systems

D41 systens
Exanpl e systemfile for the TETware denonstration
#
Pl ease refer to the chapter entitled "Running the TETware
denonstration” in the TETware User Guide for
instructions on how to custom se this file for your installation
#
000 mast er
001 sl ave

D.42 ts/ ntbuil d. ksh

#
#

build tool for use when the distributed denp suite is to be built

on a Wndows NT system using MKS Make

MAKESTARTUP=${ ROOTDI R: - c: }/ et c/ msc. nk

export

args=

MAKESTARTUP

while test $# -gt 1

do

done

args="$args $1"
shi ft

exec make $args $1. exe

Page 274

May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

D.43 ts/ ntcl ean. ksh

clean tool for use when the distributed denp suite is to be cl eaned
on a Wndows NT system

args=

while test $# -gt 1

do

args="$args $1"
shift
done

exec rm $args $1. exe

May 2000 Page 275
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 276 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

E. Example Java API test suite sourcefiles

E.1 Introduction

This appendix contains listings for the files that comprise the example Java test suite presented in
the chapter entitled **Writing a Java API-conforming test suite’’.

This test suite has been designed to run on any platform where the TETware Java APl is
supported.

E.2 tet _scen

#
Scenario file for the TETware Java denonstrati on.
#
all

"1 ntegerTC

~ St ackTC

" SystenlC
I nteger TC

/ts/1nteger TC/ I nt eger TC
St ackTC

/ts/ StackTC/ St ackTC
SystenlC

/ts/ SystenmlC/ Syst eniTC

E3tetbuild.cfg

#
Build node configuration file for the TETware Java denonstration.
#

TET_EXPAND_CONF_VARS=t r ue
TET_OUTPUT_CAPTURE=t r ue

TET_BUI LD_TOOL=${ TET_ROOT}/ bin/j et-build
TET_PASS_TC_NAME=t r ue

E.4 tetexec.cfg

#
Execute node configuration file for the TETware Java denonstrati on.
#

TET_EXPAND _CONF_VARS=t r ue

TET _OUTPUT _CAPTURE=t r ue

TET_API _COMPLI ANT=t r ue

TET_EXEC | N_PLACE=t r ue

TET_EXEC TOOL=${ TET _ROOT}/ bi n/j et - exec

May 2000 Page 277
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

E5 tetclean.cfg

#

Cl ean node configuration file for the TETware Java denonstrati on.

#

TET_EXPAND CONF_VARS=t r ue
TET_OUTPUT_CAPTURE=t r ue

TET_CLEAN TOOL=${ TET_ROOT}/ bi n/jet-cl ean
TET_PASS_TC_NAME=t r ue

E.6 | nteger TC. j ava

i nport java.lang.*;
i mport TET. *;

/**

* Test case class to test <code>java.l ang. | nteger</code>.

*/

public class IntegerTC extends SinpleTest Case

{

Page 278

private static final int T1_VALUE = 103;
private static final int T2_VALUE = 99887766;
private static final String T2 STRING = "99887766";

private static final String T3_STRI NG

/**

"NOt 4n1nt 3g3r";

* Entry point for this class.
* Calls <code>Si npl eTest Case. mai n() </ code>

* to pass control to TET.

*

* @aram args conmand |ine argunents.
*/

public static void main(String[] args)

{
}

/**
* Test purpose nethod for <code>lnteger.intVal ue()</code>.

* Verifies that <code>lnteger.intVal ue()</code> returns the
* value of this <code>lnteger</code> as an <code>i nt </ code>.

*

mai n(args, new IntegerTC());

* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run.
*/

public void ilt1(TestSession ts)

{

I nteger testlint;
int val;

/1l Create a new Integer object using a int val ue.
testlnt = new Integer(T1_VALUE);

/1 Call intValue() on the new I nteger object and
/1 verify it returns the same val ue that was used
/1 inits creation.
May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

val = testlint.intValue();
if (val == T1_VALUE)
{
ts.tet _result(ts. TET_PASS);
}
el se
{
ts.tet_infoline("intValue() returned " + val
+ ", expected " + T1 VALUE);
ts.tet _result(ts. TET _FAIL);
}
}
/**

* Test purpose method for <code>lnteger.toString()</code>.
* Verifies that <code>Integer.toString()</code> returns a
* string representation of the value of this object in

* base 10.
*
* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run.
*/
public void i2t1(TestSession ts)
{
I nteger testlnt;
String strval;
/1 Create a new Integer object using a int val ue.
testint = new I nteger(T2_VALUE);
/1 Call toString() on the new I nteger object and
/1 verify it returns a string which has the
/1 expected val ue.
strval = testlint.toString();
if (strval.equal s(T2_STRING))
{
ts.tet _result(ts. TET_PASS);
}
el se
{
ts.tet_infoline("toString() returned \""
+ strval + "\", expected \""
+ T2_STRING + "\"");
ts.tet_result(ts. TET_FAIL);
}
}
/**
* Test purpose nethod for <code>l nteger. parselnt(String)</code>.
* Verifies that <code>lnteger.parselnt(String)</code>
* throws a <code>j ava. | ang. Nunber For mat Excepti on</ code>
* when the string argunent does not contain a
* parsabl e integer.
*
* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run.
*/
May 2000 Page 279

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

}

public void i3t1l(TestSession ts)

int val
try
{
/1 Call Integer.parselnt(), passing a string
/1 argument which does not contain a
/1 parsabl e integer.
val = Integer.parselnt(T3_STRING;
}
cat ch (Nunber For mat Excepti on e)
{
/1 We caught the exception we expected.
ts.tet _result(ts. TET _PASS)
return;
}
catch (Exception e)
{
/1 We caught sonme other, unexpected exception
/1 so the test did not conplete as expected,
/1 and hence has an UNRESCLVED result.
ts.tet_infoline("Integer.parselnt(\""
+ T3_STRI NG
+ "\'") threw an unexpected exception:
+e);
ts.tet_infoline(" expected a"
+ " Nunber For mat Excepti on"
+ " to be thrown");
ts.tet_result(ts. TET_UNRESOLVED);
return,
}

/1 If we reach here, no exception was thrown,

/1 so the test has failed.

ts.tet_infoline("Integer.parselnt(\"" + T3_STRI NG
+ "\'") succeeded,"
+ " expecting a Nunber For nat Exception to"
+ " be thrown");

ts.tet_result(ts. TET_FAIL);

E.7 St ackTC. j ava

i nport java.lang.*;
inport java.util.*;

i mport TET.*;
/**

* Test case class to test <code>java. util.Stack</code>.

public class StackTC extends Sinpl eTest Case

{

Page 280

* Nunber of objects to use when creating a stack during

May 2000
The Open Group

TET3-PG-1.6

May 2000

Test Environment Toolkit
TETware Programmers Guide

* the tests.
* Fairly arbitrary nunber - just needs to be |arge enough
* to exercise its capabilities.
*/
private static final int NTESTOBIS = 7;
/*
* | nternal counter for use by makeObject().
*/
private int counter;
/**
* Entry point for this class.

* Calls <code>Si npl eTest Case. mai n() </ code>
* to pass control to TET.

*

* @aram args command |ine argunents.
*/
public static void main(String[] args)

{
}

/**
* Create a new <code>St ackTC</ code>.
* [

public StackTC()

{

}

/**

* Test purpose nethod for <code>Stack. pop()</code>.

* Verifies that <code>Stack. pop() </ code> renoves the object
at the top of this stack and returns that object as the
val ue of this function.

mai n(args, new StackTC());

this.counter = O;

@ar am ts t he <code>Test Sessi on</ code> obj ect
for this test run.

L S T

/
public void ilt1(TestSession ts)

{
St ack st ack;

int i;

hj ect obj;
hj ect top;
hj ect got;

// Create a new stack.
stack = new Stack();

/1l Create a few objects and push themonto the stack,
/1l saving a reference to the | ast one pushed.

top = null;

for (i = 0; i < NTESTOBJS; i ++)

{
obj = makebject(ts);

Page 281
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

st ack. push(obj);
top = obj;
}

/1 Call pop() on the stack and verify that the object
/1 returned is the same object |ast pushed.

try
{
got = stack. pop();
if (got == top)
{
ts.tet_result(ts. TET_PASS);
}
el se
{
ts.tet_infoline("pop() returned ["
+ get Obj Desc(got)
+ "], expected ["
+ get Obj Desc(top) + "]1");
ts.tet_result(ts. TET_FAIL);
}
}
catch (EnptyStackException e)
{
ts.tet_infoline("pop() threw EnptyStackException");
ts.tet _result(ts. TET _FAIL);
}
catch (Exception e)
{
ts.tet _infoline("Caught unexpected exception:
+e);
ts.tet _result(ts. TET_UNRESCLVED);
}
}
/**

* Test purpose nethod for <code>Stack. push(Object) </ code>.
* Verifies that <code>Stack. push(bj ect) </ code> pushes an
* itemonto the top of this stack.

*

* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run.
*/
public void i2t1(TestSession ts)
{
Stack stack;
int i;
hj ect obj;
hj ect top;

/1 Create a new stack.
stack = new Stack();

/1l Create a few objects and push themonto the stack.
for (i = 0; i < NTESTOBJS; i++)
st ack. push(makebj ect (ts));

Page 282 May 2000
The Open Group

TET3-PG-1.6

May 2000

}

| **
* Test

Verifies that <code>Stack. search(bject)</code> returns
where an object is on this stack.

*

*
*
*
*
*

Test Environment Toolkit
TETware Programmers Guide

/1 Create another object and put it onto the top of
/1 the stack using push().

obj = makebject(ts);

st ack. push(obj);

/1 Call peek() and verify it returns a reference to
/1 the object just pushed.

try
{
top = stack. peek();
if (top == obj)
{
ts.tet_result(ts. TET_PASS);
}
el se
{
ts.tet_infoline("Top of stack is ["
+ get Obj Desc(top)
+ "], expected ["
+ get Obj Desc(obj) + "]");
ts.tet_result(ts. TET_FAIL);
}
}
catch (EnptyStackException e)
{
ts.tet_infoline("peek() threw EnptyStackException");
ts.tet_result(ts. TET_FAIL);
}
catch (Exception e)
{
ts.tet _infoline("Caught unexpected exception:
+e);
ts.tet_result(ts. TET_UNRESOLVED);
}

pur pose met hod for <code>Stack. search(Object) </ code>.

@ar am ts t he <code>Test Sessi on</ code> obj ect

for this test run.

public void i3t1(TestSession ts)

{

int testfail = 0;
St ack st ack;

int i;

oj ect[] objs;

i nt pos;

hj ect obj;

/]l Create a new Stack, and a new array of Qbjects to
/1l store references to those Objects pushed onto
/1 the stack.

Page 283
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

stack = new Stack();
obj s = new Cbj ect [NTESTOBIS] ;

/1l Create a nunber of new Objects, pushing themonto
/1 the stack and storing references to themin the array.
for (i = 0; i < objs.length; i++)
{
obj s[i] = nakeObject(ts);
st ack. push(objs[i]);
}

/1l For every object in the array, call search() on
/1 the stack and verify it returns the correct

/1l distance of that object fromthe top of the stack
for (i = 0; i < objs.length; i++)

{
pos = stack.search(objs[i]);
if (pos !'= objs.length - i)
{
ts.tet_infoline("search() returned "

+ pos + " for object ["

+ get bj Desc(objs[i])

+ "], expected "

+ (objs.length - i));
ts.tet_result(ts. TET_FAIL);
testfail ++;

}
}

/1l Create a new Object, but don’t push onto the stack
obj = makebject(ts);

/1 Call search() and verify it returns -1
pos = stack.search(objs);
if (pos !'=-1)
{
ts.tet_infoline("search() returned " + pos
+ " for object not on stack,"
+ " expected -1");
ts.tet_result(ts. TET_FAIL);
testfail ++;

}

if (testfail == 0)
ts.tet _result(ts. TET _PASS)

~ =

* % kX kX 3k Xk

Create a new obj ect.
ts t he Test Session object for this test run

Ret urns a new obj ect.

The toString() nmethod on this object will

return a string which is unique within this test run
/
private Object nakehject(Test Session ts)

{
Page 284 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

return new String(ts.tet_pnane() + "-"
+ ts.tet thistest() + "-"
+ (++this.counter));

~ -
b S R B R I N

~

Get a description of an object.
I ncl udes the class of the object
as well as its string description

obj the object for which the description
is required.

Returns a String giving a description of the target object.
private String get Gbj Desc(Object obj)
{

return "class (" + obj.getd ass().getName()
+ "), object (" + obj.toString() + ")";

}

E.8 SystenilC. | ava

i nport java.lang.*;

i mport TET.*;
/**
* Test case class to test <code>java. | ang. Syst enx/ code>.
*/
public class SystenTC extends SinpleTest Case
{
/*
* Name of child test case class.
*/
private final static String CH LD CLASS = "SysChil dTC'
/*
* Val ue used for exit code by test 1
*/
private final static int T1_VALUE = 35;
/**

* Entry point for this class.
Cal | s <code>Si npl eTest Case. mai n() </ code>
to pass control to TET.

@ar am args conmmand |ine argunents.
/
public static void main(String[] args)

{
}

/**
* Test purpose nmethod for <code>System exit (int)</code>.
* Verifies that <code>Systemexit (int)</code> terninates

May 2000 Page 285
The Open Group

*
*
*
*
*

mai n(args, new SystenTC());

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

* the currently running Java Virtual Machine with status
* given by the integer argunent.
*
* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run
*/
public void il1lt1(TestSession ts)
{
| ong pid;
int status;
i nt expStat us;
/1 Fire off a new child process using tet_jspawn().
try
{
pid = ts.tet_jspawn(CH LD _CLASS,
new String[] { Integer.toString(T1_VALUE) }
nul 1);
}
catch (Tet Exception e)
{
ts.tet_infoline("tet jspawn() failed: " + e);
ts.tet_result(ts. TET_UNRESCLVED)
return;
}
/1l Use tet_ wait() to wait for the process to conplete.
try
{
status = ts.tet_wait(pid);
}
catch (Tet Exception e)
{
ts.tet_infoline("tet_ wait() failed: " + e);
ts.tet_result(ts. TET_UNRESCLVED)
return;
}
/1 Verify that the exit status is as expected.
expStatus = exitValueToStatus(T1l_VALUE);
if (status == expStatus)
{
ts.tet_result(ts. TET_PASS)
}
el se
{
ts.tet_infoline("Child exited with status "
+ status + ", expecting " + expStatus);
ts.tet_result(ts. TET_FAIL);
}
}
/*

* Conpute the exit status as would be returned fromtet wait()
* for a process which exits with a given val ue.
* This is not a universal portable solution -

Page 286 May 2000
The Open Group

*
*
*
*
*
*
*

Test Environment Toolkit
TETware Programmers Guide

only works for Wn32 and for those UN X systens
whi ch encode the exit status in the traditional way.

val ue i nteger code as passed to exit().

Returns the exit status corresponding to the given val ue.
/

private static int exitValueToStatus(int val ue)

TET3-PG-1.6
{
}
}
/ * %

String os;
i nt status;

0s = System get Property("os. nane", "");

if (os.tolLowerCase().indexO ("wi ndows") >= 0)
status = val ue;

el se
status = ((value & 0377) << 8);

return status;

* Child part of SystenTC test case. Tests
* <code>j ava. |l ang. System exi t (i nt)</code>.

*/
cl ass SysChi | dTC extends Chil dTest Case
{

/**
* Entry point for this class.
* Calls <code>Chil dTest Case. nai n() </ code>
* to pass control to TET.
* @aram args conmand |ine argunents.
*/

public static void main(String[] args)

{

mai n(args, new SysChildTC());

}

/**
* Run child test case.
* Calls <code>Systemexit(int)</code> with status
* passed as first argunent.
* Qverrides <code>Chil dTest Case.tet nmmi n() </ code>.
* @aram ts t he <code>Test Sessi on</ code> obj ect
* for this test run.
* @aram args conmand |ine argunents as passed
* fromthe parent process.
* @eturn 0 for success, non-zero on failure.
*/

public int tet _main(TestSession ts, String[] args)

{

int status;
May 2000 Page 287

The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 288

/1 Verify the parent test case passed us one argunent,
/1 which is the exit status we should use.
if (args.length !'= 1)

{
ts.tet_infoline("Child received " + args.length
+ " argunents, expected 1");
ts.tet_result(ts. TET_UNRESCLVED)
return 1,
}
status = Integer.parselnt(args[0]);

/1 Log off TETware.
ts.tet_logoff();

/1 Call Systemexit().
System exi t (status);

/1 1f we get this far, Systemexit() didn't work,
/1 but we can’t use nore TETware functions as we've
/1 already called tet | ogoff().
Systemerr.printin("Error in SysChildTC tet_main():"

+ " Systemexit(int) didn't termnmi nate process");
return 1,

May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

F. Scenario language syntax summary

This appendix contains a brief summary of the syntax of the language that is used in a scenario

file. A more complete description is presented in the chapter entitled ‘*The scenario file
elsawherein this guide.

In these descriptions, a language element enclosed in square brackets ([]) is optional and an
dlipsis (. ..) indicates that the previous element(s) may be repeated.

Scenario elements

A scenario consists of a scenario name, followed by zero or more scenario elements. A
scenario element may be asimple element, adirective or adirective group.

Elements are separated from each other by white space. A directive or directive group may have
an attached element associated with it. An attached element is a simple element that has no
white space between it and its directive or directive group.

Form of input

A scenario starts at the start of aline, and may be continued on one or more continuation lines.
A continuation line is a line which starts with white space. A comment is introduced by # and
ends at the end of the line. Blank lines and comments are ignored.

The genera form of ascenariois:
scenario-name element ...
or:

scenario-name
element

or some combination of the two.

Simple elements
The genera form of asimple scenario element is:

simple-element
The simple elements are:

" scenario information line"
| test-case-name
/ file-name
" scenario-name
A " scenario information line" always appears by itself.

A / test-case-name may appear by itself or may be attached to a directive. When a/ test-case-
name is attached to a directive, it is preceded by a @character, thus:

: directive: @ test-case-name
A/ file-name is always attached to adirective.

A~ scenario-name may appear by itself or may be attached to a directive.

May 2000 Page 289
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

A test case name may have alist of invocable components attached to it, thus:
| test-case-name{ ic-list}

An ic-list consists of one or more numbers or number ranges. Each number or number range is
separated from the next by a, character. A number range consists of a pair of numbers separated
by a - character.

Directives
The general form of adirectiveis:

: directive], parameter. . .]: attached-element
or:

: directive], parameter. .]:
element

: enddirective:

An attached-element may be one of:

@ test-case-name
/ file-name
~ scenario-name

The directives that are supported in both TETware-Lite and Distributed TETware are:

:incl ude:

:paral | el [, count]:

: repeat [, count]:
:timed_I| oop, seconds:
s random

In addition, gr oup is accepted as asynonym for par al | el .

Thei ncl ude directive must always have a /file-name attached to it. The other directive syntax
formats may not be used with this directive.

The directives that are supported only in Distributed TETware are:

. renot e, system-specifier[, .. .]:
:di stri but ed, system-specifier[, ...]:

A system-specifier may be anumeric system ID (nnn) or arange of system IDs (nnn,—nnn,)).

The end directives that are supported in both TETware-Lite and Distributed TETware are;

:endparall el :

: endr epeat :
»endtined_| oop:
: endrandom

In addition, endgr oup is accepted as asynonym for endpar al | el .

Page 290 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

The end directives that are supported only in Distributed TETware are:
> endr enot e:
s enddi stri but ed:

Directive groups
The genera form of adirective group is:

. directive,[, parameter...]; directive,[, parameter...].... attached-element
or:

. directive)[, parameter...]; directive,[, parameter...] ...

element

. ...enddirective,; enddirective;:
Includefiles

A file specified by a/ file-nameis an include file. Each of the (non-blank, non-comment) linesin
an include file contains a single simple scenario el ement.

The following simple scenario elements may appear in an include file:
" scenario information line"
/ test-case-name

Directives and other simple elements may not appear in an include file. Leading white space on a
line is permitted but ignored. A comment is introduced by a # character and ends at the end of
theline. Blank lines and comments are ignored.

Scenario fileinclusion
Any linein the scenario file may consist of:

% ncl ude filename

Thisline is replaced by the contents of filename before the scenario is processed. The %character
must appear in column 1.

If filename is not an absolute path name, it isinterpreted relative to the test suite root directory.

May 2000 Page 291
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 292 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

G. Conceptual modelsused by TETware

G.1 Introduction

This appendix contains diagrams which represent the conceptual models used by TETware. The
diagrams presented here are based on similar diagrams which appear in the TET and dTET2
specifications.

May 2000 Page 293
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

G.2 TETware-Lite conceptual model

Scenario Bl.J”d
file

Prebuild Build
file tool

Prebuild Clean N
tool tool .

\ . .
Build " "
configuration file AN N
Removes

Execute Test Case
configuration Controller

Execution
results

Clean
configuration

Build fail
tool

Build fail
file

Journal

Report Treatment Formatted
generator filter report

Figure 22. TETware-Lite conceptual model

Page 294 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

G.3 Distributed TETwar e conceptual model — local system
with test cases
The system illustrated here has test cases running on it and may also control the processing of test

Ccases on remote systems.
Scenario Bl.“ ld
file

Distributed
configuration

Prebuild Build
file tool
\
\
i \
Prebuild Clean N
tool tool N
\
\ Produces
\ \
\ \
Build Clean AN AN
configuration file N N
Removes
\ \
X N
Execute Test Case L ocal
configuration Controller test cases
\
\
Clean Execution
configuration results
Build fail
tool o— O
W) \w) \wj
Remote system

Journal

Report Treatment Formatted
generator filter report

Figure 23. Distributed TETware conceptual model — local system with test cases

Build fail
file

May 2000 Page 295
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

G.4 Distributed TETwar e conceptual model — local system
without test cases

The system illustrated here does not have test cases running on it but controls the processing of
test cases on remote systems.

Distributed O
. . Scenario
configuration

Build
configuration

Execute Test Case
configuration Controller

Clean
configuration

[/ — |
W) = W)

Remote system
Journal

Report Treatment Formatted
generator filter report

Figure 24. Distributed TETware conceptual model — local system without test cases

Page 296 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

G.5 Distributed TETwar e conceptual model — remote system
as master
The system illustrated here may be running remote (non-distributed) test cases or may be running

the master parts of distributed test cases.
Build
file
Prebuild Build
file tool

Prebuild Clean N
tool tool \

\ . .
Build Clean AN AN
configuration file N N
Remc\)ves AN

; N
Execute Remote Remote
configuration server test cases
\
\

Clean Execution
configuration results
Build fail

tool o — O

W) \w) \wj

Local system running the
Test Case Controller

Build fail
file

Figure 25. Distributed TETware conceptual model — remote system as master

May 2000 Page 297
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

G.6 Distributed TETwar e conceptual model — remote system
asslave
The system illustrated here is running the slave parts of distributed test cases.

Build
file

Build
tool

Clean N
tool .

\ . .
Build Clean N AN
configuration file N N
Remc\)va AN

X N
Execute Remote Remote
configuration server test cases
\
\

Clean Execution
configuration results
Build fail

tool o—— O

W) \w) \wj

Local system running the
Test Case Controller

Build fail
file

Figure 26. Distributed TETware conceptual model — remote system as slave

Page 298 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

H. Background and goals

H.1 Introduction

The goa behind creating TETware and its predecessors is to produce a test driver that
accommodates current and future testing needs of the test development community. To achieve
this goal, input from a wide sample of the test development community has been used for the
specification and development of TETware’ s functionality and interfaces.

H.2 Previous TET implementations

H.2.1 TheTest Environment Toolkit

The TET project started in September of 1989, when the Open Software Foundation, UNIX
International, and X/Open entered into an announced agreement to produce a specification for a
test environment. These organisations agreed to develop and make fredy available an
implementation written to that specification; additionally, the three organisations committed to
producing test suites for execution within that environment.

In the process of developing a specification, the project invited interested members of the test
software development community to discuss their requirements for atest driver. It wasthe belief
of the project that, through careful study of these requirements, a reasonably comprehensive and
effective test driver could be specified. Having achieved this, the project expected that a
substantial portion of the test development community would begin using TET for the
development of conformance testing software.

H.2.2 TheDistributed Test Environment Toolkit

The first set of maor extensions made to the TET by X/Open was the Distributed Test
Environment Toolkit (DTET) project that started in October 1991. The objective of the project
was to extend the functionality of the TET to support the execution of distributed test cases and
be backwards compatible with the TET. The DTET defined a distributed test case as a test case
executing partly on amaster system and partly on one or more slave systems. In such atest case,
synchronisation between the test case controlling software on the multiple systemsis required.

Initially, the DTET was designed for use as the underlying test harness for the development of a
number of network testing requirements, including the X.400 Application Programming Interface
(API), the OSF Distributed Computing Environment (DCE) and the X/Open Network File
System (XNFS) test suites. Following this, the DTET was installed at other sites and has proved
to be portable across a wide range of different systems.

The DTET was a so able to execute non-distributed test cases (on either the master system or on
asingle or multiple remote systems). However, to do this the test cases had to be linked with the
TET API library (i bapi.a) and not the DTET library (I i bdapi . a). Depending on
whether you were writing distributed or non-distributed test cases, you had to be aware of which
library to use when linking your test case. However, many users found the ability of the DTET to
execute TET test cases an advantage because they did not have to recompile or relink their test
suites.

May 2000 Page 299
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

H.2.3 The Extended Test Environment Toolkit

In parallel with X/Open’s development of the DTET, another extension to the base TET emerged.
This TET version is known as the Extended Test Environment Toolkit and provides a number of
enhancements to the base TET which have proved popular with members of the testing
community. The latest version of this toolkit variant is ETET release 1.10.3 which appeared in
1994. This ETET release is based on TET release 1.10 and the enhancements contained therein
were provided by SunSoft Inc., UNIX Systems Laboratories Inc., and others. The Korn Shell
bindings included with ETET were provided by Hewlett-Packard Co.

Features provided in ETET over and above those in the base TET include additional directives to
enable complex scenarios to be specified and additional configuration variables to enable more
precise control to be exercised over the way in which the Test Case Controller processes test
cases.

In addition to the Korn Shell binding mentioned above, the ETET distribution includes a C++
language binding, a Perl APl and a quantity of user-contributed demonstration test suites and
other software.

H.2.4 TheDistributed Test Environment Toolkit Version 2

X/Open then wished to enhance the DTET by incorporating all the features of the TET to produce
a common toolkit called dTET2. dTET2 was produced during 1993 and 1994. The dTET2
toolkit rationalised the differencesin the TET and DTET toolkits by providing:

o A singletoolkit for writing distributed and non-distributed tests, using only asingle API.
o New Users’ and Programmers’ Guides.

« Support for the X/Open Transport Interface (XTI) in addition to Berkeley Sockets in the
transport-specific parts of the toolkit.

o Fixesto problemsinherited from the DTET and the TET.

H.3 TETware

Lately, X/Open has produced TETware with the objective of combining all the functionality of
TET, dTET2 and ETET. In addition, X/Open wished to make TETware available on platforms
running the Windows NT and Windows 95 operating systems as well as on UNIX systemsand in
other POSIX-conforming environments.

TETware is available in two major versions; namely, TETware-Lite and Distributed TETware.
Distributed TETware provides al the functionality required to process both non-distributed and
distributed test cases on numbers of systems at one time, whereas TETware-Lite is able to
process non-distributed test cases on a single system. On POSIX-conforming platforms,
TETware-Lite may be built to use only those features specified in POSI X.1.

Unlike previous TET implementations, TETware is provided to users under the terms of a
software licence. X/Open intends to make demonstration versions of TETware with restricted
functionality available for evaluation purposes.

Page 300 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

H.4 Relationship between TETware and its predecessors

TETware includes all of the functionality provided by previous TET implementations, in addition
to anumber of new features. Thisisillustrated in the following diagram. Note that this diagram
isnot to scale.

TET 1.10 ETET 1.10.3

dTET2 TETware

Figure 27. Relationship between TETware and its predecessors

May 2000 Page 301
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 302 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

|. Terminology
|.1 Test casetypes

Certain terms described here are used throughout the TETware documents to describe the
different types of test case that may be executed by TETware.

A local test case is one that executes on the local system; that is, the system on which the Test
Case Controller t cc is executed.

A remotetest caseis one that executes on a system other than the one on whicht cc is executed.
t cc collects the test case' s execution results file output from the remote system and includesiit in
the journa file on the local system. Although it is possible for severa remote test cases to
execute concurrently on different remote systems, the test harness does not provide for interaction
between remote test cases.

A distributed test case is one that has several parts; these parts execute concurrently on different
systems. When a distributed test case is being executed, the test harness ensures that each test
purpose part starts at the same time on each system. Thus each part of a particular distributed test
case must always contain identical number of invocable components and test purposes, even if
this means that some of the test purpose parts do nothing. It is likely that parts of a distributed
test purpose will interact with each other in some way during the course of their execution. In
particular, the test harness provides a means by which the different parts of a test purpose may
synchronise with each other. Each test purpose part submits a result which indicates the success
or failure of that part of the test purpose. The test harness arbitrates between the results submitted
by the parts of the test purpose that are executing on each system and enters a single consolidated
result in the journa file.

Distributed TETware can process all of these types of test case. TETware-Lite can only process
local test cases.

|.2 Glossary
The following terms are used throughout this document.

Alternate execution directory

A directory specified by the user below which test case execution isto occur. When such
adirectory is specified, it is the responsibility of the build tool to copy test case files from
the test case source directory to their location below this directory.

APl Application programming interface.

Application programming interface (API)
An application programming interface is the set of software interfaces between an
application and the system. In the case of TETware, the API libraries offer specific
facilities for use by test cases.

API-conforming test case

A test case that uses one of the TETware APIs. In particular, the test case uses the API to
report test results.

May 2000 Page 303
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Build file

A build file is a set of instructions passed to the build tool. The provision of abuild fileis
optional.

Build tool

The build tool controls how test cases are prepared for execution, such as creating
executables from source files. If configuration variables are needed by the build tool, the
tool must use the TETware API. A test suite must define a build tool in order to enable
TETwareto processit in build mode.

Build fail file

A build fail file is a set of instructions passed to the build fail tool. The provision of a
build fail fileis optional.

Build fail tool

A test suite defined utility which is executed by the test case controller when the prebuild
tool or build tool cannot be executed or returns non-zero exit status. The provision of a
build fail tool is optional.

Child process controller

The child process controller is a component of the C API. It provides the interface
between the APl and a sub-program that is to be launched by the t et _exec() or
tet _spawn() API functions.

Clean file

A cleanfileis aset of instructions passed to the clean tool. The provision of acleanfileis
optional.

Clean tool

A clean tool controls how files or conditions created for or during execution of the test
cases are removed, such as removing test case executables and any object files that were
built when the executables were created. If configuration variables are needed by the
clean tool, the tool must use the TETware API. A test suite must define a clean toal in
order to enable TETwareto processit in clean mode.

Communication variable

Communication variables are environment variables that are used by the Test Case
Controller to provide information to the build tool, clean tool, and test cases during
execution. The names of communication variables all start with the prefix TET _.

Configuration variable

Configuration variables are used to change the execution behaviour of the TCC and the
tools that it executes. Configuration variables are set via configuration variable files and
via the TCC user interface. The names of variables used by TETware all begin with the
prefix TET_.

Configuration variables may also be used to pass parameters to API-conforming test cases
and tools. Test suite authors are cautioned to use obvious and consistent naming
conventions to avoid potential conflicts with other configuration variables.

Page 304 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Distributed configuration variable
In Distributed TETware, distributed configuration variables are used to inform TCC of the
location of test suite files and directories on remote systems. In addition, when
Digtributed TETware is built to use XTI as the network transport, distributed
configuration variables are used to specify certain parameters needed by the transport-
specific code.

Distributed test case
Refer to the description presented in the previous section.

Distributed testing

Within the context of TETware, this term refers to the processing of distributed test cases.
It does not refer to the processing of non-distributed test cases on remote systems.

Exec file

An exec file is a set of test suite defined instructions for use in executing test cases under
control of an exec tool.

Exec tool

A tool used for executing test cases under specia control; for example: a debugger or
command interpreter. Normally no exec tool is specified, which means that test cases are
executed directly.

Execution results daemon

In Distributed TETware, the server used by the API to manage execution results files on
behalf of test cases. The name of this server ist et xr esd.

Execution resultsfile

An API-conforming test case or tool places results and other journal information into the
execution results file. A non-distributed test case each has its own execution results file.
When Distributed TETware executes a distributed test case, al parts of the test case share
asingle execution results file. The TCC transfers the contents of the execution resultsfile
to the journal when processing of each test case finished.

I nvocable component

An invocable component is the smallest unit that the TCM can execute individually.
Invocable components are made up of one or more test purposes.

Journal

A journa is the file into which test results and tracking data are deposited by the TCC.
This file may be processed by a report generator and/or test suite supplied treatment filter
to create formatted reports of test results.

L ocal system

The system from which the building, execution and cleaning of the tests is controlled.
This system contains the test scenario for a particular TCC invocation and (when test
cases are to be processed on remote systems) transmits information to each of the remote
systems in order that they undertake the necessary tasks as specified in the scenario file.
Each Distributed TETware invocation has exactly one local system and zero or more
remote systems. A TETware-Lite invocation only has a local system and no remote
systems.

May 2000 Page 305
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

L ocal test case
Refer to the description presented in the previous section.

Master configuration
The master configuration for a particular mode of operation is constructed by reading
configuration variables from a user-supplied file on the local system and adding variables
defined on the TCC command line. In TETware-Lite this is the only configuration for a
particular mode of operation. In Distributed TETware, the master configuration is used in
conjunction with variables defined in configuration files on each remote system to
generate each of the per-system configurations for a particular mode of operation.

Master system

In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. The master
system is the first (or only) system in the list. Note that in TETware the meaning of this
term is different from that defined in previous TET implementations.

M ode of operation
When the TCC processes test cases, it does so in one or more modes of operation. These
modes are; build mode, execute mode and clean mode. The selected mode(s) of operation
are specified for each TETware invocation by options on thet cc command line. At least
one mode of operation must be selected for each TETware invocation.

Non API-conforming test case
A test case that does not use one of the TETware APIs. TETware deduces the result of
this type of test case from the test case’'s exit status.

Output capture mode
When this mode is enabled, the TCC executes each test case or tool with standard output
and standard error directed to atemporary file. TETware copies the contents of thisfileto
the journal when the test case or tool finishes execution.

Per-system configuration
In Distributed TETware, the per-system configuration contains variables which are
specific to that system for a particular mode of operation.

Prebuild file
A prebuild file is a set of test suite defined instructions to the prebuild tool for use in
preparing for the building of executable versions of test cases.

Prebuild tool

When a prebuild tool is defined, the TCC uses it to undertake the preparation for the build
operation. When Distributed TETware processes remote or distributed test cases on more
than one system, the prebuild phase is only performed on the master system.

Remote process controller

The remote process controller is a component of the C API. It provides the interface
between the API and a sub-program that is to be launched by thet et _r emexec() API
function.

Page 306 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Remote system
In Distributed TETware, a system on which test cases are processed other than the system
on which the TCC isinvoked. A Distributed TETware invocation may control test cases
on one or more remote systems.

Remotetest case
Refer to the description presented in the previous section.

Result code

A result code is the determination made by a test purpose as to the status of the test it
performed. TETware supports the result codes defined by IEEE Std 1003.3-1991, as well
as additional, user-defined result codes. The status of test cases, represented by result
codes, is recorded by the APl in the journal and can be analysed by the report generator
and appropriate treatment filters.

Runtimedirectory
When a runtime directory is specified, the TCC copies the directory hierarchy below the
test suite root directory to a location below the runtime directory before processing the
test suite. This location then becomes the new test suite root directory for that particular
TCC invocation.

Scenariofile

A scenariofile is afile containing test scenario definitions.
SGS Software generation system.

Shared API library
An API library that has been built for use by the system’ s dynamic linking mechanism.

Slave system
In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. When the
system list contains more than one entry, the slave systems are defined by the second and
subsequent entries in the list. Note that in TETware the meaning of this term is different
from that defined in previous TET implementations.

Softwar e gener ation system

The set of tools and other files that are used to compile programs on a particular system.
This set includes (at least) the compiler and linker, archive maintainer, header and library
files.

SYNCD
The Synchronisation daemon t et syncd.

Synchronisation

In Distributed TETware, the process of ensuring that each part of a distributed test case
has reached an agreed point in its execution. Certain synchronisation points are
negotiated automatically by the TCMs (for example: at test purpose start) while others are
defined by the test suite author and occur during test purpose execution.

May 2000 Page 307
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Synchronisation daemon

In Distributed TETware, the server used by the API to manage the synchronisation
process. The name of thisserverist et syncd.

System 1D
Distributed TETware systems are identified by a three-digit system identification. The
system 1Ds are mapped to some information (such as a host name) in the syst ens file
which may be used to establish a connection with the TCCD on that system. The exact
format of this mapping is transport dependent.

Thelocal system always has system ID 000. Other system IDsrefer to remote systems.
TCC TheTest Case Controllert cc.

TCCD
The Test Case Controller daemont ccd ori n. t ccd.

TCM The Test Case Manager.

Test case

A test case is the software which conductstests. The scope of theterm ‘‘test’” isbroad. It
may range from a single test purpose for a single function being tested, all the way to a
complete suite of conformance tests for a specification. The TCC builds test cases when
invoked in build mode, executes the invocable components within test cases when in
execute mode, and cleans up any unwanted files when in clean mode.

Test case controller (TCC)

The TCC is the tool that provides structure and control for test cases. The tool handles
such functions as sequencing of invocable component execution, unexpected event
handling, cleanup, parameter passing and transferring of test case execution results into
the journal.

Test case controller daemon (TCCD)

When the Distributed version of the TCC wants to perform some action while processing
atest case, it does not perform the action itself but instead instructs a TCCD to perform
the action on a particular system. This separation of the control logic from processing
actions enables Distributed TETware to control test case processing on an arbitrary
number of systems from asingle TCC invocation.

The name of this server ist ccd. On UNIX systems where this server is run under
control of i net d, the name of thisserverisi n. t ccd.

Test case execution directory

The directory in which atest case is executed. When an alternate execution directory is
specified, the test case execution directory is below the aternate execution directory;
otherwise, the test case execution directory is the same as the test case source directory.

Test case manager (TCM)

The TCM is a component of each TETware API. This component acts as a *‘wrapper’”’
for test cases, providing interpretation of the command line, selection of invocable
components, and support for the automatic sequencing of test purposes and invocable
components, aswell as insulation from spurious signals.

Page 308 May 2000
The Open Group

TET3-PG-1.6 Test Environment Toolkit
TETware Programmers Guide

Test case source directory
The directory which contains the source files for a particular test case. Itisusual to have a
separate source directory for each test casein al but the smallest of test suites.

Test case processing
The action performed by the TCC on a test case which depends on TCC's selected
mode(s) of operation. That is: the test case is built when build mode is selected, executed
when execute mode is selected and cleaned when clean mode is selected.

Test purpose
A test purpose is the software that represents the smallest level of granularity of a test
specification. A test purpose always leads to a single result. In the case of an IEEE Std
1003.3-1991 conforming test suite, for example, test purposes would correspond to
assertions.

Test scenario
A test scenario is a sequence of one or more invocable components associated with a
single user-exposed name. When the TCC is invoked with a scenario name, al invocable
components associated with it are built, executed, and/or cleaned depending on the TCC
mode selected.

Test suite
A test suiteis a set of test case files and other required and optional files that are used by
TETware when processing test cases. A test suite must contain at least one test case.

Test suiteinstaller
The test suite installer is used to execute an installation tool supplied with the test suite.
TETware does not provide this tool; instead test suite authors are responsible for
providing and documenting the installation procedures.

Test suiteroot directory
The top of the directory subtree which contains the test suite. Usually, this directory
residesimmediately below the tet root directory.

Tet root directory
Thetop of the directory subtreein which TETware resides.

Thread-safe API
An API which is designed for use in amulti-threaded environment.
Win32 system

A computer system on which the WIN32 API is implemented, such as the Windows NT
and Windows 95 operating systems.

XRESD
The Execution Results daemon t et xr esd.

May 2000 Page 309
The Open Group

Test Environment Toolkit TET3-PG-1.6
TETware Programmers Guide

Page 310 May 2000
The Open Group

