Test Environment Toolkit

TETware Programmers Guide
Revision 1.0
TET3-PG-1.0

Released: 13th January 1997

X/Open Company Limited

The information contained within this document is subject to change without notice.

Copyright [0 1992, 1993, 1996 X/Open Company Limited

Copyright [0 1992 Open Software Foundation

Copyright [0 1992 Unix I nter national

Copyright [0 1993 I nfor mation-Technology Promotion Agency, Japan
Copyright [0 1994, 1995 UniSoft L td.

All rights reserved. No part of this source code or documentation may be reproduced, stored in aretrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user licence agreement, without the prior permission of the copyright
owners. The text of the end-user licence agreement appears in Appendix A of this document. In addition,
a copy of the end-user licence agreement is contained in the file Li cence which accompanies the
TETware distribution.

X/Open and the * X* symbol are trademarks of X/Open Company Limited in the UK and other countries.

UNIX" is a registered trademark in the U.S. and other countries, licenced exclusively through X/Open
Company Ltd.

Windows NT™ is aregistered trademark of Microsoft Corporation.

This document is produced by UniSoft Ltd. at:

150 Minories
LONDON
EC3N 1LS
United Kingdom

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

1. Introduction
1.1 Preface

This document is the TETware Programmers Guide.

TETware is implemented on UNIX operating systems and also on the Windows NT operating
system. It includes al of the functionality of the Test Environment Toolkit Release 1.10 (TET),
the Distributed Test Environment Toolkit Version 2 Release 2.3 (dATET2) and the Extended Test
Environment Toolkit Release 1.10.3 (ETET), together with a number of new features.

1.2 Product definition

TETware is a set of tools for the development and execution of system and unit tests. The goal
behind creating TETware and its predecessors is to produce a test driver that accommodates
present and future testing needs of the test development community. To achieve this goal, input
from a wide sample of the test development community has been used for the specification and
development of TETware's functionality and interfaces. A short account of the history of
TETware and its predecessors is presented in the appendix entitled ‘* Background and goals'’ at
the end of this guide.

1.3 Audience

This document is intended to be read by test suite authors who will write or adapt test programs
to run under the control of TETware.

Software testing engineers and system administrators should refer to the TETware User Guide for
information about how to run TETware and to the TETware Installation Guide for information
about how to install TETware on their computer systems.

1.4 Conventionsused in this guide
The following typographic conventions are used throughout this guide:

e Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

e The names of variables are presented in italic font. You should substitute the variable's
value when typing a command that contains aword in this font.

« Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a\ character
for formatting purposes. If you type such an example, you should type it in all on one line and
omit the\ character.

1.5 Related documents

Refer to the following documents for additional information about TETware:

o Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
isimplemented.

13th January 1997 Page 1
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

e Test Environment Toolkit: TETware User Guide

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use
each new release of TETware.

1.6 Problem reporting

If you have subscribed to TETware support and you encounter a problem while installing and
using TETware, you can send a support request by electronic mail to the address given in the
TETware Release Notes. Please follow the instructions contained in the release notes about how
to submit such arequest; in particular, please be sure to include al the information asked for by
these instructions when submitting the request.

Page 2 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

2. Testing structure

2.1 Directory structure

TETware expects to operate within a defined directory structure. This structure includes the tet
root directory, the test suite root directory, one or more test case directories and (optionally)
the alter nate execution directory hierarchy. Details of the function and purpose of each of these
directories is presented in the section entitled *‘ TETware directory layout’’ and the appendix
entitled ** TETware directory structure’’, both in the TETware User Guide.

2.2 Test case structure

Test cases are constructed by grouping together test functions (called test purposes) that test
specific system features. These test purposes take advantage of support functions provided by the
TETware API and are invoked by the TETware TCMs.

When you write atest case which uses a TETware API, you only need to supply the test purpose
code that actually performs the required test operation. When a test case is executed, the
TETware TCM calls each test purpose function that you write and ensures that each test purpose
registers exactly one test result. A test purpose function may call one or more API functions
during its execution and, when execution is finished, it returns control to the TCM. This
relationship isillustrated through the following picture:

TCM calls
Test
pur pose
AP calls
supplied by TETware supplied by the

test suite author

Figure 1. Test caseinteraction

The picture shows that the TCM calls test purpose functions, and that these functions in turn may
call APl functions. The API performs functions such as fetching configuration variable settings
and writing messages into the journal .

Test purposes within a test case can be grouped together into invocable components. This
ensures that a set of test purposes is always executed together and in the correct sequence. In
most cases there is no practical limit to the number of test purposes that can be grouped in an
invocable component and there is ho practical limit to the number of invocable components that
can be grouped within a single test case. However, there are (substantia) limits for these
numbers when an APl which supports distributed testing is used. These limits are a byproduct of
the synchronisation between parts of a distributed test case which must be performed by the API;

13th January 1997 Page 3
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

details of this are presented in the chapter entitled *‘ Test case synchronisation’’ in the TETware
User Guide.

Details about the functionality provided by the TCM and API can be found in this chapter and the
next, which discuss developing and executing tests, respectively. Specific information about
constructing test cases can be found in the chapters entitled ‘‘Writing a C language API-
conforming test suite’’ and ‘‘Writing a Shell language API-conforming test suite’’, which
describe the C language and and Shell APIs.

2.2.1 Test Case Manager

The TCM is not a separate program, but instead is linked with user-supplied test code and the
API library to produce an executable test case. There is a separate TCM module for each API
that is supported by TETware. Instructions for linking test cases with the C and Shell TCMs (and
APIs) are given in the chapter entitled ** Test case support’’ elsewherein this guide.

2.2.2 API-conforming and non API-conforming test cases

The TETware Test Case Controller (t cc) is able to execute tools and test cases that do not use
the TETware API. These tools and test cases are known as non API-confor ming tools and test
cases. A build or clean tool may be either API-conforming or non-API conforming, depending
on the requirements of the test suite. However, execution of non-API test cases is supported for
compatibility only; new test cases should use the API.

The processing described here applies equally to build, exec and clean tools as well as to test
cases. Note that prebuild and build fail tools are always non-API conforming.

When executing a non API-conforming test case, t cc assumes that the test case writes its results
to stdout and stderr and regards the whole execution as if it were a single invocable
component containing a single test purpose. When t cc executes the test case, it redirects test
case st dout and st derr toafilethat it creates. When processing atest case in execute mode,
t cc generates the TCM start line that would be emitted by an API-conforming test case, and a
result code based on the exit status of the test case. A zero exit status produces a result of PASS
and any other value produces aresult of FAI L. When processing of the test caseisfinished, t cc
copies the captured output to the journal file.

t cc uses the value of the TET_API _COVPLI ANT configuration variable to determine whether
or not a test case uses the API, and the value of the TET_OUTPUT_CAPTURE configuration
variable to determine whether or not to capture test case output and record this output in the
journal file. For convenience, when TET_API _COMPLI ANT is not defined, it defaults to the
inverse of TET OUTPUT_CAPTURE. So, to indicate that you are executing non API-
conforming test cases, you should set TET_OUTPUT_CAPTURE to True and leave
TET_API _COWPLI ANT undefined. For more information on the use of this these configuration
variables, see the section entitled ** Configuration variables defined by TETware”’ elsewhere in
this guide.

2.3 Test suite structure

TETware imposes minimum structural requirements on test suites. However, some specific files
and utilities must be present. The format of the following filesis described in the section entitled
“TETwarefileformats’ elsewherein this guide.

Page 4 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

2.3.1 Required filesand utilities
The following files and utilities must be included with each test suite:

Build tool
Thistool isrequired when atest suite isto be processed in build mode.

The build tool is invoked when t cc processes a test case in build mode. In Distributed
TETwareit isinvoked on every system on which the test caseisto be processed. The build
tool may either be an API-conforming or a non-API conforming tool.

This tooal is used to perform the functions that are required to build the test case and, if the
test suite makes use of an alternate execution directory, install the test case in its location
below that directory. It is common to use nake for this purpose. Since nake is a non-
API conforming build tool, it is necessary to set the TET_OUTPUT_CAPTURE variable to
Tr ue in the build mode configuration.

If a build tool is required to access configuration variables for any reason, it must be an
API-conforming tool since non-APlI conforming tools cannot access configuration
variables.

Clean tool
Thistool isrequired when atest suite isto be processed in clean mode.

The clean tool is invoked when t cc processes a test case in clean mode. In Distributed
TETwareit isinvoked on every system on which the test case is to be processed. The clean
tool may either be an API-conforming or a non-API conforming tool.

This tooal is used to perform the functions that are required to clean up after atest case has
been built and/or executed. In the trivial case where it is only required to remove the
executable file that is created during the build stage, it is common to use r mas the clean
tool. When this is done, it is necessary to set TET_CLEAN FILE to —-f and
TET_OUTPUT_CAPTURE to Tr ue in the clean mode configuration.

If a clean tool is required to access configuration variables for any reason, it must be an
API-conforming tool since non-API conforming tools cannot access configuration
variables.

Configuration variable settings

There is one configuration file for each of t cc’s modes of operation. When Distributed
TETwareis used, there is one of these files on the local system® and on each remote system
on which test cases are to be processed. Each configuration file contains zero or more
configuration variable assignments. Some of these variables affect the way in whicht cc
processes test cases, whereas other variables are meaningful to the test cases being
processed. The API provides a mechanism by which variables defined in the configuration
file for the current mode of operation may be accessed by test cases and tools.

By default the names of these files are tetbuild.cfg, tetexec.cfg and
t et cl ean. cf g, corresponding to build, execute and clean modes, respectively. These

1. Thatis: the system on whicht cc isinvoked.

13th January 1997 Page 5
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

files are located in the test suite root directory on each system. If an aternate execution
directory is specified, the execute mode configuration file may (optionaly) be located in
that directory instead.

Distributed configuration variable settings

When Distributed TETware is used, there is afile on the local system containing variables
which specify the locations of test suite files and directories on remote systems. In
addition, this file may be used to specify variables that are required by the network
transport that is used for interprocess communication. Variables in the distributed
configuration file cannot be accessed by test cases and tools.

The name of this file is t et di st. cfg and the file is located in the test suite root
directory on the local system.

Thisfileis not required when TETware-Lite is used.

Test scenario definitions

Each test suite must provide at least one test scenario file. This file contains the definitions
of one or more test scenarios. Many scenario files provide a scenario called al | which
typically causes all test cases and invocable components in a test suite to be processed. By
default, the name of this file ist et _scen and the file is located in the test suite root
directory on the local system.

Systems definitionsfile

In Digtributed TETware, this file is used to define the mappings of logical system
identifiers to physical machines. The name of thefileissyst ens and thefileislocated in
the tet-root on each system.

Thisfileis not required when TETware-Lite is used.

Resultsdirectory

Each test suite has a directory called r esul t s which is located in the test suite root
directory. This directory is created by t cc if it does not exist. t cc creates a unique
subdirectory in this directory on each run, into which it places the journa file and a
hierarchy of files requested to be saved by the user.

2.3.2 Optional filesand utilities

Test suite authors may provide optional files and utilities for use with test suites as follows:

Prebuild tool

When this tool is specified, it isinvoked beforet cc processesatest casein build mode. In
Distributed TETware it is invoked only on the master system? when a test case is to be
processed on more than one system. The prebuild tool should always be a non-API
conforming tool.

When files for aremote or distributed test case are maintained only on one system, this tool

2. A test case that is to be processed on more than one system is specified in the scenario file within the scope of a
renot e or di stri but ed directive. The first system which appears in the system list which is associated with
this directive is known as the master system.

Page 6 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

might be used to propagate these files to the other participating systems before the test case
is built.

Build fail tool

When this tool is specified, it is invoked after a prebuild or build tool fails® whent cc
processes a test case in build mode. In Distributed TETware it is invoked on every system
on which the test case is to be processed. The build fail tool should always be a non-API
conforming tool.

One possible use for this tool might be to provide a skeleton test case that indicates that the
real test case was not built successfully by returning a result of UNI NI TI ATED for each
test purpose that isto be executed.

Exec tool

When this tool is specified, it is is invoked when t cc processes a test case in execute
mode. In Distributed TETware it isinvoked on every system on which the test case isto be
processed.

Possible uses for this tool include running a compiled test case under the control of a
debugger, specifying which command interpreter* to use or, in Distributed TETware,
attaching the test case to a controlling terminal.

Result codesfile

TETware utilities which perform result code processing use code definitions which are
contained in an internal table. Initially this table contains entries for the result codes which
are defined in IEEE Std 1003.3-1991. Test suite authors may provide files containing
additional result codes which are to be added to the table. By default the name of these
files is tet _code and the files may be located in the tet-root and test suite root
directories.

Treatment filtersand report writers

TETware produces a journa file in a well defined format that has been designed so as to
enable easy processing by treatment filters and report writers. Test suite authors may wish
to provide treatment filters that produce reports in formats which are appropriate for the
type of testing that is to be undertaken. The format of the journa file is described in the
chapter entitled ** Test reporting and journaling’’ elsewherein this guide.

3. That is: the tool cannot be executed, the tool is timed out or returns non-zero exit status, or an API-conforming
build tool does not report PASS.

4. Such as per| or one of the shells; useful when the Shell, Korn Shell or Perl APIs are used on Windows NT and
other systems wherethe #! script interpreter convention is not implemented.

13th January 1997 Page 7
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 8 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

3. TheTest Case Controller

3.1 Introduction

This chapter describes the operation of the TETware Test Case Controller t cc. A manual page
for thet cc command is presented in the TETware User Guide.

t cc accepts user-specific and test suite-specific configuration options and enables the user
control of test sessions. This control includes the building, execution, and clean up of test cases.
In addition to the control of test sessions, t cc includes functionality to support interna
mechanisms essential to the operation of TETware. These include managing interaction with the
TCM, processing of results and the removal of temporary files.

The TETware-Lite version of t cc performs all of these operations itself on asingle system. The
Distributed version of t cc does not perform these operations itself; instead it sends requests to
server (or daemon) processes which perform the required operations on each system on which
test cases are to be processed. Unless stated to the contrary, the information presented in this
chapter applies equally to both t cc versions.

3.2 Modes of operation

t cc processestest casesin one or more of the following modes of operation:
Build mode trandates source test casesinto executables.

Execute mode loads and executes test cases.

Clean mode removes unwanted files.

These modes of operation are selected by using options on thet cc command line.

The way in which t cc processes test cases in each mode of operation is affected by the settings
of certain variables in the configuration for that mode. Readers should be aware that there is
some interaction between the settings of certain variables in each mode. For example, if
TET _PASS TC NAME is not defined, it takes its default value from the vaue of
TET_QUTPUT_CAPTURE. Refer to the chapter entitled ‘* Configuration variables”’ elsewherein
this guide for full details of the meanings of each configuration variable, their default values and
the interactions between them.

3.3 Initial processing
Regardless of the mode selected, t cc performs the following actions before processing any test
cases:

1. tcc records the value of the TET _ROOT environment variable, and also those of the
TET_SU TE _ROOT, TET_EXECUTE and TET _TMP_DI R environment variables if
present.

2. 't cc processes options specified on the command line.

3. tcc determines the name and location of the test suite to be processed. The top of the
directory subtree in which the test suite resides becomes the test suite root directory for
the current t cc invocation.

13th January 1997 Page 9
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

10.

11.

12.

13.

14.

15.

16.

t cc readsin the configuration variables that are specified for each of the selected modes of
operation. In Distributed TETware, this stage reads variables from the configuration files
on the local system® and establishes the master configurations for each of the selected
modes of operation.

t cc reads in the scenario file (if one has been specified), checks the syntax of all the
scenario specifications and identifies the chosen scenario.

In Distributed TETware, t cc identifies al the system IDs mentioned in the chosen
scenario.

If a runtime directory has been specified using the TET_RUN environment variable, t cc
copies the test suite root directory hierarchy to a position below the runtime directory. The
directory subtree thus created becomes the new test suite root directory. In Distributed
TETware this processing in only performed on the local system.

In Distributed TETware, when remote systems are mentioned in the chosen scenario or the
network transport makes use of distributed configuration variables, t cc reads in variables
from the distributed configuration file on the local system.

t cc creates the directory that is to contain the journa file and any saved files. In
Distributed TETware this directory is only created on the local system.

t cc installs signal traps to ensure that an orderly shutdown is performed in the event that
an unexpected signal is received.

In Distributed TETware, t cc starts up the synchronisation daemon and execution results
daemon on the local system, and establishes a connection with the TCC daemon on each
system mentioned in the chosen scenario.

In Distributed TETware, t cc creates a saved files directory on each remote system that is
mentioned in the chosen scenario.

t cc readsin any user-supplied result codes files, adds the user-defined results codes to the
interna table containing standard results codes and makes the table available to other
TETware components that need it. In Distributed TETware, user-supplied result codes files
are only provided on the local system; t cc propagates the complete results code table to
each remote system that is mentioned in the chosen scenario after any user-defined result
codes have been added to the table.

If rerun or resume mode have been selected, t cc processes the old journal file that was
produced by the previoust cc invocation and modifies the chosen scenario accordingly.

If command-line options have been specified which select or reject certain test cases® t cc
prunes the chosen scenario to remove test cases not selected by these options.

t cc checks that each timed loop specified in the chosen scenario contains at least one test
case to process.

5. Thatis: the system on which t cc isinvoked.
6. Theseare: the -y and —n command-line options.

Page 10 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

17. |If execute mode has been selected and TET_EXEC | N PLACE isfase, t cc creates the
temporary directory below which test case execution will take place. In Distributed
TETware the temporary directory is created on each remote system that is mentioned in the
chosen scenario.

18. If ajournal file has been specified on the command-line, t cc verifiesthat it does not exist.

19. t cc tells the user the name of the journal file being used and writes a start-up message to
thejournal.

20. In Distributed TETware, t cc performs a configuration variable exchange for each of the
selected modes of operation with each remote system mentioned in the chosen scenario.
This stage establishes the per-system configurations for each of the selected modes of
operation.

21. tcc reports the configuration variables for each of the selected modes of operation to the
journal file. In Distributed TETware, t cc reports the per-system configurations for each of
the systems mentioned in the chosen scenario, together with the distributed configuration
variables.

22. In Distributed TETware, t cc sends certain communication variables to each system
mentioned in the chosen scenario. These variables are put in the environment that is
inherited by test cases and tools on that system.

23. In Distributed TETware, if a runtime directory has been specified using a
TET_REMhnn_TET_RUN distributed configuration variable for a particular system, t cc
copies the test suite root directory hierarchy on that system to a position below the runtime
directory. The directory subtree thus created becomes the new test suite root directory for
that system.

If any of these operations should fail, t cc prints a diagnostic message and exits with non-zero
status. When t cc encounters a non-fatal error while it is processing scenario lines or
configuration variable assignments it does not exit immediately the first such error is identified.
Instead, t cc attempts to perform a reasonable amount of additional processing in order to enable
any further non-fatal scenario or configuration errorsto be reported as well.

Diagnostic messages which are generated before the journal file has been opened are printed on
the standard error stream. A few diagnostic messages which are generated after the journa file
has been opened may be printed to the journal file; however, most messages are printed on the
standard error stream.

If all of these operations are successful, t cc processes the chosen scenario according to the
selected modes of operation. The following sections describe this processing in further detail.

3.4 Build mode processing

When atest suite is provided in source form, t cc is able to build executable files from the source
code of each test case. There is no requirement that test suites be provided in source form.
Therefore, use of build functionality is optional.

In build mode, t cc builds each test case in the specified scenario. In Distributed TETwareit is
possible to specify that processing takes place on more than one system at once.

13th January 1997 Page 11
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The processing is as follows:

1
2.

t cc deliversaBuild Start message to the journal.

t cc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

If a TET _PREBUI LD TOCOL is specified in the build mode configuration, t cc executes
the prebuild tool in the test case source directory with arguments of
TET_PREBUI LD_FI LE and the name of the test case, with output capture mode enabled.
If the prebuild tool cannot be executed or returns a non-zero exit status, subsequent actions
are not performed and processing resumes with the execution of the build fail tool as
described below. In Distributed TETware, when more than one system is specified the
prebuild tool is only executed on the master system.’

t cc executes the build tool in the source directory of the test case with arguments of
TET_BUI LD_FI LE and, if TET_PASS_TC_NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the build tool is executed with output capture mode
enabled. If the build tool cannot be executed, subsequent actions are not performed and
processing resumes with the execution of the build fail tool as described below. In
Distributed TETware the build tool is executed on each participating system.

If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-ordersand copies the contents of the results file to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

If the exit status of the build tool is non-zero or TET_API _COMPLI ANT is true and the
build tool did not report a PASS result, the build is considered to have failed and, if
execute mode has been selected, arrangements are made not to process the test case in
execute mode. If the build failed and a TET_BUI LD _FAI L_TOOL is specified in the
build mode configuration, t cc executes the build fail tool in the test case source directory
with arguments of TET _BUI LD _FAI L_FI LE and the name of the test case, with output
capture mode enabled. In Distributed TETware the build fail tool is executed on each
system if the build operation failed on any of the participating systems.

t cc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

t cc writesaBuild End message to the journal.

7. Thatis: thefirst system mentioned in the list which specifies the systems on which this test case is to be built.

Page 12 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in build mode:

Start

Lock

TET_PREBUI LD TOOL?
Not defined Defined

Prebuild

: Yes Prebuild
Build QK?
No
Build No
exec OK?
Journal
Build No
)
Yes
Notdefined =gy (b FAIL TOOL?
Defined
Build Fail

Unlock

End

Figure 2. Test case processing in build mode

If the user has specified an alternate execution directory, t cc provides that information to the
build tool via a communication variable. The test suite author should ensure that the build tool

13th January 1997 Page 13
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

copies al thefilesthat are required for test case execution to the alternate execution directory.

3.5 Execute mode processing

In execute mode, t cc executes each test casein the specified scenario.

In Distributed TETware it is possible to execute instances of a non-distributed test case on more
than one system at once, or co-operating parts of a distributed test cases on more than one system
at once.

The processing is as follows:

1
2.

t cc writesaTest Case Start message to the journal.

t cc obtains a lock in the test case execution directory. If TET_EXEC | N_PLACE is
false, the lock is shared; otherwise, the lock is exclusive. In Distributed TETware locks are
obtained on each participating system.

If TET_EXEC | N PLACE isfalse t cc creates atemporary directory in which execution
can safely be performed, and copies the test case execution directory subtree to the location
below the temporary directory. In Distributed TETware temporary directories are created
and test case files are copied on each participating system.

If TET_EXEC | N _PLACE isfalse, t cc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

If TET_API _COVPLI ANT is fdse, t cc writes the TCM Start, IC Start and TP Start
messages to the journal that would have been written by an API-conforming test case or
tool.

If TET_EXEC TOOL is defined, t cc executes the exec tool with TET _EXEC FI LE, the
test case name and the numbers of the invocable components to be executed as arguments;
otherwise, t cc executes the test case directly with the numbers of the invocable
components to execute as arguments. If TET_EXEC | N_PLACE is true, this execution
takes place in the test case execution directory; otherwise, execution takes place in the in
the temporary directory. If TET _OUTPUT_CAPTURE is true, execution takes place with
output capture mode enabled. In Distributed TETware execution takes place on each
participating system.

If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-orders and copies the contents of the results file to
the journal. If any test purpose has not generated a result, t cc supplies a result of
NORESULT. If TET_API _COMPLI ANT isfalse, t cc generates a TP Result line based on
the exit status of the test case or exec tool, together with the IC End line that would have
been generated by an API-conforming test case or tool.

In Distributed TETware, captured output and the results file contents are gathered from
each participating system and entered in the journal on the local system. When Distributed
TETware executes a non-distributed test case on more than one system, results file contents
from each system are re-ordered separately and entered in the journal file in turn. When
Distributed TETware executes an API-conforming distributed test case, results file contents
are not re-ordered; instead, results file contents other than results lines are entered in the
journa file in chronological order. A single consolidated result line is generated for each
test purpose by arbitrating between the partia result lines gathered from each system and is
entered in the journal.

Page 14 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8. tcc copies each of the files specified by TET SAVE FI LES to the saved files directory
hierarchy. In Distributed TETware, if TET_TRANSFER _SAVE _FI LES is fase, files are
copied to the saved files directory hierarchy on each participating system. However, if
TET_TRANSFER _SAVE_FI LES is true, files are copied from each system to a per-
system saved files directory hierarchy on the local system. Different values of
TET_TRANSFER _SAVE_FI LES may be specified for each remote system if required.

9. If TET_EXEC | N PLACE istrue, t cc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

10. If TET_EXEC | N_PLACE isfase t cc removesthe temporary execution directory.
11. t cc writesaTest Case End message to the journal.

13th January 1997 Page 15
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in execute mode:

Start

Lock

TET_EXEC | N _PLACE?
True False

Copy

Unlock

Yes No

Journal

Savefiles

TET_EXEC | N_PLACE? True

False

Unlock

End

Figure 3. Test case processing in execute mode

Page 16 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit

TETware Programmers Guide

3.6 Clean mode processing

Users can request t cc to remove unwanted files following test processing sessions. Clean mode
processing does not affect the results of previoustest runs.

In clean mode, t cc cleans up each test case in the chosen scenario. In Distributed TETwareiit is
possible to specify that processing takes place on more than one system at once.

The processing is as follows:

1
2.

t cc writes a Clean Start message to the journal .

t cc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

t cc executes the clean tool in the source directory of the test case with arguments of
TET_CLEAN FI LE and, if TET_PASS_TC NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the clean tool is executed with output capture mode
enabled. In Distributed TETware the clean tool is executed on each participating system.

4. |If output capture mode is enabled, t cc transfers captured output to the journa file. If
TET_API _COVPLI ANT istrue, t cc re-ordersand copies the contents of the resultsfile to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

5. tcc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

6. tcc writesaClean End message to the journal.

13th January 1997 Page 17

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The following diagram illustrates how t cc processes atest case in clean mode:

Start

Lock

Clean

Clean
exec OK?

Yes No

Journal

Unlock

End

Figure 4. Test case processing in clean mode

3.7 Rerun and resume processing
3.7.1 Introduction

In addition to the normal processing described previously, t cc can rerun or resume processing of
a previous test run. When you invoke t cc with the rerun or resume options, you specify the
name of the scenario and journal file from the previous run, and alist of operation modes and/or
test purpose result codes which are used to select test cases for reprocessing.

When either of these options are specified, t cc uses the list of operation modes specified with
the option to select test cases for reprocessing. However, the selected test cases are always
reprocessed according to the modes of operation selected for the current test run.

Whent cc isinvoked in rerun or resume mode, it extracts the command-line options used for the
previous test run that were recorded in the old journal file. If the -y or —n options were used to
select or reject particular test cases during the previous run, test cases that were not selected are
removed from the scenario before the processing described below is performed. Then, after this
processing is performed, test cases that are not selected as a result of any —y or —n options
specified for the current test run are removed from the scenario before it is processed.

Page 18 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

3.7.2 Resume processing
3.7.2.1 Description

When t cc isinvoked with the resume option it analyses the old journal file, searching for result
codes and/or completion statuses that match one of a user supplied set. The first such result code
or completion status that is found identifies the resume point in the scenario.

When t cc finds the resume point as a result of searching the old journal file, it stores certain
parameters which are used to identify the resume point when t cc processes the scenario, as
follows:

1. Theresume point isidentified by a particular test case that is to be processed in a particular
mode in the chosen scenario.

2. If the scenario is to be resumed at a particular test case in execute mode, the resume point
is further identified by a particular IC number within that test case.

3. If the scenario is to be resumed at a particular IC in execute mode and the test case which
contains this IC is within the scope of one or more looping directives,? the resume point is
further identified by the iteration counts of each of the enclosing looping directives.

When t cc isinvoked in resume mode, it steps through the scenario without processing any test
cases until the resume point is found. Once the resume point is found, t cc processes the rest of
the scenario according to the selected modes of operation in the usual way.

When you invoke t cc with the resume option, you specify the search criteria as a (comma-
separated) list of result code names and operation mode key letters which select test cases as
follows:

List element Journal lines matched

result-code-name | Test Purpose Result lines giving execution results (not build or clean
results) with the equivalent result code number.

b Build End lines which contain a non-zero completion status; and, Test
Purpose Result lines giving build results with any non-zero result code
number.

e Test Case End lines which contain a non-zero completion status; and,

Test Purpose Result lines giving execution results with any non-zero
result code number.

c Clean End lines which contain a non-zero completion status; and, Test
Purpose Result lines giving clean results with any non-zero result code
number.

The names of test cases which occur before the resume point (and are therefore no longer
required) are removed from the scenario once the resume point has been identified.

8. Thesedirectivesare: ther epeat andti ned_| oop directives.

13th January 1997 Page 19
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

When you invoke t cc with the resume option, you must select the same modes of operation that
were selected for the previous test run. It is not possible to resume processing of a scenario using
an old journal file that was itself produced by a previous invocation of t cc with the resume
option.

3.7.2.2 Processing apar al | el directivein resume mode

If the resume point is found within the scope of a par al | el directive, the resume point is
moved back to the start of the par al | el directive. When ETET compatibility mode isin effect
it is possible for a resume point to be within the scope of several par al | el directives; in this
case the resume point is moved to the start of the outermost enclosing par al | el directive. It
follows, therefore, that if an entire scenario consists of sequences of test casesthat are executed in
paralel, there is no benefit to be gained by processing the scenario in resume mode since any
resume point that isidentified is moved back to the start of the scenario.

3.7.2.3 Processing ar andomdirective in resume mode

If the resume point is found within the scope of ar andomdirective, the resume point is moved
back to the start of that r andomdirective. However, it should be understood that the test case
selection which takes place when t cc processes a r andom directive in execute mode is, by
definition, random. Thus it is unlikely that t cc will make the same selections after the resume
point has been found as the selections that were made during the previous test run.

3.7.2.4 Processingat i med_| oop directive in resume mode

When t cc analyses the old journal file in resume mode, it records the number of times that a
timed loop starts in execute mode before the resume point is found.

When t cc processes ati ned_| oop directive in execute mode, it performs a test before the
start of each loop iteration to determine whether or not the loop should be restarted. Ordinarily
thistest only compares the loop processing time against the time specified with the directive.

However, if thisisthe only test that is performed before the resume point is found, the possibility
exists that a timed loop might iterate a very large number of times before the specified time
expires, causing the system to thrash and creating a huge volume of unnecessary journal output.
In order to prevent this, the test that is performed before the start of each loop iteration when the
resume option is selected and the resume point has not yet been found also checks to ensure that
the loop iteration count is less than the count which is derived from the old journal file.

3.7.3 Rerun processing
3.7.3.1 Description

The operation of t cc when the rerun option is specified is similar to that of the resume option
with the exception that only invocable components with result codes matching one of the user
supplied set will be processed according to the selected mode of operation.

The names of test cases which are not selected by the rerun option are removed from the scenario
once al the test cases which are to be rerun have been identified.

When you invoke t cc with the rerun option, you need not select the same modes of operation
that were selected for the previous test run. It is possible to rerun a scenario using an old journal
file that was itself produced by a previousinvocation of t cc with the resume or rerun option.

Page 20 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

3.7.3.2 Processing ar andomdirective in rerun mode

As indicated previoudly, after t cc has identified the test cases that must be reprocessed in rerun
mode, it removes al the other test case names from the chosen scenario. This means that only
test cases that match the rerun selection criteria remain within the scope of ar andomdirective.

Thus, when t cc chooses atest case for processing in execute mode from the test cases within the
scope of a random directive, the choice is made from the set of test cases that match the
selection criteria. However, because the choice is made at random, it should be understood that it
is unlikely that t cc will choose the same test case when processing a particular instance of the
r andomdirective as was chosen in the previous test run.

3.7.3.3 Processingat i med_| oop directivein rerun mode

Whent cc analysesthe old journal file in rerun mode, it records the number of times that atimed
loop starts in execute mode.

The way that t cc processesat i med_I| oop directive in rerun mode is similar to that described
above for resume mode. However, the difference is that the test performed before the start of
each loop iteration in execute mode always takes account of both the loop execution time and the
loop iteration count.

3.8 Communication variables

t cc must be able to communicate with the other tools it executes (build tool, clean tool, exec
tool, and the test cases). t cc does this by using communication variables. Communication
variables are environment variables, so environment variables starting with TET_ are reserved
for use by TETware. The communication variables defined include:

TET_ACTIMITY

The number of activities performed thus far by the TCC. Activities include
executions of build tool, clean tool, exec tool, and test cases.

TET_CODE The path name of the current result code definition file.
TET_CONFI G
The path name of the current configuration variable file.

TET_EXECUTE

The path name of the top of the alternate execution directory hierarchy if one has
been specified.

TET_ROOT The path name of the TETware root directory.
TET_RUN The path name of the runtime directory if one has been specified.

TET_SU TE_ROOT

The path name of the aternate location in which test suite root directories reside,
if one has been specified.

13th January 1997 Page 21
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

3.9 Journal entries

t cc manages updates to the journal file. Upon completion of a test case build, execution or
clean, the results are transferred from a temporary file into the journal file. During this transfer,
t cc ensuresthat each executed test purpose generated one (and only one) result.

The way in which t cc processes an execution results file is described in the section entitled
“‘Resultsfile processing’’ elsewherein this guide.

3.10 Locking

t cc employs a locking system which prevents concurrently executing TCCs from interfering
with each other’s processing of test cases. In the following description, ‘‘execution directory’’
means the execution directory under the alternate execution directory hierarchy if oneisin use,
otherwise the source directory. The discussion applies equally to master and slave systems.

In build and clean modes, t cc obtains an exclusive lock in both the source and execution
directories as follows:

o« Afilet et | ock iscreated in the source directory, using an atomic operation which will
fail if afile or directory of that name already exists. If the file cannot be created the locking
operation fails.

« If an alternate execution directory hierarchy isin use, afilet et | ock is created in the
execution directory in the same manner. If the file cannot be created, the lock is removed
from the source directory and the locking operation fails.

When the build or clean has completed the lock files are removed, execution directory first.

In execute mode with TET _EXEC | N PLACE true, t cc obtains an exclusive lock in the
execution directory using the same method as for build mode.

In execute mode with TET_EXEC | N_PLACE false, t cc obtains a shared lock in the execution
directory asfollows.

e A directory tet | ock is created in the execution directory, with read and write
permission for al users, using an atomic operation which will fail if afile or directory of
that name already exists. If the directory cannot be created because a plain file exists, the
locking operation fails. If the directory cannot be created because a directory already
exists, the faillureisignored.

o A unique file is created in the directory t et _| ock. If the file cannot be created because
t et _| ock either does not exist or isaplain file, then the locking attempt is re-started.

When the execute has completed the lock isremoved as follows:
« Thefile created when the lock was obtained isremoved fromthet et _| ock directory.

e Thet et | ock directory is removed, using an operation which will fail if the directory is
not empty. Failure of this operation isignored.

Page 22 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

3.11 Usingt cc to process atest suite on aread-only file
system

When t cc processes a test suite which resides on a read-only file system, it is unable to obtain
the locks described in the previous section. However, if an attempt to obtain alock fails because
the file system is read-only, t cc ignores the failure. Thus, it is possible to uset cc to process a
test suite which is provided on aread-only file system. It is possible that such afile system might
be mounted read-only from a central file server or might reside on a read-only medium such as a
CD ROM.

If the read-only file system contains only source files, t cc must first copy the test suite source
files to aruntime directory and build the test suite there before it can be executed. The TET _RUN
environment variable may be used to instruct t cc to perform this operation. In Distributed
TETware the TET _REMhnn_TET _RUN distributed configuration variables may be used to
specify runtime directories on remote systems.

If the read-only file system contains executable test suite files, the TET_RUN environment
variable may be used in the same way as for a test suite provided in source form. Alternatively,
the TET_TMP_DI R environment variable may be used to specify atemporary directory location
on a writable file store and the test suite can be processed in execute mode with the
TET_EXEC | N_PLACE configuration variable set to Fal se. In Distributed TETware, the
TET_REMhnn_TET_TMP_DI R distributed configuration variables may be used to specify the
locations of temporary execution directories on remote systems.

13th January 1997 Page 23
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 24 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

4. Thescenariofile

4.1 Introduction

When t cc processes test cases, it does so by reading instructions contained in a test scenario.
Each test suite should include a scenario file which contains one or more test scenarios. This
chapter describes the format of the scenario file and the language that is used to specify a test
scenario.

When you invoke t cc, one of the parameters that you can supply is the name of the scenario to
process. If you do not specify this parameter, t cc processes a scenario caled al |l .
Alternatively you can specify a simple test scenario independent of any scenario file by means of
one or more —-| command-line options.

4.2 Thescenario language
4.2.1 Introduction

A scenario consists of a sequence of elements. In most cases each element is separated from the
next by white space. However, in certain cases, it is possible for two elements to appear together
without being separated by white space. When this is done, the second element is said to be
attached to thefirst one; the significance of this type of construct is described in alater section.

The first element in the scenario is the scenario name. Subsequent elements in the scenario are
directives and simple elements.

A summary of the scenario language is presented in the appendix entitled ‘‘ Scenario language
syntax summary’’ at the end of this guide.

4.2.2 Scenariolines

Conceptualy, a scenario consists of a sequence of elements on a single line. However, in
practice it is usually necessary to divide up the elements over several linesin order to limit each
line to a manageable length. t cc silently imposes a maximum length of 1024 characters
(including the newline) on a single physical line read from the scenario file. However, the
number of elements that can appear in a scenario and the number of scenarios that may be
specified in ascenario file are limited only by the amount of memory that isavailabletot cc.

The start of a scenario is indicated when an element appears at the start of aline. Continuation
lines are indicated by placing white space at the start of each line. A comment isintroduced by a
character and continues until the end of the line. Blank lines and comments are ignored.

For example, the following scenario:
scenario-name element, element, ...
isidentical in meaning to:

scenario-name
element,
element,

When continuation lines are used in a scenario, it should be understood that the newline character
which ends each line is regarded as part of the white space which separates one scenario element

13th January 1997 Page 25
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

from the next. Therefore it is not possible to split an individual element over more than one line
by using continuation lines.
4.2.3 Thescenario name

The first element in the scenario is the scenario name. A scenario name may contain between 1
and 31 characters. Characters in the scenario hame are taken from the POSIX portable character
set. The first character in the name may be an aphabetic character or a _ character (an
underscore). Each of the other characters in the name may be an aphanumeric character or one
of the_- ./ characters (an underscore, a hyphen, a period and aforward slash).

4.2.4 Simple scenario elements
4.2.4.1 Introduction

Each simple scenario element is complete in itself and has no effect on other elements in the
scenario.

When reading the descriptions that follow, it should be understood that a scenario directive is
anything between apair of . characters.

For example:
: directive:

In addition, each reference to a directive in these descriptions applies equally to a directive
group. The meanings of the directives themselves and the concept of a directive group are
described in later sectionsin this chapter.

All the simple elements are supported in both TETware-Lite and Distributed TETware. The
simple scenario elements are described in the following sections.

4.2.4.2 Scenarioinformation line
A scenario information line is atext string enclosed by a pair of " characters (double quotes).
For example:

"this is a scenario information |ine"

Whent cc processes a scenario information line, it simply prints the string (including the double
quotes) to the journal.

A scenario information line is treated as a single scenario element; therefore it cannot be split
over more than one line by using continuation lines. A scenario information line is the only
simple scenario element which may contain embedded spaces.

4.2.4.3 Test case name

A test case name may appear by itself or may be attached to a directive. When atest case name
appears by itself, it startswith a/ character.

For example:

| test-case-name

Page 26 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

When atest case name is attached to a directive, it starts with a @ %quence.9 There must be no
space between the directive’ sterminating ;. character and the @character.

For example:
: directive: @ test-case-name

A test case name may have an optiona list of invocable components (or I C list) associated with
it. Whenan IC list is specified, it is enclosed between { and} characters and attached to the end
of thetest case name. There must be no space between the test case name and the IC list.

For example:
/ test-case-name{ ic-list}
or:
. directive: @ test-case-name{ ic-list}

AnIC list consists of one or more numbers or number ranges. Each number or number rangeis
separated from the next by a, character (a comma). A number range consists of two numbers
separated by a — character (a hyphen). A number in the IClist refers to a single invocable
component in the test case. A number range refers to arange of invocable components in the test
case. AnIC list must not contain embedded spaces.

When a test case hame appears in a scenario, t cc processes the test case according to the
selected modes of operation. When t cc processes a test case name with an IC list in execute
mode, it passes the IC list as an argument to the test case or exec tool. When the TCM receives
the IC list argument, it only calls the invocable components that are specified in the list. When
no IC list argument is specified, the TCM calls all the invocable componentsin the list.

For example, if atest caseis specified in the scenario as:
/ test-case-name{ 2, 4, 7-10}

t cc passes an argument of 2, 4, 7-10 when it executes the test case. This argument instructs
the TCM to call only the user-supplied test purpose functions specified by invocable component
numbers 2, 4, 7, 8,9 and 10. The TCM prints adiagnostic if an invocable component specified in
the IC list is not defined in the test case.

A test case nameis always interpreted relative to the test suite root directory.
4.2.4.4 Referenced scenario name

The name of another scenario (also known as a referenced scenario name). A referenced
scenario name may appear by itself or may be attached to a directive. In each case the scenario
name startswith a™ character.

9. Note that the @character is used to distinguish between the attached / test-case-name described here and the
attached / file-name that is described in alater section.

13th January 1997 Page 27
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

For example:
" scenario-name
or:
. directive: ~ scenario-name

When a referenced scenario name appears by itself, t cc processes each of the elements
contained in the named scenario asif they had appeared where scenario-name appears.

When a referenced scenario name is attached to a directive, t cc processes each of the elements
contained in the named scenario within the scope of the directive to which the scenario-name is
attached.

4.2.4.5 Filename
The name of afile which contains alist of test case names (also known as an include file name).
A file nameis always attached to a directive and startswith a/ character.
For example:
. directive: / file-name
Note that there is no space between the directive’ sterminating : character and the/ character.

The named file should contain alist of test case names and/or scenario information lines, one per
line. Linesin the file should not contain directives, referenced scenario names or leading spaces.
Comments in the file are introduced with a# character and end at the end of the line. Blank lines
in the file and comments are ignored.

Aninclude file is used to associate alist of test case names and/or scenario information lines with
a particular directive. When a file name appears in a scenario, t cc processes each test case and
scenario information line listed in the file within the scope of the directive to which the file name
is attached, according to the selected modes of operation. A file name is always interpreted
relative to the test suite root directory.

4.2.5 Scenario directives
4.25.1 Introduction

A directive is a scenario element which has scope. It affects the way in which t cc processes
other elements within its scope.

Each directive is enclosed between apair of : characters, thus:
: directive:

A directive may have one or more par ameter s associated with it. Parameters also appear within
the pair of : characters and are separated from the directive keyword and each other by a ,
character (acomma), thus:

. directive, parameter. . .

A directive may have a simple scenario element attached to it. An attached element appears
immediately after the: character which ends the directive, thus:

. directive: attached-element

Page 28 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

There must be no space between the directive’'s terminating : character and the attached
element.

When a directive has a simple element attached to it, the attached element is processed within the
scope of the directive. Subsequent elements in the scenario are not processed within the scope of
the directive.

When a directive does not have an element attached to it, there must be a matching end directive
at some point before the end of the scenario. All the scenario elements between the directive and
its matching end directive are processed within the scope of the directive. The end directive
keyword is formed by prefixing the directive keyword with end, thus:

: enddirective:
An end directive does not take parameters or have an element attached to it.

Directives may be nested; that is: one directive may appear within the scope of another directive.
There are rules which determine whether or not a particular directive may appear within another
directive' s scope. These rules are presented in the section entitled ‘* Directive nesting rules’’ later
in this chapter.

Some directives are supported in both TETware-Lite and Distributed TETware, whereas others
are supported only in Distributed TETware. The scenario directives are described in the
following sections.

4.25.2 r epeat - processscenario elements a specified number of times

Synopsis
: repeat [, count]:
element
:endrepeat :
or:

: repeat [, count]: @ test-case-name

or:
: repeat [, count]: / file-name
or:
. repeat [, count]: ~ scenario-name
Description

Ther epeat directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes the sequence of elements within the scope
of ther epeat directive oncein build mode.

o Then, if execute mode has been selected, t cc processes the sequence of elements within
the scope of ther epeat directive count times in execute mode.

« Finaly, if clean mode has been selected, t cc processes the sequence of elements within
the scope of ther epeat directive oncein clean mode.

If count is specified, it should be a positive number. If count is not specified, it defaultsto 1.

13th January 1997 Page 29
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

4.25.3 ti med_| oop — process scenario elements until a specified period of time
expires

Synopsis
:ti med_I| oop, seconds:
element

»endti ned_| oop:

or:
:ti med_| oop, seconds. @ test-case-name
or:
:ti med_I oop, seconds: / file-name
or:
:ti med_I| oop, seconds. ~ scenario-name
Description

Thet i med_| oop directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes the sequence of elements within the scope
of thet i med_| oop directive oncein build mode.

o Then, if execute mode has been selected, t cc performs a test before processing the
sequence of elements within the scope of the ti med_I| oop directive in execute mode.
The sequence of elements is processed repeatedly until the test fails.

Normally the test performed fails if the time specified by the seconds parameter has
expired. However, whent cc isinvoked with the rerun option, or before the resume point
isfound when t cc isinvoked with the resume option, the test fails if the time specified by
the seconds parameter has expired or the sequence of elements has aready been processed
as many times as the same sequence was processed in the course of the test session
recorded in the old journal file.

o Finally, if clean mode has been selected, t cc processes the sequence of elements within
the scope of thet i med_I oop directive once in clean mode.

The seconds parameter must be a positive number.

Page 30 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

4.25.4 r andom-— process atest case selected at random

Synopsis
:random
element
:endrandom
or:

:random @ test-case-name

or:
:random / file-name
or:
:random ~ scenario-name
Description

The way in which t cc processes the r andom directive depends on which modes of operation
have been selected and whether or not this directive appears within the scope of a looping
directive,'? asfollows:

 When execute mode has not been selected and the r andom directive is not within the
scope of alooping directive:

— tcc processes each of the elements within the scope of the r andom directive in
build and/or clean mode according to the sel ected mode(s) of operation.

« When execute mode has not been selected and the r andomdirective is within the scope of
alooping directive:
— If build mode has been selected, t cc processes each of the elements within the
scope of the r andomdirective in build mode.

— Then, if clean mode has been selected, t cc processes each of the elements within
the scope of the r andomdirective in clean mode.

« When execute mode has been selected and the r andomdirective is not within the scope of
alooping directive:

— t cc selects atest case at random from within the scope of ther andomdirective and
builds and/or executes and/or cleans the test case according to the selected mode(s)
of operation.

« When execute mode has been selected and the r andomdirective is within the scope of at
least one looping directive:

— If build mode has been selected, t cc processes each of the elements within the
scope of the r andomdirective in build mode.

10. The looping directives are: ther epeat andt i ned_| oop directives.

13th January 1997 Page 31
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

— Then, if execute mode has been selected:

o For each iteration of each enclosing looping directive, t cc selects a test case
at random from within the scope of the r andomdirective and executesit.

— Finally, if clean mode has been selected, t cc processes each of the elements within
the scope of the r andomdirective in clean mode.

It can be seen from this description that whent cc processes all the elements within the scope of
a r andom directive, both test cases and scenario information lines are processed. However,
when t cc processes a randomly selected element within the scope of a r andomdirective, the
selection is made only from test case elements. Therefore, scenario information lines are not
processed when elements are selected at random.

When considering the operation of the r andomdirective whent cc isinvoked with the rerun or
resume options, it should be understood that the selection of a single test case from within the
scope of arandomdirective is, by definition, random. Therefore, when t cc is invoked with
either of these options, it is likely that a different test case to the one selected in the previous run
will be selected in the current t cc invocation.

When t cc is invoked with the rerun option and must select a test case at random, it selects the
test case from the set of test cases within the scope of the r andomdirective that are identified by
the rerun options and not from the set that appears in the scenario file. Therefore, the chance of
any particular test case being selected in the current invocation is at least as great asit wasin the
previoust cc run.

Likewise, whent cc isinvoked with the resume option and identifies the resume point within the
scope of a random directive, it moves the resume point to the start of the random directive
before processing the scenario in the current invocation. Therefore, athough the same test case
may not be selected from within the scope of the r andomdirective after the resume point has
been found as was selected in the previous t cc run, the chance of a particular test case being
selected in the current invocation is the same as it wasin the previoust cc run.

4.255 paral | el —processscenario elementsin parallel

Synopsis

:parall el [, count]:
element

:endparal l el :

or:
: paral |l el [, count]: @ test-case-name
or:
: paral |l el [, count]: / file-name
or:
: paral |l el [, count]: ~ scenario-name
Page 32 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Compatibility with previous TET implementations
Previous TET implementations have processed the par al | el directive in different ways.

In dTETZ2, apar al | el directive may not enclose ar enot e or another par al | el directive
within its scope, and the t i ned_| oop and r andom directives and referenced scenario names
are not supported. All the elements within the scope of apar al | el directive are processed in
parallel; that is, processing of each element starts at the same time.!

In ETET, a par al | el directive may enclose other directives and referenced scenario hames
within its scope. Elements of these types that appear immediately below apar al | el directive
are not truly processed in paralld; instead, for each element below a par al | el directive the
ETET t cc forks achild to process the element. Thus, if an element other than a smple scenario
element appears below apar al | el directive, the child processes these subordinate elements in
sequence. However, al the child processes thus created themselves execute in parallel.

When a directive or referenced scenario name appears within the scope of apar al | el directive
in a context which might be processed differently in previous TET implementations, TETware
uses the TET_COVPAT configuration variable to resolve the ambiguity in order to provide
backwards compatibility with both of these implementations. There is no default value for
TET_COWPAT. Therefore, if t cc needsto refer to this variable when the variable is not defined,
it prints a diagnostic and exits.

When t cc operates in ETET compatibility mode and needs to process a sequence of scenario
elements within the scope of a paral | el directive, it does so by inserting an implied
sequential directive at the head of the sequence. When't cc processes the scenario, it processes
the sequences thus defined in parallel; that is: processing of each sequence starts at the sametime.
However, within each element sequence, processing of elements is sequential; that is. processing
of each successive element in the sequence starts as soon as processing of the previous el ement
has finished. This strategy enables TETware to provide ETET compatibility even on operating
systems where the f or k() system call — necessary for ETET's support of the par al | el
directive — is not implemented.

The way in which t cc processes elements within the scope of the paral | el directive is
affected by the compatibility mode that is specified by the test suite author using the
TET _COMPAT configuration variable, asfollows:

— Whenin ETET mode:

o An implied sequentia directive is inserted between a par al | el directive and a
subordinate repeat, tined_ | oop or random directive. Therefore these
directives are permitted to appear within the scope of apar al | el directive.

o If a referenced scenario name appears immediately below a par al | el directive,
the top level of the referenced scenario is searched for r epeat , ti med_| oop and
r andomdirectives and other referenced scenario names. If one of these elementsis
found, the referenced scenario name immediately below the par al | el directive is
replaced by a copy of the referenced scenario. Then an implied sequential directive
is inserted between the par al | el directive and each of the subordinate r epeat ,

11. In dTET2, when more than one mode of operation is selected, test cases may be built in parallel, then executed in
parallel, then cleaned in parallel, according to the selected modes of operation.

13th January 1997 Page 33
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

ti med_| oop and r andomdirectives and other referenced scenario names in the
copy of the referenced scenario.

— When in dTET2 mode:

e Arepeat,timed_I| oop orr andomdirective may not appear within the scope of
aparal | el directive.

e Any number of referenced scenario names may appear within the scope of a
par al | el directive, nested to any level, provided that the directive nesting rules
are not violated when the contents of each referenced scenario is interpolated.

Description
Thepar al | el directiveisprocessed by t cc asfollows:

« If build mode has been selected, t cc processes in build mode a single copy of al the
elements (when in dTET2 mode) or sequences of elements (when in ETET mode) within
the scope of the par al | el directivein parallel.

o Then, if execute mode has been selected, t cc processes in execute mode count copies of
al the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the par al | el directivein paralel.

« Finaly, if clean mode has been selected, t cc processes in clean mode a single copy of al
the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the par al | el directivein parallel.

If count is specified, it should be a positive number. If count is not specified, it defaultsto 1.

When t cc processes a test case, it may obtain locks in the test case source and execution
directories in order to prevent unwelcome interference between concurrent test case processing.
Whent cc processesapar al | el directive, it attempts to obtain al the locks that it needs at the
same time. Therefore, it is necessary for the test suite author to organise the test suite in such a
way that alocking conflict does not occur when test cases are processed in paralel. Usually this
organisation is best achieved by locating each test case in its own directory within the test suite
hierarchy.

When t cc isinvoked with the resume option and identifies the resume point within the scope of
aparal | el directive, the resume point is moved back to the start of the directive. In ETET
mode the use of implied sequential directives makesit possible for for a resume point to be found
within the scope of more than one par al | el directives; in this case the resume point is moved
back to the start of the outermost enclosing par al | el directive. A consequence of thisisthat if
an entire scenario is contained within the scope of a paral |l el directive, tcc cannot
effectively be invoked with the resume option to process such a scenario.

Page 34 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

4.2.5.6 gr oup — process scenario elementsin parallel

Synopsis
: gr oup|, count]:
element
: enolllq'r oup:
or:

> group[, count]: @ test-case-name

or:
: group[, count]: / file-name
or:
: group[, count]: ~ scenario-name
Description

The gr oup directive operates in the same way as does the par al | el directive. This directive
is supported only for compatibility with previous TET implementations and should not be used in
new test cases.

4.25.7 r enot e — processtest cases on remote systems

Synopsis
:renote, sysid...:
element
> endrenot e:
or:

:renot e, sysid...: @ test-case-name

or:
:renot e, sysid...: / file-name
or:
‘renot e, sysid...: ” scenario-name
Description

Ther enot e directive is not supported by TETware-Lite.

In Distributed TETware, t cc processes test cases within the scope of the r enot e directive on
the systems specified by the sysid parameters. At least one sysid must be specified. A sysid of
zero refersto the local system?? and other positive sysid values refer to remote systems.

When the local system is not specified, t cc processes test cases within the scope of ar enot e
directive as non-distributed test cases. When the local system is specified, t cc processes test
cases within the scope of a renot e directive as distributed test cases. t cc supports the

12. That is: the system on which t cc isinvoked.

13th January 1997 Page 35
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

processing of distributed test cases when the local system is specified only for backward
compatibility with dTET2. Authors of new test suites should use the di st ri but ed directive
to specify distributed test cases.

Distributed test cases must use an APl which supports distributed testing; at present these are the
C and C++ APIsin Distributed TETware. Non-distributed test cases may use any TETware API
or be non API-conforming test cases.

4.25.8 di stri but ed — processdistributed test cases

Synopsis
:di stributed, sysid...:
element

:enddi stri but ed:

or:
»distributed, sysid...: @ test-case-name
or:
. distributed, sysd...: / filename
or:
:di stributed, sysd...: " scenario-name
Description

Thedi st ri but ed directive is not supported by TETware-Lite.

In Distributed TETware, t cc processes test cases within the scope of the di stri but ed
directive on the systems specified by the sysid parameters. At least one sysid must be specified.
A sysid of zero refersto the local system and other positive sysid values refer to remote systems.

t cc aways processes test cases within the scope of a r enpt e directive as distributed test
cases. Thusit is possible to use this directive to specify a distributed test case which is processed
entirely on remote systems.

Distributed test cases must use an API which supports distributed testing; at present these are the
C and C++ APIs in Distributed TETware. Test cases which use other TETware APIs and non
API-conforming test cases cannot be processed by TETware as distributed test cases.

Page 36 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

4.25.9 i ncl ude — process scenario elementslisted in an includefile

Synopsis
;i ncl ude: / file-name

Description

Thei ncl ude directive is not atrue directive in that it does not have scope; that is: it does not
affect the way in which t cc processes scenario elements in the named file. Instead it is provided
simply to enable test suite authors to specify a file containing certain types of simple scenario
element to be processed by t cc outside the scope of any directives.

Note that the rules that govern the format and contents of the file associated with the i ncl ude
directive are the same as those which apply to include files associated with other directives.
These rules are presented in the section entitled ** File name’” earlier in this chapter.

4.2.6 Directive groups

A directive group is constructed from two or more directives that are permitted by the scenario
language syntax to appear adjacent to each other in atest scenario.

A directive group is enclosed between apair of : characters, and each directive is separated from
the next by a; character, thus:

- directive; directive,
Aswith individual directives, adirective within a group may have parameters associated with it.

So, the complete formal syntax specification for a directive group which contains one or more
directivesis asfollows:

. directive], parameter|[, ...11[; ...

Aswith individual directives, adirective group may have a simple element attached to it, thus:
. directive,; directive,: attached-element

When this is done, the attached element is processed within the scope of all the directives in the
group.

When a directive group does not have an element attached to it, there must be matching end
directives in the correct order at some point before the end of the scenario. Often, each directive
in a group without an attached element will be matched by an end directive in another group.

For example:
- directive,; directive,:
element

. enddirective,, enddirective,:

13th January 1997 Page 37
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Note that this example could also be written as follows:
: directive;:
- directive,:
element

. enddirective,:
. enddirective;:

or even on asingleline, asfollows:
. directive;; directive,: element ... : enddirective, enddirective;:

This format is particularly useful when specifying a simple scenario on the command-line by
means of the —| optiontot cc.

4.2.7 Directive nesting rules

It is possible for a directive to appear within the scope of another directive. When this is done,
the directives are said to be nested. However, there are rules which limit the way in which
directives may be nested. These rules are defined in terms of whether or not a particular directive
may appear within the scope of ancther directive of the same or adifferent type.

These rules are complicated by the way in which the par al | el directive is processed. This
processing is described in the section entitled ‘‘par al | el — process scenario elements in
parallel’” earlier in this chapter. In particular, this section describes how t cc may insert an
implied sequential directive in a scenario when processing the scenario in ETET compatibility
mode. The placement of these implied sequential directives is significant when the directive
nesting rules are interpreted by t cc.

The directive nesting rules are described in the following table:

Permitted directive combinations
Outer directive
Inner renote and implied
directive i
Irectiv timed_I| oop | repeat | random | parall el distributed | sequential
timed_I oop OK OK Error Error OK OK
r epeat OK OK Error Error OK OK
random OK OK Error Error OK OK
paral | el OK OK Error Error OK OK
renot e and
di stribut ed OK OK OK OK Error OK
implied oK oK OK OK OK oK
sequential

When interpreting these rules it should be understood that the effect of an implied sequential
directive isto hide apar al | el directive when directives are nested. That is. for the purposes
of these rules the scope of a paral | el directive is considered to end when an implied
sequential directive is encountered.

For example, it can be seen from the table above that the the rules do not permit a r epeat

directive to appear within the scope of apar al | el directive. When dTET2 compatibility mode
isin effect, t cc does not insert implied sequential directives into the scenario. Therefore, the
directive nesting rules are violated if a repeat directive appears within the scope of a

Page 38 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

paral | el directive.

However, when ETET compatibility mode is in effect and a repeat directive appears
immediately below apar al | el directive, t cc inserts an implied sequential directive between
them. The effect of thisis to exclude the r epeat directive from the scope of the par al | el
directive, and so the directive nesting rules are not violated.

4.3 Example scenarios

This section contains some examples of the different ways in which simple elements and
directives can be used to define test scenarios. Alternative ways of defining the same scenario are
illustrated in some of the more simple examples.

A diagram is used to illustrate each example. Each diagram is presented as a smple flow chart in
which time advances from top to bottom.

Example 1

In this scenario the named test cases are simply processed in sequence. One of the test cases has
alist of invocable components associated with it.

This scenario can be written in several ways as follows:

sinple scenario exanple
al |
"this is a sinple scenario”
/ts/tcl{1-3, 6}
/tsltc2
/ts/tc3

or:

sinple exanple using a referenced scenari o nanme
al |
“scenl

scenl
"this is a sinple scenario"
/ts/tcl{1-3, 6}
/ts/tc2
/ts/tc3

or:

sinple exanple using an include file
al |
rinclude:/ts/tclist

In this case thefile test-suite-root/ t s/ t cl i st contains the following lines:

"this is a sinple scenario”
/ts/tcl{1l-3, 6}

/ts/tc2

/ts/tc3

13th January 1997 Page 39
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

Start

/ts/tcl

/ts/tc2

/ts/tc3

Figure5. Processing test casesin sequence

Example 2
In this scenario the named test cases are processed in parallel.

This scenario can be written in several ways as follows:

exanpl e of parallel processing
al |
"these test cases are processed in parallel”
:parall el
/ts/tcl/itcl
/ts/tc2/tc2
/ts/tc3/tc3
:endparal | el

or:
exanpl e of parallel processing using an attached el ement
al |
"the test cases in scenario 'scenl are processed in parallel”
;parallel: scenl
scenl
/ts/tcl/tcl
/ts/tc2/tc2
/ts/tc3/tc3
Page 40 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

or:
anot her exanple of parallel processing using a referenced scenari o nane
al |
"the test cases in scenario 'scenl’ are processed in parallel"
:parall el
“scenl
. endparal | el
scenl
/ts/tcl/itcl
/ts/tc2/tc2
/ts/tc3/tc3
or:
exanpl e of parallel processing using an include file
al |
"the test cases listed in the include file are processed in parallel™
cparallel:/ts/tclist
or:

anot her exanple of parallel processing using an include file
al |

"the test cases listed in the include file are processed in parallel™

:parall el
sinclude:/ts/tclist
:endparal | el

Note that the test suite is organised so that each test case resides in its own directory when a
par al | el directiveisused.

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

/\

/ts/tcl/tcl /ts/tc2/tc2 /ts/tc3/tc3

—

End

Figure 6. Processing test casesin parallel

13th January 1997 Page 41
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Example 3

In this example four instances of a single test case are executed at the same time. This scenario
must be processed with TET _EXEC | N_PLACE set to Fal se so asto ensure that each test case
instance executes in its own directory.

The scenario is defined as follows:

al |
cparallel,4: @ts/tcl

When t cc processes this scenario in build or clean mode, the test case is processed once.
However, when t cc processes this scenario in execute mode, four instances of the test case are
executed at the same time.

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

/ts/tcl /ts/tcl /ts/tcl /ts/tcl

Figure 7. Processing multiple instances of asingletest casein parallel

Page 42 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Example 4
This example illustrates how t cc processes nested referenced scenario names within the scope of
apar al | el directive differently in dTET2 and ETET compatibility modes.

The scenario is defined as follows:

al |
;parallel:"scenl
scenl
/ts/tcl/tcl
“scen2
scen2

/ts/tc2/tc2
/ts/tc3/tc3

In dTET2 mode al the test cases are processed in paralel. In ETET mode the objects defined at
the top level of scenl are processed in parallel. However, if an object expands to more than one
element, these elements are processed in sequence.

The way in which t cc processes this scenario in dTET2 mode may be represented by the
following diagram:

///////////////\\\\\\\\\\\\\\\

/ts/tcl/tcl /ts/tc2/tc2 /ts/tc3/tc3

—

End

Figure 8. Processing referenced scenario elementsin parallel when in dTET2 mode

13th January 1997 Page 43
X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

TET3-PG-1.0

The way in which t cc processes this scenario in ETET mode may be represented by the

following diagram:

Start

/ts/tcl/tcl

/ts/tc2/tc2

End

/ts/tc3/tc3

Figure 9. Processing referenced scenario elementsin parallel when in ETET mode

Example 5

In this example the named test cases are processed within the scope of ar epeat directive.

The scenario is defined as follows:

al |
:repeat, 10:
/ts/tcl
/tsltc2
/ts/tc3
:endr epeat :

When t cc processes this scenario in build or clean mode, the sequence of test casesis processed
once. However, whent cc processes this scenario in execute mode, the sequence of test casesis

executed 10 times.

Page 44

X/Open Company Ltd

13th January 1997

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

Restart No
loop?

Yes

/ts/tcl

/ts/tc2

/ts/tc3

L]

Figure 10. Processing ar epeat directive in execute mode

Example 6

In this example two instances of the list of test cases within the scope of ar epeat directive are
processed in parallel.

The scenario is defined as follows:

al |

:parallel,2;repeat, 10: “scenl
scenl

/ts/tcl

/ts/tc2

/ts/tc3

Since this scenario contains a looping directive within the scope of a par al | el directive, the
compatibility mode must be specified in order to enable t cc to interpret the scenario correctly.
When t cc reads this scenario in ETET mode, it inserts an implied sequential directive between
theparal | el andr epeat directives. However, no directives are added when t cc reads this
scenario in dTET2 mode. It can be seen that without the implied sequential directive the
directive nesting rules have been violated so t cc cannot process this scenario in dTET2 mode.

Note that since it is possible for more than one instance of a test case to execute at once,
TET_EXEC | N_PLACE must be set to Fal se when this scenario is executed.

When t cc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, when t cc processes this scenario in execute mode, two sequences
of test cases areinitiated at the same time and each sequence is executed 10 times.

13th January 1997 Page 45
X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

TET3-PG-1.0

The way in which t cc processes this scenario in execute mode may be represented by the

following diagram:

Yes

/ts/tcl

/ts/tc2

/ts/tc3

L]

Figure 11. Processingr epeat directivesin paralel

Example7

Yes

/ts/tcl

/ts/tc2

/ts/tc3

L]

-

End

In this example two instances of atimed loop execute in parallel. In each loop a single test case
is chosen at random from the list of test cases. Each loop is repeated until its execution time has

exceeded 300 seconds.

The scenario may be defined as follows:

:parallel,?2;timed_| oop, 300; random “scenl

al l
scenl
/ts/tcl
/ts/tc2
/ts/tc3
Page 46

X/Open Company Ltd

13th January 1997

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

or asfollows:
al |
:parallel,?2;tinmed_| oop, 300; random
/ts/tcl
/ts/tc2
/ts/tc3
: endr andom endt i ned_| oop; endpar al | el
or asfollows:
al |

cparallel, 2:
:tined_l oop, 300:
: random

/ts/tcl

/ts/tc2

/ts/tc3

:endr andom
sendtimed_| oop:
:endparal | el

The versions of this scenario shown here illustrate how the same scenario may be written with or
without the use of directive groups.

Like the scenario in the previous example, this scenario must be processed in ETET mode and
with TET_EXEC | N_PLACE setto Fal se.

When t cc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, whent cc processes this scenario in execute mode, two instances of
the timed loop are initiated at the same time. Each timed loop instance iterates until 300 seconds
have expired. During each iteration of each loop instance, asingle test caseis selected at random
from the list and executed.

13th January 1997 Page 47
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The way in which t cc processes this scenario in execute mode may be represented by the
following diagram:

Select one of ; Select one of ;
/ts/tcl /ts/tcl
/ts/tc2 /ts/tc2
/ts/tc3 /ts/tc3
at random at random
L] L]

-

End

Figure 12. Processing randomly selected test casesin parallel for a specified period of time

Example 8
In this example the named test cases are processed as non-distributed test cases on several remote
systems.

The scenario is defined as follows:

al |
:renote, 001, 002:
/ts/tcl
/ts/tc2
/ts/tc3
: endr enpt e:

This scenario cannot be processed by TETware-Lite.

Whent cc processes each test case in this scenario, it starts the processing of instances of the test
case on each system specified by the r enpt e directive at the same time. Then, t cc waits for
the test case instance on each system to finish processing before it starts processing the next test
case.

Page 48 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Theway inwhicht cc processesthis scenario may be represented by the following diagram:

System 1 System 2

"

/ts/tcl /ts/tcl

X

/ts/tc2 /ts/tc2

X

/ts/tc3 /ts/tc3

N

Figure 13. Processing remote and distributed test cases

Example 9
In this example the named test cases are processed as distributed test cases on several remote
systems.

The scenario is defined as follows:

al |
:distributed, 001, 002:
/ts/tcl
/ts/tc2
/ts/tc3
:enddi stri but ed:

This scenario cannot be processed by TETware-Lite. The way in which t cc processes this
scenario may be represented by the same diagram as was used to represent the previous example.

13th January 1997 Page 49
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 50 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

5. Configuration files

5.1 Introduction

Each test suite has one or more configuration files associated with it. These files contain
configuration variable assignments which are specified by the test suite author. When t cc
processes test cases in a particular mode of operation, it reads variables from the configuration
file for that mode. So, each test suite should include a build configuration file, an execute mode
configuration file and a clean mode configuration file.

By default, configuration files for each test suite are located in the test suite root directory.
However, if an alternate execution directory is specified, the execute mode configuration file may
be located there instead if so desired. The name of the build mode configuration file is
t et bui | d. cf g, that of the execute mode configuration file ist et exec. cf g and that of the
clean mode configuration file is t et cl ean. cf g. However, the names of these files may be
overridden by t cc command-line options if so desired.

In Distributed TETware, configuration files for each mode must be provided on the local system
and on each remote system on which tests are to be processed. The names and locations of these
files on each remote system are the same as the ones described above for the local system. In
addition, afile containing distributed configuration variables must be provided only on the local
system when test cases are to be processed on remote systems or when the TETware network
code uses such variables. The name of distributed configuration fileist et di st. cfg anditis
located in the test suite root directory.

5.2 Useof configuration variables

Test suite authors may define variables in the per-mode configuration files which are to be used
by API-conforming tools and test cases. (Note that in Distributed TETware, variables defined in
the distributed configuration file cannot be accessed by test cases.)

TETware does not provide default values for user-defined variables. Therefore, test suite authors
should alow for the possibility that test suite variables may not be defined and ensure that test
cases behave sensibly in the event that a required variable is undefined.

In addition to user-defined configuration variables, test suite authors may define certain variables
that are used by TETware to determine how test cases are to be processed. These variables are
described in the sections that follow.

5.3 Configuration file format

Each (non-blank, non-comment) line in a configuration file specifies a configuration variable
assignment in the following format:

variable=value
Lines beginning with # and blank lines are ignored.

The first character in a variable' s name should be an alphabetic character. Subsequent characters
in the name should be an alphanumeric character or a _ character (an underscore). Names
beginning with the prefix TET_ arereserved for use by TETware.

13th January 1997 Page 51
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

5.4 Configuration variable processingin TETware-Lite

In addition to variables specified in configuration files, configuration variables may be specified
on thet cc command-line by means of one or more —v options. When a configuration variableis
specified in thisway, it is added to the configuration for each selected mode of operation.

Variables specified using the —-v command-line option have higher precedence than variables
specified in configuration files.

The way in which TETware-Lite processes configuration variables in each mode of operation is
illustrated in the following diagram:

configuration
file

Configuration
variable set

Figure 14. Configuration variable processing in TETware-Lite

5.5 Configuration variable processing in Distributed TETware

As indicated previously, when Distributed TETware is used, configuration variables for each
mode of operation may be specified on remote systems as well as on the local system. In
addition, it is possible to prefix a variable’s name with TET _REMnn_ in order to associate a
variable with aparticular system.

The Distributed t cc processes the configuration for each mode of operation by performing the
following actions:

1. tcc determines the location of the configuration file on the local system and reads in the
variables defined in thefile.

2. tcc adds in any variables defined on the command-line, giving them precedence over
variables defined in the configuration file. The set of variables derived in this way is
known as the master configuration for the particular mode of operation.

3. If thelocal system is mentioned in the chosen scenario, t cc uses the master configuration
to generate a configuration for the local system using the following precedence (highest
first):

— variableswitha TET_REMI0O0__ prefix defined onthet cc command line

Page 52 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

— other variables defined onthet cc command line
— variableswitha TET_REMIO0O__ prefix defined in the local configuration file
— other variables defined in the local configuration file

Then tcc removes any TET_REMDOO_ from each variable in the local system’'s
configuration. The set of variables derived in this way is known as the per-system
configuration for the local system.

4. For each remote system that is mentioned in the chosen scenario, t cc performs a
configuration variable exchange with tccd on that system, using the master
configuration. When performing this operation, t cc indicates which variables in the
master configuration originated from the command-line.

5. tccd readsin the variables defined in the configuration file on that system.

6. Thent ccd merges these variables with the master configuration received from the loca
system using the following precedence (highest first). In the text that follows, ‘‘local’ and
“‘remote’’ describe systems from t cc’s point of view and ‘‘a matching TET_REMnn_
prefix’” isaprefix in which nnn matches the system ID of the remote system.

— variables with amatching TET _REMhnn_ prefix defined on thet cc command line
— other variables defined on thet cc command line

— variables with a matching TET_RENMhnn_ prefix defined in the configuration file on
the remote system

— variables with a matching TET_REMhnn_ prefix defined in the master configuration
received fromt cc

— other variables defined in the configuration file on the remote system
— other variables defined in the master configuration received fromt cc

7. Findly, t ccd removes any matching TET _REMhnn_ prefix from each variable and returns
the merged configuration back tot cc. The set of variables derived in this way is known
asthe per-system configuration for that system.

From this description it will be seen that it is possible to define a variable on the local system that
isto appear in the master configuration and in the per-system configurations for both the local and
remote systems. Such variables may be defined in a configuration file on the local system or on
thet cc command line. In addition, it is possible to define a variable in a configuration file on a
remote system that is to appear in the per-system configuration for that system.

However, it is not possible to define a variable in a configuration file on aremote system that isto
appear in the master configuration or in the per-system configuration for another system.

13th January 1997 Page 53
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The way in which Distributed TETware processes configuration variables in each mode of
operation isillustrated in the following diagram:

Local system

configuration command-line
file variables

Remote system

configuration
file

Master
configuration
|
|
|
! merge
: & trim
[
|
|
|
|
|
Per-system Per-system I
configuration configurations :
for the for each |
local system remote system [
|
|
|
|

Figure 15. Configuration variable processing in Distributed TETware

The result of all thisis that when Distributed TETware is used you can specify variables that are
read from each of the per-system configurationsin several ways.

Configuration variables may be specified both on the local system and on any remote systems that
are to participate in remote or distributed testing. In this context, the local system is the system
onwhich t cc isrun (whether or not any test cases run on this system), and remote systems are
other systems on which test cases or test case parts are run. When reading the discussion that
follows, you should bear in mind that the local system always has a system ID of zero; other
system IDs always refer to remote systems.

Configuration variable assignments made on the local system are propagated to each of the
remote systems; however, configuration variable assignments made on a remote system normally
have precedence over those that are propagated from the local system.

Page 54 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

For example, if the following assignment is made on the local system:
TET_BU LD TOOL=nake

then, the value of TET_BUI LD _TOOL will be set to make on the local system and on all the
remote systems.

If the following assignment is made on one of the remote systems:
TET_BUI LD_TOOL=augnake

then the value of TET_BUI LD_TOOL is changed to augnmake only on that remote system, and
remains unchanged on all of the other systems.

It is possible to direct a variable assignment made on the local system to a particular system by
prefixing its name with TET _REMhnn_ where nnn is the ID of the system that is to receive the
variable.

So, if the following assignments are made on the local system:

TET_BUI LD_TOOL=nake
TET_REMD02_TET_BUI LD_TOOL=augnake

then the value of TET_BUI LD_TOOL on remote system 002 is set to augnake and the value of
TET_BUI LD_TOOL on thelocal system and all the other remote systemsis set to nake.

Furthermore, the value of a TET_REMinn_ variable assignment made on the local system
overrides any assignment to the corresponding variable that may be made on system nnn. So, in
this case, the value of TET_BUI LD_TOOL on remote system 002 is set to augnake irrespective
of any assignment that might be made on that remote system.

Finaly, if the following assignments are made on the local system:

TET_BUI LD_TOOL=augmake
TET_REMDOO_TET_BUI LD_TOOL=nake

then the value of TET_BUI LD_TOCL on the local system will be set to make and the value of
TET_BUI LD _TOOL on al the remote systems will be set to augnake (provided that no
assignment for TET_BUI LD_TOCOL is made on any of the remote systems).

5.6 Configuration variableswhich modify TETware's
oper ation

This section describes configuration variables which affect the way in which TETware processes
atest suite. The variables described here should be set in the per-mode configurations.

In Distributed TETware, the values of some variables are read from the master configuration and
affect the way in which TETware processes test cases on all systems. By contrast, the values of
other variables are read from each per-system configuration and affect the way in which TETware
processes test cases on each individua system.

Some variables used by TETware are boolean variables, whereas others are string variables.
TETware provides default values are provided for al the boolean variables and some of the string
variables.

The following table lists all the variables used by TETware, the type of each value and the default
value supplied (if any). The last column indicates whether Distributed TETware obtains the
variable' s value from the master or the per-system configuration.

13th January 1997 Page 55
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide
Configuration variablesused by TETware
. Sourcein
Variable name Type Default value Distributed TETware
TET_API _COVPLI ANT boolean | inverse of master
TET_OUTPUT_CAPTURE
TET_BUI LD FAIL_FI LE string undefined per-system
TET_BUI LD FAIL_TOOL string undefined per-system
TET_BUI LD FI LE string undefined per-system
TET_BUI LD TOOL string undefined per-system
TET_CLEAN FI LE string undefined per-system
TET_CLEAN TOOL string undefined per-system
TET_COVPAT string undefined master
TET_EXEC FI LE string undefined per-system
TET_EXEC | N _PLACE boolean | Fal se master
TET_EXEC TOOL string undefined per-system
TET_QUTPUT _CAPTURE boolean | Fal se master
TET_PASS TC NAME boolean | sameas master
TET_OUTPUT_CAPTURE
TET_PREBUI LD FI LE string undefined per-system
TET_PREBUI LD _TOCL string undefined per-system
TET_RESCODES FI LE string tet code master
TET_SAVE _FI LES string undefined per-system
TET_TRANSFER SAVE FI LES | boolean | Fal se per-system

The meaning of each variable is asfollows:

TET_API _COVPLI ANT

TET _BUI LD FAIL_FILE

TET_BUI LD _FAI L_TOOL

TET_BUI LD FI LE

TET_BUI LD _TOOL

TET_CLEAN FI LE

Page 56

Specifies whether or not test cases and tools use a TETware
APIL. If true, test cases and tools are expected to use the AP
to print diagnostics and register results. If false, t cc treats
the test case or tool as if it consists of a single invocable
component containing a single test purpose. When t cc
processes the test case in execute mode, it prints the
messages to the journal file that would be printed by an API-
conforming test case and generates a test purpose result based
on the test case's exit status (zero = PASS, non-zero =
FAIL).

Names the file of instructions for the build fail tool. The use
of thisvariableis optional.

Names the utility to be executed if a prebuild or build
operation fails. The use of this variable is optional.

Names the file of instructions for the build tool. The use of
this variable is optional.

Names the utility to be executed when processing a test case
in build mode. This variable must be specified if build mode
is selected.

Names the file of instructions for the clean tool. The use of
this variable is optional.

13th January 1997
X/Open Company Ltd

TET3-PG-1.0

TET_CLEAN_TOOL

TET_COVPAT

TET_EXEC _FI LE

TET_EXEC | N_PLACE

TET_EXEC_TOOL

TET_OUTPUT_CAPTURE

TET_PASS_TC_NAME

TET_PREBUI LD _FI LE

TET_PREBUI LD_TOOL

TET_RESCCODES_FI LE

TET_SAVE_FI LES

13th January 1997

Test Environment Toolkit
TETware Programmers Guide

Names the utility to be executed when processing a test case
in clean mode. This variable must be specified if clean mode
is selected.

Specifies the compatibility mode to be used when
interpreting a scenario. Possible values are: dt et 2 to select
dTET2 compatibility mode or etet to seect ETET
compatibility mode. This variable must be specified if the
scenario contains ambiguous syntax.

Names the file of instructions for the exec tool. The use of
this variable is optional.

Specifies whether or not t cc should execute test cases ‘‘in
place’’. If false, t cc copies test case files to a temporary
directory before executing them. The setting of this variable
is only meaningful in execute mode.

Names the utility to be executed when processing a test case
in exec mode. Normally this variable is not specified, in
which case the test case is executed directly.

Specifies whether or not t cc should capture standard output
and standard error output from test cases and record it in the
journal. For historical reasons the value of this variable also
provides default values for the TET_API _COMPLI ANT and
TET_PASS TC_NAME configuration variables.

If true, t cc passes the name of the test case to be processed
on the command-line when executing abuild or clean tool. If
false, t cc does not pass a test case name to a build or clean
tool. Note that t cc always passes a test case name to a
prebuild, buildfail or exec tool.

Names the file of instructions for the prebuild tool. The use
of this variable is optional.

Names the utility to be executed before processing a test case
in build mode. In Distributed TETware, if the test case to be
processed in within the scope of a renpte or
di stribut ed directive which specifies more than one
system, the prebuild tool is only executed on the first system
inthelist. Theuse of thisvariableis optional.

This variable specifies the name of the result code file. When
more than one mode of operation is selected and this variable
is defined in more than one per-mode configuration, only the
first definition is significant. Thus the use of this variable to
specify a results code file is per t cc invocation and not per
mode of operation. The use of thisvariable is optional.

This variable specifies a (comma separated) list of file names.
If, after t cc executes atest case, afile matching one of these
names is found below the execution directory hierarchy, that
file is transferred to the saved file directory tree on the same

Page 57
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

system. If a directory is found that matches one of the
names, then its contents are transferred recursively. Shell file
name matching syntax may be used in the list of file names.
The use of thisvariable is optional.

TET_TRANSFER _SAVE_FI LES If true, files processed by Distributed TETware on a remote
system in accordance with the description of
TET_SAVE_FI LES above are transferred to the saved file
directory on the local system instead of being saved on that
remote system. The use of this variable is optional. This
variableisnot used in TETware-Lite.

5.7 Distributed configuration variables used by Distributed
TETware

This section describes distributed configuration variables. When Distributed TETware processes
test cases on remote systems, these variables inform t cc of the locations of test case files and
directories on each remote system. In addition, when Distributed TETware is built to use the XTI
network interface, certain distributed configuration variables are used by t cc’s network code.
The variables described here should be set in the distributed configuration file on the local
system.

The following table lists al of the distributed configuration variables used by Distributed
TETware. Separate values of each variable with a TET_REMhnn_ prefix must be supplied for
each remote system mentioned in the chosen scenario.

Distributed configuration variables used by Distributed TETware

Variable name Type Default value
TET_REVhNn_TET_EXECUTE string | undefined
TET_RENVhNn_TET_ROOT string | undefined
TET_REMNn_TET_RUN string | undefined

TET_REVMWNN_TET_SUI TE_ROOT | string | same asthe value of
TET_RENMhNN_TET_ROOT

TET_REMINN_TET_TMP_DI R string | tet_tnp_dir
TET_RENMhnn_TET_TSROOT string | undefined
TET_LOCALHOST string | undefined
TET_XTI _MODE string | tcp

TET_XTI _TPI string | /dev/tcp

The meaning of each variable is asfollows:

TET_REMhNN_TET_EXECUTE The vaues of these variables specify the locations of
alternate execution directories on remote systems. The use of
these variables is optional but, if they appear, they perform
the equivalent functions on remote systems to that performed
by the value of the TET EXECUTE environment variable on
the local system. The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

Page 58 13th January 1997
X/Open Company Ltd

TET3-PG-1.0

TET_REMhnn_TET_ROOT

TET_REMhnn_TET_RUN

Test Environment Toolkit
TETware Programmers Guide

The values of these variables specify the locations of tet root
directories on remote systems. One of these variable
assignments must be made for each remote system that may
participate in remote or distributed testing. The values of
these variables are passed to test cases and tools in the
environment as communication variables on each system.

The values of these variables specify the locations of runtime
directories on remote systems. The use of these variables is
optiona but, if they appear, they perform the equivaent
functions on remote systems to that performed by the value
of the TET_RUN environment variable on the local system
(refer to the section entitled ** Environment variables’” earlier
in this chapter). The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMhnn_TET_SUl TE_ROOT

TET_REMhnn_TET_TMP_DI R

TET_REMhnn_TET_TSROOT

These variables are not used by TETware but, when
specified, are passed to test cases and tools in the
environment as communication variables on each system.
This is done in order to enable existing ETET test cases
which rely on the presence of a TET_SU TE ROOT
environment variable to be processed on a remote system by
Distributed TETware.

The values of these variables specify the locations of
temporary directories on remote systems which are used
instead of the default location when TET _EXEC | N_PLACE
is false. The use of these variables is optional but, if they
appear, they perform the equivalent functions on remote
systems to that performed by the value of the
TET_TMP_DI R environment variable on the local system.

The values of these variables specify the locations of test
suite root directories on remote systems. One of these
variable assignments must be made for each remote system
that may participate in remote or distributed testing.

In addition, the following distributed configuration variables are accessed by t cc’s network
transport code when the XTI network interface is used:

TET_LOCALHOST

13th January 1997

This variable must be specified when the XTI network
interface is used and the underlying transport provider is
TCP/IP. The value of this variable should be the Internet
address of the local system. This address is presented in dot
notation and must be an address that can be used to access the
local system from remote systems (i.e., it should not be the
address of the loopback interface). All four fields in the
address must be specified.

Page 59
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

TET_XTI _MODE Possible values: t cp (to indicate TCP/IP) or osi co (to
indicate the OSI connection-oriented transport).
The value of this variable indicates the underlying transport
provider to be used.

TET_XTI _TPI The name of the XTI transport provider identifier on the local
system.

Page 60 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

6. Other test suitefiles

6.1 Introduction
This chapter describes the formats of other files that may be provided with each test suite.

6.2 Result codes

6.2.1 Description

A mapping mechanism is provided to enable TETware processes to interpret results from test
suites. This mapping is contained in aresult codes file. When atest purpose returns a particular
result, the TCM determines the action required for each result code and writes an entry in the
journal. The API library ensures that the test purposes only generate standard or test suite
specified results.

TETware provides the default set of result codes that are defined in IEEE Std 1003.3-1991.
Additional result codes may be defined on a per installation or per test suite basis.

6.2.2 Result code definitions

TETware provides the standard result code definitions. The user can supply additional result
code definitions. The standard codes are defined in an internal table provided by TETware. Itis
an error for the user to assign different meanings to the standard codes.

The provision of user-supplied result code files is optional. User-supplied codes for use by all
test suites may be defined in afile which is located in the tet root directory. User-supplied codes
for use by a particular test suite may be defined in afile which is located in that test suite’s test
suiteroot directory. When Distributed TETware is used these file reside on the local system.3

By default, the names of each user-supplied fileist et _code. However, a different name may
be defined by use of the TET_RESCODES_FI LE configuration variable. t cc determines the
name of each user-supplied result code file using the following algorithm:

o If build mode has been selected and TET _RESCODES FI LE is defined in the build
configuration file, then that value is used.

e If no file name has yet been determined and execute mode has been selected and
TET_RESCODES_FI LE is defined in the execute configuration file, then that value is
used.

o If no file name has yet been determined and clean mode has been selected and
TET_RESCODES FI LE isdefined in the clean configuration file, then that value is used.

o If no file name has yet been determined thent et _code isused.

13. That is: the system on which t cc isinvoked.

13th January 1997 Page 61
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

When result code files are supplied, the precedence of result definitions is as follows (highest
precedence first):

o Codes defined in thefile at the test suite root level.
o Codes defined in the file at the tet root level.
o Codes defined in the internal table provided by TETware.

This precedence isillustrated in the following diagram:

Standard
result codes

User-supplied
per-installation
result codes

User-supplied
per-test suite
result codes

Result codes
used by
TETware components

Figure 16. Precedence of result code definitions

6.2.3 Fileformat

Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields, defined as follows:

1. The result code. This is a non-negative decimal integer between O and 127, inclusive.
Result codes from 0 to 31 (inclusive) are reserved for use by TETware. The remainder are

available for use by the test suite author.

2. The name of thisresult. Thisis afield delimited by double quotes which contains a text
string describing the result. Thisfield may contain embedded spaces.

3. The action to take when this result is encountered. Thisis an indication of what the TCM
should do when the result is returned by a test purpose. Possible values are Cont i nue

Page 62 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

and Abor t . The default value for thisfield is Cont i nue.

6.2.4 Exampleresults codefile

The following is an example result codes definition file. It contains some user-defined result
codes as well as the standard result codes provided by TETware.

first, the standard result codes

0 ' PASS" Cont i nue
1 "FAI L" Cont i nue
2 " UNRESOLVED"' Cont i nue
3 " NOT| NUSE" Cont i nue
4 " UNSUPPORTED" Cont i nue
5 " UNTESTED"' Cont i nue
6 "UNI NI TI ATED" Cont i nue
7 " NORESULT" Cont i nue
then, sone codes for use with this test suite
32 "I NSPECT" Cont i nue
33 "STOP RUN' Abor t

6.3 System definitions

6.3.1 Description

Distributed TETware uses a systems definition file to define the mapping of a TETware
system ID to a host name or other parameter which may be used by the network code to establish
aconnection with that system. The systems definition fileis not used by TETware-Lite.

The name of thisfileissyst ens and it islocated in the tet-root directory on each system.

When remote or distributed testing is to be performed, TETware components on each
participating system each refer to the syst ens file on that system when mapping a TETware
system ID to a network address. You must ensure that the same mappings are defined on all
participating systems, otherwise unpredictable behaviour will occur.

In addition, test cases can access entries in the system definition file by caling the
tet _getsyshyi d() API function.

6.3.2 Fileformat

Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields. The first field contains the TETware system identifier. System zero must
aways refer to the system on which t cc is to be invoked (the master or local system). Other
(remote or slave) systems are specified by system identifiers with positive values. The value of
the system identifier for aremote system must be in the range 1 through 999.

When Distributed TETware is built to use the socket network interface, each entry in the
syst ens filetakes the following form:

sysid host

The system is identified by the value in the host field. The host name lookup functions on each
system must be able to perform address resolution on each host name listed in the sy st ens file.
Note that it is usually an error to specify a host name as| ocal host since that name cannot be
used to connect to another system.

13th January 1997 Page 63
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

When Distributed TETware is built to use the X/Open Transport Interface (XTI), each entry in
thesyst ens filetakes the following form:

sysid host address-string
The host field is not used when Distributed TETware is built to use X TI.1#

The address-string field contains a hexadecimal string representation of a data item which is used
to identify the address of a network endpoint. The network endpoint thus identified must refer to
the entity which is used by the Test Case Controller daemon (t ccd) on the named system to
accept connections from client processes. Each byte in the data item is represented by a pair of
hexadecimal digits in the address string; for example, a byte in the data item with decimal value
13 is specified in the address string as 0d. The precise format of the data item depends on which
transport provider is being used.

6.3.3 Examplesyst ens files

Here are some example syst ens files. Note that, in each example, one of the machines is
referenced by more than one logical system ID.

The following example is for a machine on which TETware has been built to use the socket
network interface:

Exanple systemfile for INET inplenentation on host 'ozone

000 ozone
001 neon
002 argon
003 ozone

Entries for al the host names mentioned in this file should appear in the hosts database on each
system.

The following example is for a machine on which TETware has been built to use the XTI
network interface:

Exanple systemfile for XTI inplenentation on host 'ozone

000 ozone 000204010a010200000000000000000000
001 neon 000204010a010300000000000000000000
002 argon 000204010a010400000000000000000000
003 ozone 000204010a010200000000000000000000

The contents of the XTI address string depends on the transport being used, the network
implementation and the architecture of the machine on which the file resides. Therefore,
athough the XTI address strings specified for a particular system in the syst ens files on each
machine must describe the same transport address, the contents of this field for a particular entry
may be different on different types of machine.

14. However, test cases may still accessthe value in thisfield by calling thet et _get sysbyi d() API function.

Page 64 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

7. TheTest Case Manager

7.1 Introduction

TETware supplies functionality to support the development of test cases. This chapter describes
that functionality for a Test Case Manager (TCM) or ‘‘wrapper’’ that provides a suitable
environment for the execution of invocable components as requested by the Test Case Controller
(tcc).

The TCM is not a separate program but instead is part of each TETware API. Whichever
language binding is used, the appropriate version of the TCM and API are linked with the user-
supplied test code to produce each test case.

TETware-Lite and Distributed TETware provide different versions of the C and C++ TCMs.
However, the same versions of the Shell, Korn Shell and Perl TCMs are supplied with both
Distributed TETware and TETware-Lite. Thisis because in Distributed TETware the C and C++
TCMs support distributed test cases whereas the others do not.

In addition to the normal TCMs, each version of TETware provides versions of the C and C++
TCMs which are suitable for use in multi-threaded environments on UNIX systems. When either
version of TETware is built on a UNIX system, the user may choose to configure the thread-safe
versions of the C and C++ TCMs to support either Ul or POSIX threads (but not both at the same
time).

It can be seen that there are a number of TCM options from which to choose. The test suite
author should ensure that the correct APl is used with each TCM. The following TCM/API
options are available:

o TETware-Lite, C TCM/API, single-threaded version.

e TETware-Lite, C++ TCM, single-threaded version, use with the single-threaded C API
library.

e TETware-Lite, C TCM/API, multi-threaded version.

e TETware-Lite, C++ TCM, multi-threaded version, use with the multi-threaded C API
library.

o Distributed TETware, C TCM/API, single-threaded version.

« Distributed TETware, C++ TCM, single-threaded version, use with the single-threaded
C AP library.

o Distributed TETware, C TCM/API, multi-threaded version.

e Distributed TETware, C++ TCM, multi-threaded version, use with the multi-threaded
C API library.

o TETware-Lite or Distributed TETware, Shell TCM/API.
e TETware-Lite or Distributed TETware, Korn Shell TCM/API.
e TETware-Lite or Distributed TETware, Perl TCM/API.
Note that test cases using the Distributed versions of the C and C++ TCMs must always be run

under control of the Distributed TETware TCC. They cannot be run stand-alone or under the
control of the TETware-Lite TCC. Test cases which use the other TCMs may be run stand-alone

13th January 1997 Page 65
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

or under control of either TCC.

Through the TCM, developers gain support in doing the following:
« Initialising and cleaning-up test cases.
« Selecting invocable components and test purposes.
« Insulating from the test environment.

o Making journal entries.

7.2 TCMsin Distributed TETware

The description presented in this section apply only when the C and C++ TCMs are used with
Distributed TETware. It does not apply when other TCMs or TETware-Lite is used.

When the Distributed version of a TCM is used to manage parts of the same distributed test case
running on different systems, one TCM assumes the role of master and the others assume the role
of slaves. However, unlike previous DTET implementations, the master system is not
constrained to be the system on which t cc isinvoked. Indeed, it is possible for the Distributed
TCC to control both distributed and non-distributed test cases which are processed entirely on
remote systems.

The identity of master and slave TCM is determined as follows: when the Distributed TCC
processes a test case, it does so with reference to alist of systems on which the test caseis to be
processed. Initialy thislist contains only one entry for the local system (system ID 0). However,
this list is updated when t cc processes test cases specified within the scope of ar enot e or
di stri but ed directive in the test scenario. When t cc executes either a distributed or a non-
distributed test case on a particular system, it communicates the system’s ID to the TCM. When
t cc determines that a test case is a distributed test case, it communicates the list of all the
participating systems to the TCM that is managing each test case part. However, when t cc
determines that a test case is a non-distributed test case, it communicates a system list to the
TCM which contains only that TCM’s system ID.

So a TCM aways knows the ID of the system on which it is running and can determine whether
or not it is processing a distributed test case by counting the number of system IDsin the list that
it receives fromt cc. A Distributed TCM acts as a master TCM if its system ID is the first (or
only) ID in the list. Conversely, a Distributed TCM acts as a ave TCM if its system ID is the
second or subsequent ID in thelist.

Since all the parts of a distributed test case share the same execution results file, it is appropriate
for only one of the test case parts to print TCM Start, IC Start, IC End and TP Start messages to
the execution resultsfile. Thisfunction isonly performed by the master TCM in adistributed test
case.

In addition, Distributed TCMs that are managing parts of a particular test case on different
systems all synchronise with each other at certain points during test case execution. These
synchronisation points occur at the following times:

o At TCM startup time.
« Before the user-supplied startup function is called by the TCM.
« Before the first test purpose function in an invocable component is called by the TCM.

Page 66 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

« Before each test purpose function is called by the TCM.
« When each test purpose function returns control to the TCM.
« Before the user-supplied cleanup function is called by the TCM.

Thus it can be seen that TCMs which support distributed testing ensure that each part of a
distributed test case keepsin step with all of its peers throughout the execution process. Refer to
the chapter entitled ‘*Test case synchronisation’” in the TETware User Guide for details of
synchronisation between TCMs that are managing the different parts of a distributed test case.

7.3 TCM flow of control

The genera flow of control for test cases written to the TETware API is as follows. When
Distributed TETware is used to execute parts of a distributed test case, this processing takes place
on each participating system except where noted otherwise. When TETware-Lite or TCMs that
do not support distributed testing are used, processing that is described as being associated with
distributed test casesis not performed.

1. TheTCM arrangesfor accessto its respective configuration information.

2. The TCM outputs a Test Case Manager start message to the execution results file. When
processing a distributed test case this operation is only performed by the master TCM.

3. The TCM builds alist of test purposes to be executed from the list of requested invocable
components. If no invocable components were requested, or if the specia invocable
component al | is requested, the TCM builds this list from all of the invocable
components in the test case.

4. The TCM arranges for the processing of asynchronous events.'®

When processing a distributed test case, all the TCMs synchronise with each other before
executing their respective start-up procedures (if any).

6. When processing a distributed test case, all the TCMs synchronise at the commencement of
each invocable component.

7. The TCM prints an Invocable Component Start message to the execution results file before
it executes each invocable component. When processing a distributed test case this
message is printed by the master TCM.

8. When processing a distributed test case, all the TCMs synchronise at the commencement of
each test purpose. During this synchronisation process the TCMs ensure that they are
executing a common test purpose.

9. The TCM prints a Test Purpose Start message to the execution results file before it
executes each test purpose. When processing a distributed test case this message is printed
by the master TCM.

10. The TCM executes each test purpose in the invocable component.

15. But see the section entitled ** Portability’’ later in this chapter.

13th January 1997 Page 67
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

11.

12.

13.

14.

15.

16.

17.

During the test purpose any test case information lines generated by the user-supplied test
code are entered into the execution resultsfile.

If an event occurs which interrupts the processing of atest purpose, the interrupted process
immediately proceeds to the end of the test purpose and outputs a test result of
UNRESOLVED. If the event is a termination message from the TCC, the TCM reports
receipt of the message to the execution results file, executes the specified clean-up
procedure (if any) and exits; otherwise it continues by processing the next test purpose.®

If a TCM is about to execute a test purpose that has been marked as cancelled, it instead
reports the test purpose as UNI NI TI ATED and continues to process the next test purpose
(if any). If atest purpose has been marked as cancelled in one part of a distributed test
case, the TCM informs al the others of the cancellation during the automatic
synchronisation at the start of the test purpose.

When processing a non-distributed test case, the TCM prints a test purpose result to the
execution results file at the end of each test purpose. When processing a distributed test
case, al the TCMs synchronise at the end of the test purpose. The execution results
daemon gathers the partial results recorded by each test purpose part, arbitrates between
them and prints the consolidated result to the execution resultsfile.

Once all of the test purposes in an invocable component have been executed, the TCM
outputs an Invocable Component End message to the execution results file and moves on to
the next invocable component. When processing a distributed test case this message is
only printed by the master TCM.

After all test purposes for al requested invocable components have been executed, the
TCM executes the specified clean-up procedure (if any) and exits normally.

If for any reason, a particular TCM fails to execute the requested set of invocable
components or the specified start-up or clean-up procedure, the relevant APl will exit
abnormally. When a distributed test case is being processed and one test case part
terminates abnormally, this event is communicated to the other parts at the next automatic
synchronisation point; whereupon they also terminate without executing any more test
purposes.

7.4 Portability

The Cruntime support on the WindowsNT operating system does not realy support the
asynchronous event handling that is provided by the signal mechanism on a UNIX system.
Therefore the Windows NT versions of the C TCM do not attempt to handle asynchronous events
of thistype.

This and other issues related to the processing of test cases on a WindowsNT system are
discussed in the appendix entitled ‘‘Implementation notes for TETware on WindowsNT
systems’’ in the TETware User Guide.

16. But see the section entitled ** Portability’’ later in this chapter.

Page 68 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8. TheC API

8.1 Introduction

This chapter describes the TETware C API. Different versions of the C APl are supplied with
TETware-Lite and Distributed TETware. The Distributed version of the C APl may be used
when writing both distributed and non-distributed test cases, whereas the Lite version of the
CAPI may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

The synopses here are described in accordance with the International C Standard SO 9899. An
SO 9899 or Common Usage C (as defined in SO 9945-1) conforming compiler is required to
develop test cases using these interfaces. See the chapter entitled ‘*Writing a C language API-
conforming test suite’’ for an example of how to write a C language based test suite.

8.2 C language binding

On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

o tet-root/ | i b/ t et 3/ 1 i bapi . a contains the support routines for test purposes.

o tet-root/ | i b/ tet 3/t cm o contains the TCM. This file contains the routine mai n()
and associated support routines for the sequencing and control of invocable components
and test purposes.

o tet-root/ | i b/tet 3/tcnthil d. o contains the child process controller. This file
contains a mai n() routine which can be used by test suites when building processes
which test purposeswill launch usingthet et _exec() andt et _spawn() interfaces.

o tet-root/ | i b/t et 3/t cnr em o contains the remote executed process controller. This
file contains amai n() routine which can be used by test suites when building processes
which test purposes will launch using the t et _renexec() interface. Note that in
Distributed TETware the use of t et _remexec() (and therefore the use of this file) is
deprecated. It is possible that this file may be removed from a future TETware release.
Thisfileisnot supplied in TETware-Lite.

o tet-root/ i nc/tet 3/tet _api.h contains prototypes for the functions, declarations of
al the global variables, and definitions of all the structures and manifest constants that
constitute the C API.

The names of these files are similar on Windows NT systems; the differences are that object files
(. ofiles) instead have a. obj suffix and library files (. a files) instead have a. | i b suffix.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate for the available Software Generation System. Test suite authors are advised to allow
easy specification of alternate path names for these files (possibly through TETware configuration
variables), thusimproving the flexibility of their suites.

On UNIX systems a thread-safe version of the C API is supplied in addition to the standard (that
is: single-threaded) version described here. Digtinct versions of the thread-safe C APl are
supplied with Distributed TETware and TETware-Lite. Differences between the standard and
thread-safe APIs are described in the chapter entitled ‘‘The Thread-safe C and C++ APIS’

13th January 1997 Page 69
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

elsawherein this guide.

The interfaces described in this chapter can also be used by test cases written to the C++ language
binding, athough the names of the files containing these interfaces are different. As with the
C AP, the C++ language binding is provided in both standard and thread-safe versions, and
distinct versions of each are supplied with Distributed TETware and TETware-Lite. The C++
API isdescribed in more detail in the chapter entitled ** The C++ API'’ elsewherein this guide.

8.3 TCC dependencies

Test cases built to the Lite version of this APl may be either be executed stand-alone or under the
control of either TCC version. Test cases built to the Distributed version of this API require the
Distributed TCC to execute; they cannot be executed stand-alone. This is because the amount of
effort required to establish an environment in which test cases could execute without the TCC is
substantial. This applies especialy to the requirement for test purpose synchronisation and result
arbitration.

The TCC uses communication variables to pass information to the API. [f the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTI VI TY
defaults to O and TET_CONFI G to none. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codes are used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when atest case is executed stand-alone.

Page 70 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.4 Test case structure and management
8.4.1 Introduction

These variables are used when test cases areinitialised and cleaned up, and in selecting invocable
components and test purposes to execute. Some of these variables are provided by the AP,
whereas others must be defined in each test case.

842 tet testlist,tet _startupandtet cl eanup
Synopsis

struct tet_testlist {
void (*testfunc)(void);
int icref;
i
struct tet _testlist tet_testlist[];
void (*tet_startup)(void);

void (*tet_cl eanup)(void);

Description

These variables must be defined in the user-supplied test code. They provide the means by which
the TCM calls user-written test functions.

Thetet testlist[] aray consists of an array of t et _testli st structures and must be
defined in the user-supplied test code. Each element in this array defines a user-supplied test
purpose function that may be called by the TCM. Members of thet et testli st structure
have meanings as follows:

testfunc A pointer to the test purpose function.

i cref The number of the invocable component to which this function belongs.

Thetet testlist[] array isterminated by a structure with the t est f unc element set to
NULL. No other element of the array will use the value NULL for this element.

For each requested invocable component, the TCM scansthetet _testlist[] array and
executes, in order, each test purpose that is associated with that invocable component. When
al | invocable components are requested, the TCM executes al |Cs for which entries are defined
inthetet testlist[] array, in ascending order. In both cases the TCM will calculate the
number of test purposesthat are to be executed for each requested invocable component.

The TCM does not perform any error checking on the contents of thet et _testlist[] array.
It is the test author’s responsibility to ensure that the contents of the array is correctly specified.
In particular, it should be noted that in a distributed test casethet et _testlist[] structure
must be exactly replicated on each system that is to participate in the test and, therefore, contain
the same number of members. This may require the inclusion of test purposes on some systems
that do nothing except register aresult of PASS.

The function pointerst et _startup andt et _cl eanup must be defined in the user-supplied
test code. These pointers may be initialised with the addresses of the functions to be used to
perform test case specific start up and clean up procedures, respectively. The start up procedure
is executed before the first requested invocable component and the clean up procedure is executed

13th January 1997 Page 71
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

on completion of the last requested invocable component. These routines are executed
irrespective of which invocable components are requested. If atest case does not need to perform
actions on start up and/or clean up, the corresponding pointer should be initialised to
TET_NULLFP (aNULL function pointer, definedint et _api . h).

843 tet _thistest,tet _nosigreset andtet_ pnane
Synopsis

int tet thistest;
int tet_nosigreset;

char *tet_pnane;

Description
These variables are provided by the API.

Thet et _thistest variable contains the sequence number (starting at 1) of the element in the
tet_testlist[] array that is associated with the currently executing test purpose. During
execution of the start up and clean up functions, t et _t hi st est isset to zero.

Thevaue of t et _nosi gr eset determines whether or not the TCM reinstates signal handlers
for unexpected signals before each test purpose function is called. Initially this variable contains
avalue of zero but this may be changed by the user-supplied test code. The default value of zero
means that signal handlers will be reinstated before each test purpose, in order to ensure that
unexpected signals do not go unnoticed if an earlier test purpose installed alocal handler but does
not restore the original handler before returning control to the TCM.

If tet_nosigreset is set to a non-zero vaue in the start up function called via
(*tet _startup) (), then signal handlers will be left in place between test purposes. In test
cases where stray signals constitute a test failure, it is recommended that t et _nosi gr eset is
left with its default value of zero. This is because, even if test purposes contain code to restore
the signal handling, this code will not be executed if an unexpected signal arrives and the TCM
skips to the start of the next test purpose.

The t et _pnane variable points to the process name as given on the test case command line.
This variable is also provided in subprograms that are linked with one of the TETware child
process controllers.

Portability

Setting the value of t et _nosi gr eset hasno effect on aWindows NT system.

Page 72 13th January 1997
X/Open Company Ltd

TET3-PG-1.0

Test Environment Toolkit
TETware Programmers Guide

8.5 Insulating from thetest environment

Description

The following configuration variables are used by the C language TCM to help determine which
events should be handled for the test case, and which should be passed through. They are used by
the TCM to support functionality to insulate test cases from the test environment.

TET SIG I GN

TET_SI G LEAVE

defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left (see TET_SI G LEAVE below) with its current
disposition, will be caught when raised and the result of the test purpose will
be set to UNRESCLVED because of the receipt of an unexpected signal. A
test purpose may undertake its own signa handling as required for the
execution of that test purpose. The disposition of signals will be reset after
the test purpose has completed, unless the global variable
tet _nosi greset is non-zero. The TCM needs to know how many
signals the implementation supports in order to set up catching functions for
these signals.

defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

The implementation on UNIX systems does not alow the signas defined by POSIX.1 (ISO
9945-1) to be set to be ignored or left unchanged, as this may pervert test results.

Portability

The facilities described here are not provided on Windows NT systems.

13th January 1997

Page 73
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.6 Error handling and reporting
8.6.1 Introduction

Many of the API functions return error indications. The API provides the following variables for
use when determining and reporting the cause of these errors.

86.2tet _errno
Synopsis

int tet_errno;

Description

When an API function returns a value which indicates that an error has occurred, the APl stores a
value in the global t et _er r no variable which indicates the cause of the error. The APl does
not alter the value of this variable when acall to an APl function is successful.

Distributed TETware uses a client/server architecture and calls to severa of the API functions
cause the API to send requests to server processes. A server sends a reply code in response to
each request that it receives. When the reply code indicates that a request has failed, the value
storedint et _err no isderived from the server reply code. A list of the server reply codes and
their meanings is presented in the appendix entitled *‘ Server reply codes’ in the TETware User
Guide.

The following error codes may be used by the API. These codes are defined int et _api . h.
Note that not all of them may be visible outside of the API.

TET_ER 2BI G Argument list too long.

TET_ER _ABORT Abort TCM on TP end.

TET_ER _CONTEXT Request out of context.

TET_ER DONE Event finished or aready happened.
TET_ER DUPS Request contained duplicate IDs.
TET_ER ERR General error code.

TET_ER FI D Bad identifier infile i/o request.
TET_ER FORK Can't fork.

TET_ER | NPROGRESS Event in progress.

TET_ER | NTERN Server internal error.

TET_ER | NVAL Invalid parameter.

TET_ER LOGON Not logged on to server.

TET_ER MAG C Bad magic number in server request.
TET_ER _NCENT No such file or directory.

TET_ER PERM Privilege request/kill error.
TET_ER PID No such process.

TET_ER _RCVERR Receive message error.

TET_ER REQ Unknown request code.

TET_ER_SI GNUM Bad signal number.

TET_ER SNI D Bad sync identifier in SYNCD request.
TET_ER SYNCERR Sync completed unsuccessfully.
TET_ER SYSI D System identifier not in system name list.
TET_ER TI MEDOUT Request or system call timed out.
TET_ER TRACE Tracing not configured.

Page 74 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

TET_ ER WAIT Process not yet terminated.
TET_ER XRI D Bad execution results file identifier in XRESD request.

Whenever an unsuccessful APl call setst et _errno to TET_ER_ERR (the genera error code),
adiagnostic message is generated somewhere which contains more precise details of the cause of
the error. If an error of this type occurs in the APl library, the diagnostic is printed to the
execution results file as a TCM/API message if possible; if this is not possible, the diagnostic is
printed on the test case’ s standard error stream.

However, in Distributed TETware, an error of this type can also occur in a server process. Inthis
case the more detailed error message is printed on the server’s standard error stream. The result
of thisisthat when an API call is unsuccessful in Distributed TETwareandt et _errno issetto
TET_ER_ERR, the more detailed error message often appears in a TCCD log file on the local
system or on one of the remote systems that is participating in the test run.

863 tet _errlist andtet _nerr
Synopsis

char *tet_errlist[];

int tet_nerr;

Description

Thetet_errlist[] aray contains short text strings, similar to those listed in the previous
section, which describe each of the values defined fort et _er r no.

When a cal to an APl function is unsuccessful, the string obtained when the vaue of
tet _errnoisusedtoindex thetet errlist[] array may be used when an information
line is printed to the execution resultsfile by the test case.

The global variable tet _nerr is initialised to the number of strings provided in the
tet _errlist[] aray. The value of t et _errno should be checked against t et _nerr
before using it to index the array in order to guard against the possibility that a new error code is
added to the API before the corresponding message is added to the array.

13th January 1997 Page 75
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.7 Makingjournal entries
8.7.1 Introduction

These functions are provided for use by test cases when making entries in the execution result
file.

872 tet _setcontext() andtet set bl ock()
Synopsis

void tet setcontext(void);

voi d tet_setbl ock(void);

Description

Thet et setcontext () function sets the current context to the value of the current process
ID, and resets the block and sequence numbersto 1. A cal tot et _set cont ext () should be
made by any application which executes af or k() to create a new process and which wishes to
write entries from both processes. The call to t et _set cont ext () must be made from the
child process, not from the parent.

The t et _set bl ock() function increments the current block ID. The value of the current
block ID isreset to one at the start of every test purpose or after acall tot et _set cont ext ()
which atered the current context. The sequence ID of the next entry, a number which is
automatically incremented as each entry is output to the execution results file, is set to one at the
start of each new block.

Return value
These functions do not return avalue.

Portability

The thread-safe version of tet setcontext () does not reset the block and sequence
numbers.

Page 76 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

873 tet _infoline(),tet_mnfoline(),tet_printf() and
tet _vprintf()

Synopsis
void tet_infoline(char *line);
int tet_mnfoline(char **lines, int lines);
int tet_printf(char *format, /* [arg,] */ ...);

int tet_vprintf(char *format, va_ list ap);

Description

A cal to tet_i nfoline() prints the information line specified by | i ne to the execution
results file. The sequence number is incremented by one after the line is output. If the current
context and the current block 1D have not been set, the call tot et _i nfol i ne() causes the
current context to be set to the value of the calling process ID and the current block ID to be set
to one.

Acadltotet _mi nfoline() printsgroupsof information lines to the execution resultsfile. In
Distributed TETware these lines are printed using a single operation which guarantees that lines
from other test case parts do not appear in between lines printed by a particular cal to this
function. | i nes points to the first in alist of pointers to strings which are to be written to the
execution results file in a single operation. A NULL pointer in the list is ignored. nl i nes
specifies the number of pointersin the list.

A cdl totet_printf() formats the string specified by format which may contain
pri ntf () -like conversion specifications and printsit to the execution results file as one or more
test case information lines. If after formatting the string is to contain more than one information
line, each line except the last should be delimited by a newline character. If the formatted string
contains aline that is longer than the maximum permitted for a journal information line, the API
adds extra newlines in order to break the long line into two or more shorter lines. If possible, a
newline added by the API will replace a blank character in the string so that the string is broken
on aword boundary. When formatting is complete, the lines are written to the execution results
filebyacadltotet _m nfoline().

The operation of t et _vprintf () isthe same as that described fort et _pri ntf () except
that, instead of being called with a variable number of arguments, it is caled with a variable
argument list.

Return value

Acdltotet infoline() doesnot returnavalue.

A successful call totet _minfoline() returns zero. If acal totet _mnfoline() is
unsuccessful, —1isreturned andt et _er r no is set to indicate the cause of the error.

A successful call totet _printf() ortet _vprintf() returnsthe number of bytes written
to the execution resultsfile. If acalltotet _printf() ortet_vprintf () isunsuccessful,
—-lisreturned andt et _err no isset to indicate the cause of the error.

13th January 1997 Page 77
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

874 tet result()
Synopsis

void tet result(int result);

Description

A cdl totet _result() informsthe APl of the result of the test purpose from which it is
called. The API generates a TP result line which is printed to the execution results file by the
TCM upon test purpose completion. This ensures that al informational messages are written out
before the test purpose result, and that there is one (and only one) result generated per test
purpose. If the result code specified by r esul t isone for which the action specified in the result
codes file is to abort testing, then the TCM will exit after the test purpose has completed. If an
immediate abort is desired, then the test purpose should execute a return statement
immediately after thecall tot et _resul t ().

If atest purpose doesnot call t et _resul t (), the TCM will generate a result of NORESULT.
If more than one cal to tet_result() is made with different result codes, the TCM
determines the final result code by use of precedence rules. The precedence order (highest first)
is:

FAI L

UNRESCLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPCRTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t () with one
of those codes are ignored except the first such call.

Thet et resul t () function should not be called from atest case start up or clean up function.

Return value
This function does not return avaue.

Page 78 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.8 Cancellingtest purposes
8.8.1 Introduction

These functions are provided for use when cancelling test purposes.

882 tet _del ete()
Synopsis

void tet _delete(int testno, char *reason);

Description

A cal tot et _del et e() marks the test purpose specified by t est no as cancelled. Since the
test purpose defined in the first element of thet et _testl i st[] array has a sequence number
of 1, the test purpose to be cancelled is the one defined in the element specified by
tet _testlist[testno—1]. If the test purpose specified by t est no is not defined in the
tet _testlist[] aray,acaltotet del et e() hasno effect.

r eason should point to a text string which describes the reason why the test purpose is to be
marked as cancelled. This string should be contained in a static area.

When the TCM prepares to call atest purpose function, it first checks to see if the function has
been marked as cancelled by acall tot et _del et e() . If the test purpose has been marked as
cancelled, the TCM does not call the function but instead prints the line pointed to by r eason to
the execution results file and records aresult of UNI NI TI ATED.

Ifacaltotet del ete() namesat est no that has been marked as cancelled by a previous
tet_del ete() cal, the reason for cancellation is changed to the r eason specified in the
current call.

If tet del ete() iscaled with a NULL r eason parameter, the test purpose specified by
t est no isreactivated if it has previously been marked as cancelled.

Note that the string pointed to by anon-NULL r eason parameter is not copied by the APl when
tet_del ete() iscaled. Therefore it must point to static data, as the calling function will
have terminated when the reason string is accessed by the TCM. Also, care should be taken not
to re-use a buffer that has previously been passedtot et _del et e() .

This function cannot be called from a child process.

Ift et _del et e() iscaledin adistributed test case, the API notifies other participating TCMs
of the cancellation. This notification occurs when the TCMs synchronise with each other before
attempting to execute the cancelled test purpose. Thus, none of the TCMs execute a distributed
test purpose which has been cancelled on any of the participating systems.

Return value

This function does not return avaue.

13th January 1997 Page 79
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.83 tet reason()
Synopsis

char *tet _reason(int testno);

Description

The function t et _reason() returns a pointer to a string which contains the reason why the
test purpose defined int et _testlist[testno—1] has been cancelled by a previous cal to
tet _del ete(). If thistest purpose does not exist or is not marked as cancelled, a value of
(char *) NULL isreturned.

It isnot possibletouset et _reason() inadistributed test case to determine whether or not a
remote test purpose part has been cancelled.

Return value

If the specified test purpose exists and has been cancelled by apreviouscall tot et _del et e(),
acdl totet _reason() returnsthe r eason parameter supplied with thet et _del et e()
call; otherwise, aNULL pointer is returned.

Page 80 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.9 Accessing configuration variables
8.9.1 Introduction

This function provides access to configuration variables. A description of how configuration
variables are defined is presented in the chapter entitled ‘* Configuration files’ elsewhere in this
guide. Note that when a test case or tool is processed by the TCC, this function only provides
access to variables that are defined for the current mode of operation.

When Distributed TETware is used, this function provides access to the per-system configuration
defined for the system on which the calling process is running. This function cannot be used to
access configuration variables defined on other systems or distributed configuration variables.

8.9.2 tet getvar ()
Synopsis

char *tet _getvar(char *nane);
Description

A cdl totet getvar () returns a pointer to the vaue of the configuration variable narne.
This pointer will remain valid for the life of the process, regardless of subsequent calls to
tet_getvar().

If the variable specified by name is defined but has no setting, t et _get var () returnsapointer
to an empty string. If the variable specified by nane is undefined, t et _get var () returns a
NULL pointer.

Return value

This function returns the values described above.

13th January 1997 Page 81
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.10 Generating and executing processes
8.10.1 Introduction

These functions enable API-conforming child processes and subprograms to be created and
administered.

8102 tet fork(),tet _exec() andtet _child

Synopsis

int tet fork(void (*childproc)(void), void (*parentproc)(void),
int waittine, int validresults);

int tet_exec(char *file, char *argv[], char *envp[]);
extern pid t tet _child;

Description

Thetet fork() function creates a new process which is a copy of the calling process and,
unless a negative wai t t i me is specified, modifies the signal disposition in the newly created
process such that any signals that were being caught in the parent process are set to their default
values in the child process. Then the function specified by (*chi | dproc) () iscalled in the
child process. If this function returns, the child process terminates with an exit status of 0.
Alternatively, the (*chi | dproc) () function may terminate the child process with a specific
exit status by means of acall tot et _exi t () or overlay the child process by means of acal to
tet_exec().

If (*parent proc) () isnot set to NULL, the function specified by (* par ent proc) () is
called in the parent process. Then the parent process waits for the child process to terminate and
obtains the child’s exit status. Then, the bitswhich aresetinval i dr esul t s arecleared in the
child's exit status value. If the result of this operation is zero, t et _f or k() assumes that the
child process terminated with a valid (or expected) exit status. Otherwise, t et for k()

assumes that the child process terminated with an unexpected exit status and reports this exit
status to the execution resultsfile.

If the value of the child’'s exit status is one of the expected values, t et _f or k() returns the
child's exit status, otherwise, t et _fork() returns a value of -1 if the child's exit status is
unexpected or some other error occurs. Whent et _f or k() returns -1, it reports the nature of
the error using t et _i nf ol i ne() and sets the test purpose result code to UNRESOLVED by
calingtet _result().

If apositive wai tti me is specified, the parent process will ensure that the child process does
not continue to execute for more than wai t t i me seconds after the completion of the optional
(*parent proc) () function. If wai tti ne is zero, the parent process will wait indefinitely
for the child processto terminate. If anegativewai t ti e is specified, the signal dispositionsin
the child process are not modified, the parent process does not wait for the child process to
terminate and the value of val i dresults is ignored. When a negative waitti ne is
specified, it is the responsibility of the (*par ent proc) () function to wait for the child
process and interpret its exit status.

tet _exec() may becaledfroma(*chil dproc) () routine of achild process generated by
acadltotet _fork(). tet_exec() passesthe argument data specified by ar gv[] and the
environment data specified by envp[] to the process specified by fi |l e. The usage of the

Page 82 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

tet _exec() isequivalent to that of the ISO 9945-1 execve() function, except that the API
adds arguments and environment data that are to be interpreted by the driver of the executed
file.

The interface between t et _exec() and the subprogram launched by it has been designed to
enable the subprogram to use the API. Therefore the subprogram that is launched by a cal to
t et _exec() must be built with the child process controller t cnchi | d. o.

If tet exec() iscaled without first calling t et _f or k() , the results are undefined. Thisis
because the t et _f or k() function makes calls to t et _set context () in the child and
tet _set bl ock() in the parent to distinguish output from the child and from the parent
before, during and after execution of the (* par ent pr oc) () function.

The global variablet et _chi | d is provided by the API for use in the (* par ent proc) ()
function called fromt et _for k(). ItissettotheprocessID of the child.

Return value

A successful call tot et _fork() returns the exit status of the child process. If an error occurs,
the child process terminates abnormally!’ or the child’s exit status is not one of the values
specified by val i dresul t s, -lisreturned andt et _er r no is set to indicate the cause of the
error.

A successful call tot et _exec() doesnot return. If acall tot et _exec() isunsuccessful, -1
isreturned andt et _er r no is set to indicate the cause of the error.

Portability

tet fork(),tet _exec() andtet child are not provided on WindowsNT systems.
Test suite authors should instead uset et _spawn() andtet _wai t () when writing portable
test cases.

17. Thatis: W FEXI TED(wait-status) in the parent processisfalse.

13th January 1997 Page 83
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.10.3 tet _spawn()
Synopsis

pidt tet spawn(char *file, char *argv[], char *envp[]);

Description

Acdltotet _spawn() createsasubprogram without theneedtocal t et _for k() first. The
meanings of the argumentstot et _spawn() are the same as the meanings of the arguments to
tet _exec(), described previously.

The interface between t et _spawn() and the subprogram launched by it has been designed to
enable the subprogram to use the API. Therefore the subprogram that is launched by a cal to
tet _spawn() must be built with the child process controller t cnthil d. o (on UNIX
systems) ort cnchi | d. obj (on Windows NT systems).

Return value

A successful call tot et _spawn() returnsthe process ID of the newly created process. If acall
tot et _spawn() isunsuccessful, —1isreturned andt et _err no isset to indicate the cause of
the error.

Portability

Test case authors are reminded that process|Ds are reallocated rather more frequently on a
Windows NT system than they are on atypical UNIX system. Therefore, the use of the process
ID returned by t et _spawn() to generate a unigue quantity (such as atemporary file name) is
likely to be less successful on aWindows NT system than on a UNIX system.

8104 tet _wait()

Synopsis
int tet_wait(pid_t pid, int *statp);

Description

A cdl totet_wait () waits for the process identified by pi d to terminate and returns that
process's exit status indirectly through * st at p. pi d is the process|D returned by a previous
successful call tot et _spawn() .

Return value

A successful call tot et _wai t () returnszero. If acal totet wait () isunsuccessful, -1is
returned andt et _er r no is set to indicate the cause of the error.

Portability

On a UNIX system, the value returned indirectly through *st at p is obtained from the
wai t pi d() system cal. On a WindowsNT system, the value returned indirectly through
*st at p is obtained from a call to the _cwai t () function in the C runtime support library.
Test suite authors are reminded that the encodings of the process exit status values returned by
these two functions are likely to be different.

Page 84 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.10.5 tet _kill ()

Synopsis
int tet_kill(pid_t pid, int sig);

Description

Acdltotet Kkill () sendsthesignal specified by si g to the process specified by pi d, which
should be the process ID returned by a previous successful call tot et _spawn() .

Return value

A successful call totet kil | () returnszero. If acaltotet Kkill () isunsuccessful, -1is
returned andt et _err no is set to indicate the cause of the error.

Portability

The si g parameter is ignored on a Windows NT system; instead, a different method is used to
terminate the process specified by pi d.

Test case authors are discouraged from using t et _ki | | () to terminate a process which is
running on a Windows NT system. The reasons for this are discussed in the appendix entitled
“‘Implementation notes for TETware on Windows NT systems'’ in the TETware User Guide.

13th January 1997 Page 85
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.11 Executed process functions
8.11.1 Introduction

These functions are provided for use by API-conforming processes that are launched by calls to
thet et _exec(),tet_spawn() andtet _renmexec() functions.

8112 tet _main(),tet_exit() andtet | ogoff ()
Synopsis

int tet_main(int argc, char *argv[]);
void tet_exit(int status);

void tet | ogoff(void);

int tet thistest;

char *tet_ pnane;

Description

The functiont et _nai n() must be supplied by the test suite developer. This function is called
by the main() function of the TETware child process controller. Prior to calling
tet _mai n(), the child process controller sets the value of thet et _t hi st est variable to the
value of tet _thistest in the process that caled tet _exec(), tet_spawn() or
tet _remexec() . Thisvaue should not be changed by the executed process.

The current context is preserved from the calling process and the current block isincremented by
onebeforet et _mai n() iscalled.

If tet _mai n() returns, its return value becomes the child process's exit status. If the child
process was started by acall tot et _exec() , the child process's exit status will be returned to
the process which called the t et _fork() function; in this case, the value returned from
tet _main() will usually match one of the valid result values specified in the call to
tet _fork(). If thechild processwas started by acal tot et _spawn() , the child process's
exit status may be returned to the parent by a call to t et _wai t (). If the child process was
started by a cal to t et _renexec(), the child process's exit status may be returned to the
parentby acall tot et _remnai t ().

Thefunctiont et _exi t () should be used instead of exi t () by achild processethat is started
by a cal to tet fork(), tet_exec(), tet_spawn() or tet remexec(). In
Distributed TETware this function logs off all TETware servers, then calls exi t () with the
specified st at us asargument. t et _exi t () should only be called from the child process that
isstarted by tet _fork(),tet_exec(),tet_spawn() ortet_ renexec() and not by
any of its children.

The function t et _| ogof f () may be called by a child processe that is started by a call to
tet_fork(),tet_exec(),tet_spawn() ortet_renmexec() which does not need to
make any further TETware API callsand isnot ableto call t et _exi t () at processtermination
time (for example: if one of the flavours of exec() is about to be called in the child process).
tet | ogoff () should only be caled once from the child process. In Distributed TETware the
results are undefined if a process or any of its descendents makes any TETware API calls after
tet | ogoff() iscaled.

Page 86 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

The t et _pnane variable in the child process contains the process hame as given in the
ar gv[0] parametertotet nai n().
Return value

If the user-supplied t et _mai n() function returns a value to the child process controller, this
value becomes the child process' s exit status.

A successful call tot et _exi t () doesnot return.
Acdltotet | ogoff () doesnot returnavalue.

Portability

In TETware-Liteacal totet _exit() smply calsexit() andacaltotet | ogoff()
has no effect.

tet _remexec() isnot provided in TETware-Lite or in the thread-safe APIs..

When a process is launched on a Windows NT system by acall tot et _renmexec() , only part
of the process's exit status is made available to the process which calstet _remaait ().
Further details are presented under the Portability heading in the section which describes the
tet _remnait () function.

In Distributed TETware the use of t et _renmexec() to launch a child process on a remote
system is supported only for backward compatibility with previous DTET releases.

13th January 1997 Page 87
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.12 Test case synchronisation
8.12.1 Introduction

These functions enable parts of a distributed test purpose or a user-supplied startup or cleanup
function that are running on different systems to synchronise to an agreed point in the executing
code. They are only available for use in distributed test cases.

Refer to the chapter entitled ‘* Test case synchronisation’” in the TETware User Guide for an
overview of TETware synchronisation and a description of how to interpret journal messages that
are generated by the default sync error handling function.

8122 tet rensync()
Synopsis

int tet_rensync(l ong syncptno, int *sysnanes, int nsysnane,
int waittine, int vote, struct tet_synmsg *msgp);

Description

Acaltotet _remsync() causesthe caling process' s system to synchronise with one or more
of the other systems that are participating in the same distributed test case. The call can only
succeed if each of the systems specified in the call also expect to synchronise with each other and
with the calling process.

syshanes pointsto alist of IDs of the other systems with which the calling process wishes to
synchronise. nsysnane specifies the number of systems in the list. The system ID of the
calling processisignored if it appearsin the list pointed to by sysnanes.

syncpt no specifies the sync point number to which the calling process wishes to synchronise.
If syncpt no is zero, asuccessful call tot et _rensync() returns as soon as all participating
systems have synchronised to the next sync point. If syncpt no is greater than zero, a
successful call to tet _remsync() returns as soon as al participating systems have
synchronised using a sync point number which is not lessthan syncpt no. Whensyncpt no is
greater than zero, acal tot et _rensync() will fal if async point has already occurred during
the lifetime of the current test case whose number is greater than or equal to syncpt no. The
results are undefined if anegative syncpt no is specified.

wai tti me specifies the number of seconds that may elapse between synchronisation requests
from other participating systems before the calling process times out. If wai tti me is greater
than zero, a cal to tet _rensync() will be successful if al the participating systems
synchronise to the specified sync point with no more than wai tt i ne seconds between each
request. If wai ttine iszero, acaltotet _renmsync() will return immediately, whether or
not it is successful. If wai tti me isnegative, acal totet _rensync() will wait indefinitely
for the specified sync point to occur or until the request fails for some reason. Test suite authors
should be aware of the potential for deadlock if anegativewai tt i nme is specified.

vot e specifies how the calling system wishes to vote in the synchronisation event. This
parameter should be set to one of the defined constants TET_SV_YES or TET_SV_NQ, to
indicate ayes vote or ano vote, respectively. When the calling process specifies ayes vote, a call
totet _remsync() can only be successful if al the other participating systems also specify a
yes vote. When the calling process specifies a no vote, the APl does not use the votes specified
by the other participating systems when determining whether or not acall tot et _remsync()

in that processis successful.

Page 88 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

It is possible for a process which callst et _rensync() to exchange sync message data with
other participating systems which synchronise exactly to the sync point specified by syncpt no.
This is done by calling t et _rensync() with a non-NULL value of nsgp. When nmsgp is
non-NULL, it points to a user-supplied t et _synnsg structure which contains the following
elements:

struct tet_synnsg {
char *tsmdata;
int tsmdlen;
int tsmsysid,
int tsmflags;

}s

Whentet renmsync() iscaled by adistributed test purpose part on each system, one system
sends data which may be received by other systems. The API associates the sync message data
with the particular sync point specified by the syncptno parameter used in the
tet _remsync() cal on the sending system. In order to receive the message data, the
syncpt no parameter in callstot et _rensync() on receiving systems must reference this
sync point exactly, either by specifying the same value for syncpt no as that used on the
sending system, or by specifying azero syncpt no.

The test purpose part on the sending system should indicate a desire to send sync message data by
initialising members of the t et _synnsg structure as follows before t et _renmsync() is
called:

e t Sm _dat a points to the message to be sent.
o t sm dl en isset to the number of bytes of message data to be sent.
e tsmfl ags issetto TET SNMSNDVSG

The test purpose part(s) on the receiving system(s) should indicate their willingness to receive
sync message data by initialising members of the t et _synnsg structure as follows before
tet_renmsync() iscaled:

« t sm dat a pointsto a user-supplied buffer in which the message datais to be received.
« t sm dl en isset to the length of the receiving buffer.
e tsmflagsissetto TET SMRCVNSG.

If the call totet _remsync() is successful, then on return the APl modifies members of the
t et _synnsg structure on the receiving systems(s) as follows:

o Uptot sm dl en bytes of sync message data are copied to the receiving buffer pointed to
byt sm dat a.

o t sm dl en isset to the number of bytes of sync message data actually copied.

e t sm sysi d isset to the system ID of the system that sent the data, or to -1 if there is no
message data associated with the sync point specified by syncpt no.

« If the APl must truncate the message because the receiving buffer is not big enough, the
TET _SMIRUNCbitissetint sm fl ags.

If more than one system tries to send sync message data for a particular sync point, the AP
performs the following operations:

13th January 1997 Page 89
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

1. Decide from which system to accept data and redesignate the other sending systems as
receiving systems.

2. Processthe redesignated systems as described above.

3. Clear the TET_SMSNDMSG bit and set the TET _SMRCVMSG bit int sm f | ags on the
redesignated systems.

4, Setthe TET_SMDUP hitint sm f | ags on al systems.

If a process tries to send a message which is larger than the maximum permitted message size (as
defined by the value TET_SMVBGVAX, the API perform the following actions:

1. Truncate the message to the maximum size before accepting it.
2. Setthe TET_SMIRUNCDbitint sm f | ags onall systems.

In most cases when a call tot et _rensync() is unsuccessful, the values of members of the
t et _synnsg structure are undefined when the cal returns. However, if the only reason that a
cal totet _rensync() is unsuccessful is that other systems specified a no sync vote, the
tet _synnsg structure is processed in the normal way. This enables a process to both send
message data and specify anovoteinasinglet et _rensync() call.

If a process running on a particular system callst et _renmsync() with ansgp of NULL, the
API regardsit as areceiving system but does not return any message data to it.

Return value

Thecal tot et _renmsync() returnszero as soon as al the participating systems synchronise at
least as far as the specified sync point without timing out.

Thecaltotet _renmsync() returns -1 when one of the following conditions occur:

o« Morethanwai t t i me seconds elapse between synchronisation requests from participating
systems.

« A related synchronisation request times out on one of the other participating systems.

« The user-supplied function in a test case on one of the other participating systems returns
control toits TCM before synchronising.

o The sync point specified by syncpt no has already occurred.

o A yes sync vote is specified in the call but another participating system specifies a no vote
for this sync point.

e sysnanes isNULL or nsysnane specifies an empty system ID list.

o A system |ID appears more than once in the array pointed to by sysnanes.
o Aninvalid parameter is specified in the call.

« The APl encounters a problem while processing the request.

When a call totet _rensync() is unsuccessful, the APl setst et _errno to indicate the
cause of the error before calling the sync error handling function specified by t et _syncerr.

Page 90 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Portability

tet _remsync() isonly provided in Distributed TETware. It is not provided in TETware-
Lite.

The API treats sync message data as opague and does not perform byte-swapping or other
processing when data is exchanged between machines with different architectures. So it is best
only to send ASCII strings in messages that are to be exchanged between systems which might
run on different machines.

Application notes

The values of user-defined sync point numbers must increase throughout the lifetime of an entire
test case and not just during the lifetime of a particular test purpose function within the test case.

Since synchronisation with other systemsis defined in terms of system IDs (rather than individual
process IDs), it is the responsibility of the test suite author to ensure that only one process
running on a particular (logical) system callst et _rensync() at onetime. The results are
undefined if processes running on the same system make overlappingt et _renmsync() cals.

If a multi-threaded test case makes overlapping callstot et _remsync() from more than one
thread at once, one thread will be blocked by the API until the call in the other thread completes.
Then the call in the blocked thread will fail with an ER_DONE error.

8123 tet _sync() andtet nsync()
Synopsis

int tet_sync(long syncptno, int *sysnames, int waittine);

int tet_msync(long syncptno, int *sysnanes, int waittine,
struct tet_synmsg *nsgp);

Description

tet _sync() and tet _msync() are provided for backward compatibility with previous
DTET implementations and their use is deprecated in TETware. It is possible that support for
these functions may be removed from a future TETware release. Test case authors should use
tet_renmsync() whenwriting new test cases.

InTETwaret et _sync() andt et _nsync() areimplemented by callingt et _rensync().
When sysnanes is non-NULL, it points to a zero-terminated list of systemIDs. If either
function is called with a NULL sysnanes parameter, a default system list containing only
system ID zero is used; otherwise, the zero-terminated system list pointed to by the sysnamnes
parameter is used. A pointer to the resulting system list and the number of systems in the list
(including the terminating zero) are passed to the underlyingt et _rensync() cal.

When acdl totet _sync() resultsinacall totet _rensync(), avote of TET_SV_YES
and ansgp of NULL are used. Likewise, when acall totet _nmsync() resultsin acal to
tet _remsync(),avoteof TET_SV_YESisused.

When callstot et _sync() ortet _nsync() areunsuccessful, the API places an entry in the
journal file indicating the cause of the failure. If the call is unsuccessful because one or more of
the participating systems fails to synchronise, or the related process times out or terminates
before the specified sync point occurs, a call is made to the sync error handling function specified
by tet _syncerr. This variable is initialised with the address of a function which prints
messages similar to those printed by the API in previous DTET implementations.

13th January 1997 Page 91
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Return value

The return value of tet _sync() and tet_nmsync() is the same as the underlying
tet_rensync() cal.

Portability

tet _sync() andtet _msync() are only provided in Distributed TETware. They are not
provided in TETware-Lite.

8.12.4 Control over sync error reporting
Synopsis

void (*tet _syncerr)(long syncptno, struct tet _syncstat *statp, int nstat);

void tet_syncreport(l ong syncptno, struct tet_syncstat *statp, int nstat);

Description

If acal totet rensync() is unsuccessful, the API calls the sync error handling function
pointed to by the global variablet et _syncerr beforethet et _rensync() call returns.

When (*t et _syncerr) () iscaled by the API, syncpt no contains the number of the sync
point that hasfailed, st at p pointsto thefirst in aarray of structures, each of which describes the
sync status of each of the other systems participating in the event and nst at specifies the
number of structuresin thelist.

The sync status structure is defined as follows:

struct tet _syncstat ({
int tsy sysid; [/* systemID */
int tsy state; /* sync state */

s

Possible values for thet sy st at e member of this structure are as follows:

Symbolic constant Meaning

TET_SS_NOTSYNCED | sync request not received
TET_SS_SYNCYES system voted YES

TET_SS_SYNCNO system voted NO
TET_SS Tl MEDOUT system timed out
TET_SS DEAD process exited

The global variable tet_errno is set to indicate the cause of the error before
(*tet_syncerr) () iscdled.

tet _syncerr is initidised to point to the API’s default sync error reporting function
tet_syncreport (), but may be changed by the test suite author to point to a user-supplied
sync error handling function.

Page 92 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.13 Remote system information
8.13.1 Introduction

These functions are provided in Distributed TETware to enable a test purpose to retrieve
information about remote systems.

8132 tet rengetlist()
Synopsis

int tet rengetlist(int **sysnanes);
Description

Acdltotet rengetlist() from a processwhich is part of a distributed test case returns
the number of other systems which are participating in the test case. In addition, a pointer to a
zero-terminated array containing the names of the other systems is returned indirectly through
*syshnanes.

A cal totet _rengetlist() from a process which is not part of a distributed test case
returns zero.

Return value
This function returns the values described above.

Portability

In TETware-Liteacall totet _rengetli st () aways returns zero and a pointer to a single
zero-value system ID is returned indirectly through * sysnames.

8.13.3 tet _rengetsys()
Synopsis
int tet _rengetsys(void);

Description

Acaltotet rengetsys() returnsthe system ID of the system on which the calling process
is executing.

Return value
This function returns the value described above.

Portability
In TETware-Liteacall tot et _renget sys() aways returns zero.

13th January 1997 Page 93
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8.134 tet getsysbyi d()

Synopsis
int tet_getsyshbyid(int sysid, struct tet_sysent *sysp);
Description

The t et _get sysbyi d() enables a test case to access information contained in the system
definition file. If an entry for the system specified by sysi d can be found in thefile, information
from the entry is placed in the user-suppliedt et _sysent structure pointed to by sysp.

This function enables part of a distributed test case to determine the host (or node) names of other
systems participating in the test.

Thet et _sysent structure contains the following members:

struct tet _sysent {
int ts_sysid; /* TETware system|D */
char ts_name[TET_SNAMELEN] ; /* systenis host name */
i

Refer to the section entitled *‘ System definitions’ elsewhere in this guide for details of the
system definition file.

Return value

A successful call tot et _get sysbyi d() returns zero. If acal tot et getsysbyid() is
unsuccessful, —1isreturned andt et _er r no is set to indicate the cause of the error.

Portability
Thisfunction is not provided in TETware-Lite.

8135 tet rentine()
Synopsis

int tet rentime(int sysid, tinme_t *tp);
Description

Acdltotet rentinme() obtansthe system time on the system specified by sysi d and
returnsit indirectly through *t p.

When sysi d specifies the system ID of the calling process, the time is obtained by using an
appropriate system call. However, when sysi d specifies a different system ID, the time is
obtained from an instance of TCCD that is running on the specified system.

Return value

A successful call to tet _rentinme() returns zero. If a cal to tet _remine() is
unsuccessful, -1 isreturned andt et _er r no is set to indicate the cause of the error.
Portability

Thisfunction is not provided in TETware-Lite.

Page 94 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

8.14 Remote process control
8.14.1 Introduction

In Distributed TETware these functions enable a part of a distributed test case running on one
system to generate a remote process on another system.

The use of these functions is deprecated; they are only supported in order to provide backward
compatibility with previous DTET implementations. It is possible that support for these
functions may be removed from afuture TETware rel ease.

If it is necessary for one part of a distributed test case to start a process on a remote system, it is
recommended that the test case should instead be structured so that the process is started by the
part of the test case which is running on that system. If necessary, the two systems can make
calstotet _rensync() in order to ensure that the process is executed and waited for at the
correct time.

If it is necessary for anon-distributed test case to start a process on aremote system, it is strongly
recommended that the test case should instead be structured as a distributed test case; when thisis
done the method mentioned in the previous paragraph may be used.

8.14.2 tet renmexec()
Synopsis

int tet_renmexec(int sysname, char *file, char *argv[]);

Description

Acdltotet remexec() startsanew process on the remote system specified by sysi d. The
calling process waits wait until the new process has been started and has synchronised with it.

fil e specifies the name of the file to be executed. The location of fi |l e is relative to the
remote system’s TET _EXECUTE directory if set, otherwise, it isrelative to tet-root on the remote
system. Since the request is performed by a server process, it is not necessary for atest case to
caltet fork() beforecalingtet remexec().

Thet et _renexec() function passesthe argument data as specified by ar gv[] to the process
specified by fil e. The usage of t et _renmexec() is similar to the 1SO 9945-1 execv()
function.

Note that the environment is not passed in at et _renmexec() cal because it is not expected
that there will be any correlation of the environment information on the remote machine to that of
the calling process. Any datathat is need by the remote process must be passed as an argument.

Return value

A successful call to tet_remexec() returns a positive value (the renot ei d) which
identifies the remote process within the context of the calling process. This value has no meaning
outside the calling process. If thecal tot et _renexec() fails, avalue of -1 is returned and
t et _errno isset toindicate the cause of the error.

13th January 1997 Page 95
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

In addition, an unsuccessful call tot et _remexec() may set er r no to one of the following
values.

El NVAL sysnane does not refer to a known remote system.
ENOEXEC f i | e cannot be executed on the remote system.

ENOEXEC Synchronisation with the remote process was hot successful.
EFAULT Thefil e orargv parametersareinvalid.

El O The connection with the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in the thread-safe APIs.

8143 tet _remmait ()
Synopsis

int tet_ remwait(int renpteid, int waittine, int *statloc);

Description

A cal to tet_remnait() waits for the termination of a remote process initiated by
tet _remexec().

renot ei d specifies the remote process identifier returned from a previous successful call to
tet_renexec().

wai tti me specifies the maximum number of seconds that thet et _remwai t () cal should
wait before returning. If wai tti ne is greater than zero, acall totet _remnai t () will be
successful if the remote process exits within the specified time. If wai t ti e is zero, acall to
tet _remnait () will return immediately whether or not it is successful. If wai ttinme is
negative, acal tot et _remnai t () will wait indefinitely for the remote process to exit or until
the request fails for some reason.

A successful call to tet _remmai t () returns the exit status of the remote process in the
location pointed to by st at | oc. The exit status value returned indirectly through * st at | oc
uses a standard encoding that is independent of the type of remote system on which the processis
executed or the encoding used to return exit status values on that system.

The system used by TETware to encode the exit status of a remote process returned indirectly
through *st at | oc by tet _remwai t () is the one that traditionally has been used on many
UNIX systems, asfollows:

o If the remote process terminated normally, bits O through 7 contain zero and bits 8 through
15 contain the low order 8 bits of the argument that the remote process passed to exi t ()
(but see under the Portability heading below).

« If the remote process terminated due a signal, bits O through 6 contain the number of the
signal that caused the process to terminate and bits 8 through 15 contain zero. In addition,
bit 7 isset if receipt of the signal caused a core image to be produced on the remote system.

« If the remote processis in a stopped state, bits O through 7 contain the value 0177 and bits
8 through 15 contain the number of the signal which caused the process to stop.

Page 96 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Return value

A successful call tot et _remnai t () returns zero. If thecal tot et _remnai t () times out
or is unsuccessful for some other reason, —1 is returned and t et _er r no is set to indicate the
cause of the error.

In addition, an unsuccessful call tot et _remnai t () may set er r no to one of the following
values:

El NVAL renot ei d doesnot refer to aprocessinitiated fromacall tot et _renexec() .

ECH LD renoteid refersto a process which is has already been waited for by a successful
cdltotet _remmai t ().

EAGAI N The number of seconds specified by ti meout expires before the remote process
terminates.

EI NTR Thecaltotet wait () isinterrupted.

El O The connection to the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in the thread-safe APIs.

As indicated above, the process exit status returned by tet _remwai t () uses a standard
encoding which may not be the same as the one used by any particular operating system. For this
reason, test suite authors are reminded that it is not appropriate to use the macros defined in
<sys/wai t . h> on aPOSIX-conforming system to decode this value.

If a signal value is encoded in a process exit status, it is the value of the signal on the remote
system. Test suite authors are reminded that this value may not refer to the the same (or any)
signal on the systemonwhicht et _remwai t () iscalled.

The indication that a core image has been produced is not specified by POSIX. Therefore the
setting of bit 7 to indicate that a core image has been produced as a result of a signal is
implementation-dependent.

On a Windows NT system the range of values which may usefully be passed to exit () is
greater than the useful range on UNIX systems. Thereforeit is possible for a process to exit with
a non-zero status value whose low-order 8 bits are zero. In order to enable such a status to be
identified as non-zero after acal totet _remuai t (), the APl returns a status value of 1 in
cases where the value of the low-order 8 bits of a non-zero exit status value from a process on a
Windows NT system is itself zero. Therefore, if the exit status of a process running on a
Windows NT system is to be returned unaltered by acall tot et _remwai t (), its value should
beintherange 0to 127.

The C runtime support library on the Windows NT system does not support the concept of a
stopped process, encode the receipt of a signal in a process's exit status or generate a core image
when a signal israised in aprocess. Therefore, these indications are not available when a call to
tet _remnait() returns an exit status from a remote process invoked on a WindowsNT
system.

When a remote process running on a WindowsNT system is terminated by a cal to
tet _renkill(),acdal totet_remnait () returns a process exit status of 3. This is the
same value as that generated by the C runtime support library when the default action is taken
after asignal is generated by meansof acall tor ai se() .

13th January 1997 Page 97
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

8144 tet _renkill ()
Synopsis

int tet renkill(int renoteid);

Description

A cdl totet _renkill () function instructs the TCCD server which controls the remote
process designated by r enpt ei d to terminate the process. renot ei d refers to a process
started by apreviouscal tot et _remexec().

On UNIX systems TCCD terminates the process by sending a SI GTERM signal; therefore the
process is not terminated if this signal is being blocked or ignored.

Acdltotet renkill () returnsimmediately without awaiting confirmation that the remote
process has terminated. (This information can be obtained from a subsequent call to
tet _remnait () if required.)

Return value

A successful call to tet_renkill () returns zero. If the call to tet_renkill () is
unsuccessful, —1isreturned andt et _er r no is set to indicate the cause of the error.

In addition, an unsuccessful call totet _renkil | () may set er r no to one of the following
values:

El NVAL renot ei d doesnot refer to aprocessinitiated fromacall tot et _remexec() .

El O The connection to the remote system is broken.

Portability
Thisfunction is not provided in TETware-Lite or in the thread-safe APIs.
Test case authors are discouraged fromusingt et _renki | | () to terminate a process which is

running on a Windows NT system. The reasons for this are discussed in the appendix entitled
“‘Implementation notes for TETware on Windows NT systems’’ in the TETware User Guide.

Page 98 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

9. TheC++ API

9.1 Introduction

This chapter describes the TETware C++ API. Different versions of the C++ API are supplied
with TETware-Lite and Distributed TETware. The Distributed version of the C++ APl may be
used when writing both distributed and non-distributed test cases, whereas the Lite version of the
C++ APl may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

On UNIX systems, this API has been designed to work with the USL C++ compiler release 3 or
later, and with GNU g++ release 2.4.5 or later.

On the Windows NT system, this APl is known to work with the Microsoft Visual C++ compiler.

9.2 C++ language binding

On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

o tet-root/ | i b/ tet 3/ 1 i bapi . a contains the support routines for test purposes. Thisis
the samelibrary asis provided with the C API.

o tet-root/ | i b/ t et 3/ Ct cm o contains the TCM. This file contains the routine mai n()
and associated support routines for the sequencing and control of invocable components
and test purposes.

o tet-root/ 1 i b/tet 3/ Ctcnchil d. o contains the child process controller. This file
contains a mai n() routine which can be used by test suites when building processes
which test purposeswill launch usingthet et _exec() andt et _spawn() interfaces.

o tet-root/ i nc/tet 3/tet _api.h contains prototypes for the functions, declarations of
al the global variables, and definitions of all the structures and manifest constants that
constitute the C++ API. This file is the one that is provided with the C API; however,
when this file is processed by a C++ compiler, its contents are made visible within an
extern "C' block.

The names of these files are similar on Windows NT systems; the differences are that object files
(. o files) instead have a. obj suffix and library files (. a files) instead havea. | i b suffix.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate given the available Software Generation System.

On UNIX systems a thread-safe version of the C++ APl is supplied in addition to the standard
(that is: single-threaded) version. here. Distinct versions of the thread-safe C++ API are supplied
with Distributed TETware and TETware-Lite. Differences between the standard and thread-safe
APIs are described in the chapter entitled *‘ The Thread-safe C and C++ APIS’ elsewhere in this
guide.

13th January 1997 Page 99
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

9.3 Using the C++ language binding

This APl may be considered to be a*‘lightweight’’ binding, in that only a small part of it is built
using a C++ compiler. This language binding uses the API library that is supplied with the
C language binding. Details of al the functions and interfaces provided by this API library are
presented in the chapter entitled ** The C API'’ elsewherein this guide.

In Distributed TETware the C++ API does not provide support for remote executed processes.

In the C and C++ language bindings, the TCM references variables that you must define in your
test code. When you write a test case that uses the C++ language binding, you must enclose the
definitions of these variablesinanext ern " C' code block, thus:

extern "C' {
struct tet testlist tet testlist[] = {

b
void (*tet_startup)()

void (*tet_cl eanup) ()

}

in order to enable the linker to resolve references made to these variables from the TCM code.

Page 100 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

10. The Thread-safe C and C++ APIs

10.1 Introduction

TETware provides thread-safe versions of the Cand C++ APIs in addition to the standard
(single-threaded) API versions. The thread-safe APIs are provided in both TETware-Lite and
Distributed TETware.

On UNIX systems each API can be built to support either POSIX threads or ‘* UNIX International
threads’ (Ul threads), but not both at the same time. On systems which support both types of
threads, you should build TETware to support the type of threads that you wish to use in test
cases. There is no support for threads in the C and C++ APIs when TETware is installed on a
Windows NT system.

When you use a thread-safe version of one of these APIs, you must compile all application source
code that uses the API (including test suite libraries, for example) with either -DTET_THREADS
when using Ul threads, or -DTET_POSI X _THREADS when using POSIX threads. You must
specify these options in addition to any other compiler options that may be required when
compiling and/or linking multi-threaded programs.

All of the standard interfaces are available in the thread-safe APIs with the exception of the
deprecatedt et _renexec(),tet _remmait() andtet _renkill () API functions.

10.2 C language binding

Applications written to the thread-safe C language binding attach themselves to it through the
following files:

o tet-root/ | i b/ tet 3/1i bt hrapi . a isthe thread-safe version of the AP library.
o tet-root/ | i b/ t et 3/ t hrt cm o isthe thread-safe version of the TCM.
o tet-root/ i b/ tet3/thrtcnchil d. oisthethread-safe equivalent of t cnchi | d. o.

o tet-root/ i nc/tet 3/tet _api. histhe samefile as used in the standard API. The extra
threads-related contents of this file are made visible by compiling applications with
TET_THREADS or TET_POSI X_THREADS defined.

10.3 C++ language binding

Applications written to the thread-safe C++ language binding attach themselves to it through the
following files:

o tet-root/ 1 i b/t et 3/1i bt hrapi . a isthe samelibrary asfor the thread-safe C language
binding.

o tet-root/ | i b/t et 3/ Ct hrt cm o isthe C++ version of the thread-safe TCM.
o tet-root/ | i b/tet3/ Cthrtcnthil d. oisthe C++ equivalent of t hrt cnthi | d. o.

13th January 1997 Page 101
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

o tet-root/ i nc/tet 3/ tet _api. h isthe same file as used in the thread-safe C language
binding. All of the declarationsin this file are placed within an

extern "C'

block when the file is compiled with a C++ compiler.

10.4 Functionsthat are specific to the Thread-safe APIs
10.4.1 Introduction

The following sections describe functions which are only provided in the thread-safe versions of
the C and C++ APIs.

1042 tet _thr _create() andtet pthread create()

These functions create a new thread in a test purpose. Applications which use Ul threads should
cal tet _thr _create() and applications which use POSIX threads should call
tet _pthread create().

When one of these functions is used to create a new thread, the APl stores information about the
newly-created thread in order to enable the TCM to perform appropriate actions when the test
purpose returns control to the TCM, or when an unexpected signal occurs.

The syntax of these functionsis asfollows:

int tet_thr_create(void *stack _base, size_ t stack_size,
void *(*start_routine)(void *), void *arg
long flags, thread_t *new thread, int waittine);

int tet _pthread create(pthread_t *new thread, pthread attr _t *attr,
void *(*start_routine)(void *), void *arg, int waittine);

The arguments and return value are the same as those for the thr _create() and
pt hread create() functions respectively, except for the addition of the waitti nme
argument. This specifies the number of seconds for which the TCM will wait for the thread to die
after the main thread returns to the TCM. The purpose of this wait time is to allow other threads
some grace in the event of an abnormal return from the main thread. Normally, all non-main
threads should be waited for by callstot hr _j oi n() or pt hr ead_j oi n() inthe application.

Unlike other APl cadls, tet _thr _create() and pthread create() do not set
tet _errno if thecal fails.

If either of these functions are used to create a detached thread, the APl does not store any
information about the new thread and thewai t t i me argument isignored. The application must
ensure that the detached thread either terminates before the main thread returns, or that it cannot
interfere with the operation of later test purposesin the test case. Since an unexpected signal can
cause the main thread to skip to the next test purpose, it is recommended that detached threads
are only created in child processes (where unexpected signals are not caught by the TCM).

Unexpected results may occur if an application creates a new thread other than by using these
functions.

Page 102 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

1043 tet _forkl()

This function creates a child process containing only the thread of the calling process, but
otherwise behavesin the sameasdoest et _for k().

The syntax of this function is as follows:

int tet forkl(void (*childproc)(void), void (*parentproc)(void),
int waittine, int validresults);

The arguments and return value of this function are the sasme asthoseof t et _fork() .

Applications must safeguard callstot et _f or k1() in the same way asfor callsto f or k1() .
For example, if the child needs to obtain resources such as mutexes, then the calling thread must
obtain all the resources before making the call, in order to ensure they are not held by a non-
existent thread in the child process. Thet et for k1() function doesthisfor all such resources
used internaly by the API.

Unexpected results may occur if an application creates a new process other than by using
tet_fork(),tet_forkl() ortet_spawn().

10.5 Unavailableinterfaces

The deprecated t et _renexec(),tet_remwait() andtet_renkill () functions are
not available in the thread-safe API. In TETware these functions are provided for backward
compatibility with dTET2 and should not be used in new test cases. When a distributed test case
needs to execute a new process on a remote system, it is recommended that the new process
should instead be started by the test case part that is executing on that system. If necessary, user-
defined synchronisation points can be used to ensure that the new process is executed at the
proper time.

10.6 API differences
10.6.1 Introduction

The following sections describe differences between the standard and thread-safe APIs, for the
interfaces that are common to both versions.

10.6.2 Thread-specific data

Thevaluesof tet _errno andtet _chi | d are thread-specific in the thread-safe API. They
must be accessed by using the definitions provided in t et _api . h, and not simply by an
ext er n declaration.

10.6.3 Block and sequence numbers

The thread-safe API has per-thread block and sequence numbers. When anew thread is created a
new block number is assigned to both the new thread and to the calling thread. It is
recommended that acall tot et _set bl ock() should be made after each call tot hr _j oi n()
orpthread join().

The thread-safe version of tet setcontext() does not reset the block and sequence
numbers, because another thread might already have a current block number of 1. However, calls
totet _forkl() andtet _spawn() do reset the block and sequence numbersin the child, as
when these functions are called there is only one thread in the new process.

13th January 1997 Page 103
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The new block number set by t et _set bl ock() is one greater than the number set by the
previoust et _set bl ock() call in any thread, not just the previous cal in the current thread.
The same appliestothet et _set bl ock() calsdoneinternally by the API; for example: in the
parent processint et _f or k() andin processes executed witht et _exec().

10.6.4 tet _spawn()

The thread-safe version of t et _spawn() usesf or k1() to create the child process. Therefore
the same considerations regarding resources such as mutexes apply as described for
tet_forkl1() above

1065 tet fork()

The method used to time out child processesin the thread-safe version of t et _f or k() does not
use a SI GALRM signal. This is done so as not to interfere with the use of SI GALRMin other
threads.

10.7 TCM differences
10.7.1 Introduction

The following sections describe differences between the standard and thread-safe TCMs.

10.7.2 Clean-up of left-over threads

Each time the main thread returns to the TCM, any other threads that remain are cleaned up
before the TCM continues. Normally this is done after the following functions return:

e The(*tet _startup)() and(*tet _cl eanup) () functions.

« Each test purpose function.

o Thefunctionscalled fromt et _fork() ortet fork1() inthechildprocess.
etet main()

It can also be done under abnormal conditions; for example: before skipping to the next test
purpose on receipt of an unexpected signal.

Threads which do not exit within the grace time specified in the tet _thr_create() or
tet _pthread_create() cal areterminated by the API. The method used to terminate such
threads is to arrange for the thread to execute a handler for the SI GABRT signal which then calls
thr_exit() (or pthread_exit()). If the thread still does not terminate (for example:
becauseit is blocking the SI GABRT signal), then the TCM will abort the test case.

In order to prevent a thread being ‘‘cleaned up’’ while it holds a resource such as a mutex,
applications should block the SI GABRT signal during the time these resources are held by a
non-main thread. The grace time specified when threads are created should be longer than any
period for which the SI GABRT signal will be blocked.

The special SI GABRT handler is only installed for long enough to send the signal to the target
thread, however thisis a small time window where the behaviour of other threads with respect to
S| GABRT may not be as expected. The handler attempts to perform the expected action if this
should occur (by calling the old handler function if there was one or by calling abort () if the
old signal action was SI G_DFL).

Page 104 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

When cleaning up threads on receipt of a signal, they are terminated immediately instead of
waliting for the grace time.

10.7.3 Signal handling

Unexpected signals are managed in the thread-safe TCM in much the same way asin the standard
TCM. Signal handlers are installed by the main thread before the start of each test purpose. The
TCM does not make use of si gwai t (), asthis could interfere with the use of signalsin the test
purpose. When an unexpected signal is caught by the main thread, it cleans up any other threads
as described in the previous section before taking the normal action as in the standard API. If an
unexpected signal is caught by a non-main thread, the signal handler will forward the signal to
the main thread and then cause the calling thread to exit.

10.8 Synchronisation requestsin multi-threaded test cases

In Distributed TETware it is possible for parts of a distributed test case to synchronise with each
other at user-defined points during execution. Since synchronisation is defined in terms of
systems and not processes, only one process on a particular system may represent that systemin a
particular synchronisation event.

When the thread-safe APIs are used, it is not possible for two threads in the same process to
participate in any sync event at the same time. This restriction is enforced in the API by the use
of mutexes. If two threads in the same process call one of the synchronisation functions at the
same time, one call will be blocked until the other call has completed. Therefore, if both of the
calls refer to the same sync event by specifying the same system list and (non-zero) sync point
number, one of the calls will block until after the event occurs. As a consequence, when the
blocked call finally returns, it will probably fail with an ER_DONE error.

13th January 1997 Page 105
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 106 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

11. The Shell and Korn Shedll APIs

11.1 Introduction

This chapter describes the Shell and Korn Shell APIswhich are supplied with both TETware-Lite
and Distributed TETware. These APIs may be used to write non-distributed test cases. Thereis
no support for distributed test cases provided by these APIs.

The Shell API is provided for use by test cases written in the language that is defined for the sh
command interpreter in the X/Open Portability Guide Issue3 Volumel. In addition, the
interfaces described here are implemented in the TETware Korn Shell API. The Korn Shell API
is provided for use by test cases written in the language that is used by the ksh command
interpreter. Both of these APIs make use of commands which are available on POSIX-
conforming systems. Except where noted, the descriptions that follow apply equally to each of
these APIs.

When TETware is used on the Windows NT operating system, these APIs are designed to be used
with commands provided in the MKS Toolkit. The MKS Shell, sh, is based on the Korn Shell
and can be used in conjunction with either of the shell APIs. However, it is recommended that
for reasons of efficiency you only use the Korn Shell API when writing shell language test cases
for use on a Windows NT system. Note that the names of each Shell language and Korn Shell
language test case file must have a. ksh suffix on aWindows NT system.

See the chapter entitled **Writing a Shell language API-conforming test suite’” elsewhere in this
guide for an example of how to write a Shell language based test suite.

11.2 Shell language binding
Support for the Shell language binding is provided through Shell language source files as follows:

o tet-root/ | i b/ xpg3sh/tcm sh contains the support routines for the sequencing and
control of invacable components and test purposes (the Shell TCM).

o tet-root/ | i b/ xpg3sh/tetapi.sh contains the support routines for use by test
purposes (the Shell API).

These files must be ‘*sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Shell TCM also automatically sourcesthe Shell API.

11.3 Korn Shell language binding

Support for the Korn Shell language binding is provided through Korn Shell language source files
asfollows:

o tet-root/ | i b/ ksh/t cm ksh contains the support routines for the sequencing and
control of invocable components and test purposes (the Korn Shell TCM).

o tet-root/ | i b/ ksh/ t et api . ksh contains the support routines for use by test purposes
(the Korn Shell AP).

These files must be ‘‘sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Korn Shell TCM also automatically sourcesthe Korn Shell API.

13th January 1997 Page 107
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

11.4 TCC dependencies

Test cases built with theses APIs may either be executed stand-alone or under the control of
either TCC version.

11.5 Test case structure and management
11.5.1 Introduction

These variables are used when test cases areinitialised and cleaned up, and in selecting invocable
components and test purposes to execute.

1152 iclist,icn,tet_startupandtet cleanup
Synopsis

i cli st="Dblank-separated list of invocable component names’

i c1=" blank-separated list of test purpose names"
i c2=" blank-separated list of test purpose names"

t et _st art up=startup-procedure

t et _cl eanup=cleanup-procedure

Description

The start up routine, clean up routine and each of the test purposes should be implemented by the
test author as either shell functions or as separate executable shell scripts. These shell functions
or scripts will be called by the shell TCM according to the requested set of invocable
components. Thei cl i st definition is provided by the test suite author, and contains a blank
separated list of invocable component names. These invocable component names are formed by
prefixing each invocable component number with the lettersi c.

When an invocable component is requested by the TCC, the shell TCM executes each name in
the associated list of test purposes. Each of the test purposes is executed in a subshell with the
appropriate signal handling being applied to the subshell.

The TCM does not perform any explicit error checking on the contents of a list of test purposes.
It is the responsibility of the test author to ensure that the names reference shell functions or
executable shell scripts.

The shell variablest et _startup andt et _cl eanup are set to refer to the shell function or
script to be used for test case specific start up and clean up procedures, respectively. The start up
procedure is executed before the first requested invocable component and the clean up procedure
is executed on completion of the last requested invocable component. These routines are
executed irrespective of which invocable components are requested. If no start up or clean up is
required, thet et _startup andt et _cl eanup variables may be left unset or set to an empty
string.

The TCM and API are provided as shell scripts which must be sourced by the test suite author
immediately after thet et _startup,tet _cl eanup andi cl i st variables, each of thei cn
variables, and any shell functions used by the test case have been defined. The shell script is
sourced by use of the . (dot) shell built-in command. Note that if atest purpose is written as a
separate shell script, that script must source the shell API in order to have access to API support

Page 108 13th January 1997
X/Open Company Ltd

TET3-PG-1.0

routines.

Test Environment Toolkit
TETware Programmers Guide

1153 tet _thistest

Synopsis

$tet _thistest

Description

Thet et _t hi st est shell variable contains the name of the currently executing test purpose, as
specified inthei cnvariable.

11.6 Insulating from thetest environment

The following configuration variables are used by the shell TCM to help determine which events
should be handled for the test case, and which should be passed through.

TET_SI G | GN

TET_SI G LEAVE

defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left with its current disposition (see TET_SI G_LEAVE
below), will be caught when raised and the result of the test purpose will be
set to UNRESOLVED because of the receipt of an unexpected signal. A test
purpose may undertake its own signal handling as required for the execution
of that test purpose; the disposition of signals will be reset after the test
purpose has completed. The APl needs to know how many signals the
implementation supportsin order to set up trap statements for these signals.

defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

The implementation does not allow a standard set of signals to be set to be ignored or left
unchanged, asthis may pervert test results.

13th January 1997

Page 109
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

11.7 Makingjournal entries
11.7.1 Introduction

These functions are provided for use by test cases when making entries in the execution results
file.

11.7.2 tet _setcontext andtet set bl ock
Synopsis

t et _set cont ext

tet setbl ock

Description

The t et _set cont ext shell function changes the context of the calling process. When the
current context is not equal to the value of $$ (the shell builtin variable which contains the
shell’s process ID), acall tot et _set cont ext sets the context to the value of $$. Otherwise,
if the current context is aready equa to $$, a cal totet_setcontext sets the current
context to a new value. This behaviour enables a context to be established in a subshell with a
different value to that established in a parent shell '8

The current context is stored in the environment variable TET _CONTEXT which is marked for
export. This enables the context to be passed to subsequent processes by using this environment
variable. The tet_set cont ext function should be executed by any application which
executes a background subshell and which wishes to write entries to the execution results file
from both processes. Thet et _set cont ext function must be executed from the child process,
not from the parent. Test suite authors should ensure that t et _set cont ext is only called
when it is necessary to change the context in a subshell. Gratuitous calls to this function should
not be made.

The parent should call t et _set bl ock as appropriate to distinguish its output before, during
and after execution of the child.

Thet et _set bl ock shell function increments the current block ID. The value of the current
block ID isreset to one at the start of every test purpose and after acall tot et _set cont ext
which altered the current context. The sequence ID of the next entry is set to one at the start of
each new block. The current block ID is stored in the shell variable TET_BLOCK which is
marked for export.

18. A subshell is a sequence of shell commands enclosed in parentheses, thus: (...).

Note that the value of $$ is the same in a subshell asit isin the parent shell. Thusit is not possible to use $$ to
determine the value of the process ID of a subshell.

Page 110 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

11.7.3 tet i nfoline
Synopsis

tet _infoline data ...

Description

The t et _i nfoline shell function outputs an information line to the execution results file.
The sequence number is incremented by one after the line is output. If the current context and the
current block ID have not been set, the call tot et _i nf ol i ne causes the current context to be
set using the value of the calling process ID and the current block ID to be set to one. Note that
tet i nfoline does not process backsash escapes like the shell echo built-in command. If
more than one argument ispassedtot et _i nf ol i ne, each argument is separated from the next
by a space character when the line is written to the execution resultsfile.

11.7.4 tet result
Synopsis

tet _result result

Description

Thetet _result shel function sets the result code that will be output at the end of the test
purpose. Ther esul t argument specifies the name of the result that isto be output. This result
is output to the execution results file by the TCM upon test purpose completion. This ensures
that all informational messages are written out before the test purpose result, and that there is one
(and only one) result generated per test purpose.

If atest purpose doesnot call t et _r esul t, the TCM generates aresult of NORESULT. If more
thanonecal tot et _resul t ismade with different result codes, the TCM determines the final
result code by use of precedence rules. The precedence order (highest first) is:

FAI L

UNRESCLVED, UNI NI TI ATED
NORESULT (i.e., invalid result codes)

Test suite supplied codes

UNSUPPCORTED, UNTESTED, NOTI NUSE
PASS

Where two or more codes have the same precedence then all callstot et _resul t with one of
those codes are ignored except the first such call.

13th January 1997 Page 111
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

11.8 Canceling test purposes
11.8.1 Introduction

These functions are provided for use when cancelling test purposes.

11.82 tet delete
Synopsis

tet _del ete testnane reason

Description

The shell function t et _del et e marks the test purpose specified by t est nane as canceled.
The TCM will output r eason as the reason for cancellation on the information line that is
generated whenever it attempts to execute this test purpose. The argument t est name matches
the name which is used to call this test purpose. If the requested t est name does not match the
name of a test purpose, no action is taken. If the requested t est namne is aready marked as
canceled the reason is changed to r eason and the test purpose remains marked as canceled. |If
reason is an empty string then the requested t est nane is marked as active; this enables
previously canceled test purposes to be re-activated.

11.8.3 tet reason
Synopsis

tet _reason testnane

Description

The shell functiont et _r eason prints the reason why the test purpose specified by t est nane
has been canceled and returns a value of 0. The reason is printed on the standard output. If the
test purpose specified by t est name is not marked as canceled or does not match the name of a
test purpose, no reason is printed and the function returns avalue of 1.

11.9 Manipulating configuration variables

There is no explicit shell interface to support this functionality. The API ensures that the
configuration information is available to the test purposes as shell variables marked r eadonl y.
Each of these shell variables can be accessed using the normal shell mechanisms.

11.10 Generation and execution of processes

There is no explicit shell interface to support this functionality. The APl ensures that the
configuration information and the tet _thi stest shell variable are available as shell
variables. The ability to use parentheses to generate a subshell environment enables these
variables to be inherited when a subshell is generated. The only facilities that are not provided in
the shell are the ability to timeout a subshell process and the examination of the exit code from
the subshell. The shell provides facilities to accomplish these tasksin arelatively straightforward
manner and this is considered to be an issue for the application programmer rather than for the
APIL.

Page 112 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

11.11 Executed process support

Shell scripts which are executed by atest case written to this API should source the shell API to
include the necessary support routines using the . (dot) shell built-in command. Note that this
will not provide TCM functions (like signal handling and test purpose sequencing). Executed
processes which need this type of support should be test casesin their own right.

13th January 1997 Page 113
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 114 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

12. The Perl API

12.1 Introduction

This chapter describes the TETware Perl API. The Perl API requires the use of the per | utility
and may be used on the Windows NT operating system as well as on UNIX systems. On a
Windows NT system the name of a Perl test case must include a . pl suffix if it is to be
recognised as such by the TETware TCC.

Non-distributed test cases written using this APl may be run stand-alone or under the control of
both the Distributed and Lite versions of the TETware TCC. The Perl APl does not support
distributed testing.

12.2 Description

In many respects the Perl language binding is similar to the Shell (xpg3sh) language binding.
Test cases written to this language binding attach themselves to it through the following files:

o tet-root/ | i b/ perl/tcm pl containsthe Test Case Manager.

o tet-root/ | i b/ perl/api. pl containsthe support routines for use by test purposes.

The Perl API iseguivalent to theposi x_c API provided in TET 1.10.
The following Perl calling conventions should be observed:

&t et’ set cont ext;

&t et’ set bl ock;

& et’infoline("info");

& et’result("result-name") ;

&t et’ del et e(" test-name" [, "reason"]);
&t et’ reason(" test-name") ;

The default result code list is PASS, FAI L, UNRESOLVED, NOTI NUSE, UNSUPPORTED,
UNTESTED, UNI NI TI ATED and NORESULT.

The usage of each call and variable is equivalent to the corresponding calls and variables in the
Shell API.

Variable references should take the following forms:

@clist=(icl,ic2...icn);
@cl=("my_tpl");
@ c2=("my_tp2", " my_tp3") ;

$tet’ startup="my startup_routine";
$tet’ cl eanup="my_cleanup_routine" ;

@et’sig leave list=(..);
@et’sig_ignore_list=(...);

$tet’'thistest;

13th January 1997 Page 115
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

A Perl API-compliant program should adhere to the following structure:

seticlist, ICs, optional setup and cleanup routines
code for subroutines
require "$ENV{\"TET_ROON\"}/lib/perl/tcmpl";

Example test suites written in Perl that test the API are provided in the
tet-root/ contri b/suite and tet-root/ contrib/api directories in the TETware
distribution. In addition, a Perl demonstration test suite is provided in the
tet-root/ cont ri b/ per| deno directory in the TETware distribution. Instructions for running
the Perl demonstration test suite are presented in the section entitted ‘‘The Perl API
demonstration’’ in the TETware User Guide.

Page 116 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

13. Test reporting and journaling
13.1 Makingjournal entries

The TETware API journaling facility provides a mechanism for outputting data to the execution
results file. The API ensures that each entry in this file is written atomically and that there is
sequencing information applied to the entry (to alow t cc to reorder data that is produced from
two or more concurrently executing processes started by a single test purpose). t cc ensures that
simultaneous execution of test cases are isolated from one another.

In order to alow for the correct sequencing of information the following attributes are defined:
o System identifier.
e The current context.
e Thecurrent block.

The current block is a subdivision of the current context and provides a means of ensuring
contiguity, after resequencing, of ablock of datathat needed to traverse severa entries. The need
to traverse several entries may be caused by the limitations on the atomicity imposed by the
implementation, or may be purely a matter of convenience for the test suite author.

The current context is initialised during test case start-up and should be changed only after a new
process is generated. This alows the author to choose whether a number of concurrently
executing test purposes should have the same context or different ones.

The system identification is used to distinguish entries written from test case parts on the multiple
systems participating in distributed test cases.

The current block is initialised to one by the start-up routines at the commencement of each test
purpose. The test author can increment the current block at any point during the output of entries
in order to distinguish one block of data from another. Each individual entry within a block will
be sequenced starting at one. Use of the journaling support facilities alows data from
concurrently executing test purposes to be ordered correctly by t cc.

13.1.1 Entriesfrom the API

As mentioned above, the TCM handles the sequencing of test purposes as a part of executing
invocable components. The sequencing mechanism outputs invocable component start and end
information and test purpose start information to the execution results file. The test author is
responsible for outputting test information and test results to the execution resultsfile.

All of the data for an entry is transferred atomically to the execution results file. It is the
responsibility of the test suite author to remain within the limitations imposed by the
implementation for a single atomic write operation. TETware guarantees atomicity of writes up
to 512 bytes.

If atest purpose executes another process that is built to the TETware API, and that executable is
expected to generate journal messages, the test purpose must use the TETware APl to
communicate the current message context to the executed process.

13th January 1997 Page 117
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

13.1.2 Entriesfrom test purposes

The API provides functionality for delivering informational messages and results from test
purposes to the execution results file. These messages are in addition to those specified above,
which are provided automatically by the TCM. The content of informational messagesis limited
only by the limit imposed upon the total length of ajournal line. It isexpected that test cases will
use this mechanism to deliver special messages to the journa or for additiona reporting
sequences that can be analysed by test suite specific report treatment filters. Test purposes also
deliver results to the execution results file. These results are checked by the API to ensure that
they have been defined by TETware or by the test suite. In the event of an invalid result, the
TCM delivers a message to the execution results file and sets the result to NORESULT. The result
actions are also checked by the API. If atest purpose specifies a result for which the action is
Abor t , then the TCM will not process any more test purposes, call the user-supplied cleanup
function (if one has been defined) and exit.

Note that if atest purpose neglects to generate a result viathe API, the TCM will supply a result
of NORESULT for that test purpose.

13.2 Journal files
13.2.1 Description

Result files are written by test cases, build tools and clean tools when run with output capture
mode disabled. These result files are then transferred into the journal file by t cc. The format of
linesin these filesisidentical.

13.2.2 Journal line parameters

The total length of ajournal line must not exceed 512 bytes. Each journal line is made up of a
message type, the parameters for that message, and a message area (the format of which is
unconstrained). Each message may have zero or more parameters associated with it. These
parameters (strings or integers represented by no more than ten decimal digits), are blank
separated and contained between vertical bars. Possible parameters include:

e The TCC activity number (activity).

This number is incremented each time an activity performed by t cc. Each build, execute
or clean-up of atest caseis considered an individual activity.

« Theinvocable component number (ICnumber).
« An invocable component count (ICcount).

This is the number of invocable components executed in each test case (expected or actual
as specified).

e Thetest purpose number (TPnumber).

This number uniquely identifies the test purpose within atest case.
o Thetest purpose count (TPcount).

Thisisthe number of test purposes that make up an invocable component.
« The message context (context).

This field represents the process that generated the journal line. It consists of a three

Page 118 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

character system ID, followed by the process ID of the the process that initiated the entry.
o The message block number (block).

This number is set to one at the start of each test purpose or new context, and is
incremented each time the test purpose requests it. This number, along with the process
identifier and message number (below) is used by t cc to order the data in an execution
result file prior to transferring that file into the journal.

« The message sequence number (sequence).

This number is set to one at the start of each block, and isincremented each time a message
iswritten to the result file.

« The current time (time).
Times are given using the notation HH: MM: SSwith a 24 hour clock.
« The current date (date).

Dates are given using the notation YYYYMMDD; for example, 19910610 for 10th June
1991.

¢ A test case name (testcase).

Thisisthe test case name as given in the scenario file.
¢ A path name (pathname).

The full path name of afile.

e Thet cc execution mode (mode); possible values for this parameter are as follows:

0 Build
1 Execute
2 Clean-up

3 Pseudo-mode value used when reporting distributed configuration variables
o A completion status (status).

A non-negative value is the value returned to t cc by the operating system after execution
of atest case or tool. Negative values are reserved for use by TETware. The following
values may be used by t cc to indicate some problem when processing atest case:

Statusvalue Meaning

-1 Thetest case or tool could not be executed by t cc

-2 The test case or tool wastimed out by t cc

-3 One or more locks could not be obtained by t cc

-4 t cc encountered some other error while processing the test case

13.2.3 Journal line descriptions

A description of each type of journa line that may be produced by TETware processes is
presented in the appendix entitled ** TETware journal lines” in the TETware User Guide.

13th January 1997 Page 119
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

13.3 Result file processing

13.3.1 Execution results from an API-conforming test case

When a test case using an API which does not support distributed testing’® is executed (whether
stand-alone or under the control of t cc), the API writes journal lines to an execution results file
calledt et _xr es which residesin the test case execution directory.

When atest case using an APl which supports distributed testing is executed by the Distributed
version of t cc, the API sendsjournal lines to the Execution Results daemon (t et xr esd) which
writes them to an execution results file. t et xr esd maintains a separate execution results file
for use by each non-distributed test case and a single (or combined) execution results file for use
by all parts of adistributed test case.

13.3.2 Processing results from a non API-conforming test case

When t cc executes atest case which does not use an API, it pretends that the test case consists
of a single invocable component which contains a single test purpose. Before the test case is
executed, t cc writesa TCM Start message, an IC Start message and a TP Start message to the
journal. When the test case finishes execution, t cc writes a TP Result message and an IC End
message to the journal. The result contained in the TP Result line is determined by the test case’s
exit status; zero status causes PASS to be reported and non-zero status causes FAI L to be
reported.

Note that t cc does not perform automatic result generation when it executes a non API-
conforming build or clean tool.

13.3.3 Processing results from a non-distributed API-confor ming test
case

When atest case run under the control of t cc finishes execution, t cc reads the execution results
file (wherever the file is) and transfers its contents to the journal. When the Distributed version of
t cc executes a non-distributed test case, it has to be aware of the possibility that the APl might
either write journa linesto thet et _xr es file or send them to t et xr esd. Therefore, when
such a test case finishes execution, t cc first inspects the execution results file maintained by
t et xresd. If the file contains at least one line, t cc uses this file. Otherwise, if the file is
empty, t cc looks for at et _xr es filein the test case execution directory and uses that instead.
When the Distributed version of t cc decides to use atet xres file produced by a non-
distributed test case that has been executed on aremote system, it must first transfer the file to the
local system beforeit can be used.

Once t cc has identified the location of an execution results file that has been generated by a
non-distributed test case (by whatever means), it transfers lines from that file to the journal.
When t cc performs this operation, it inspects the type of each line read from the execution
results file and processes it as follows:

19. The C and C++ APIs in Distributed TETware support distributed testing. The other APIs in Distributed TETware
and all the APIsin TETware-Lite do not support distributed testing.

Page 120 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

1. Whilethelineisnot aTP Start line, it is simply copied to the journal.

2. WhenaTP Start lineisfound, it istransferred to the journal. Then subsequent linesup to a
TP Result line?® are ordered as follows:

a. tcc inspects the type of the first un-transferred line in the range. If the lineis not a
Test Case Information Line, it is transferred to the journal and step (a) is repeated. |If
the line is a Test Case Information Line, it is transferred to the journal and the
context and block numbers are remembered.

b. tcc then inspects al the other un-transferred lines in the range and identifies lines
with the same context and block numbers. These lines are transferred to the journal
in order of ascending sequence number.

c. When t cc reaches the end of the range, it returns to step (a). This process is
repeated until all linesin the range are transferred.

3. Then t cc copies the TP Result line to the journal. If no TP Result line appears, t cc
supplies one which contains a result of NORESULT.

These steps are repeated until the end of the execution results file is reached.

13.3.4 Processing results from a distributed API-conforming test case

When a distributed test case is run under the control of the Distributed version of t cc, parts of
the test case which run on each participating system each send execution results lines to
t et xresd for processing. The API ensures that only one part of the test case generates the
TCM Start, IC Start, IC End and TP Start lines that must appear in the execution results file.

However, parts of the test case that run on each participating system are supposed to generate a
Test Purpose Result to indicate the result of each part of the test purpose. t et xr esd arbitrates
between all the partial results and generates a single consolidated result for each test purpose. If a
test purpose part does not supply at least one result, t et xr esd records a partial result of
NORESULT on behalf of that system before performing the result arbitration.

When t cc copies the execution results file generated by a distributed test case to the journal, it
does not reorder Test Purpose Information lines; instead, they are copied to the journal in the
order in which they were received by t et xr esd. Therefore, test case authors should ensure
that, when two or more Test Purpose Information Lines from a particular process are required to
appear in the journal without being separated by lines from another process, the lines are
presented to the APl using a function which instructs t et xr esd to write al the lines to the
execution results file in asingle operation.

13.4 Support for user-supplied report writers

As indicated previously, TETware generates a journa file using a well-defined format. It is
expected that test suite authors will provide a report writer which presents the information
contained in the TETware journal in a format which is appropriate for the type of testing being
undertaken.

20. Or another line type which indicates the end of the scope of the current test purpose, or end-of-file.

13th January 1997 Page 121
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Each line in the journa file consists of three fields; each field is separated from the next by a |
character. The value in the first field of each line indicates the type of the line. For convenience
of test suite authors who wish to write a report writer using the C language, these values are
defined in a header file which is supplied with the TETware distribution. The name of thisfileis
tet_jrnl.handitresidesinthetet-root/ i nc/t et 3 directory.

Page 122 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

14. Writing a C language API-conforming test suite
14.1 Introduction

This chapter describes a sample non-distributed test suite that conformsto TETware' s C language
binding of the API. The source code for the test suite can be found in the appendix entitled
‘“*Clanguage API test suite source files’ at the end of this guide. This test suite has been
designed to run on a UNIX type of operating system.

This sample test suite is designed to illustrate how a non-distributed test suite can be structured
under TETware, as well as how individual test cases and their test purposes relate to each other
and to the API. The test suite has been deliberately kept simple and redlistic. For example, one
test purpose compares the returned error code against an expected error code of a failed system
call, while another test purpose in the same test case checks the successful execution of the
system call.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ‘*C language API test
suite sourcefiles'” at the end of this guide to see the code in its entirety.

14.2 Defining atest suite

Test suites reside in subdirectories of tet-root. As explained in the chapter entitled “* Testing
structure’” earlier in this guide, the name of the subdirectory and the test suite are the same.

13th January 1997 Page 123
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called C- API :

$TET_ROOT

tetbuild. cfg tetdist.cfg tetcl ean.cfg
tet _code tet _scen t et exec. cfg results
ts
cl eant ool i nstall
chnod fileno st at unamne
A—tc. c Aﬁ makeé\ makeé\
makefil e makefil e fileno-t4.c unane-tc.c stat-tc.c

Figure 17. Directory structure for the example C language test suite

The make-up of this test suite is similar to the demonstration test suite as defined for the master
system and contains the following files:

e Aninstall script and clean tool in the bi n directory.

o Configuration files for test build, execution, and cleanup.

« A control file,t et _scen.

o A result codesfile t et _code.

o Severa test casesin adirectory structure under the directory t s.
o A results directory.

If this test suite is run using TETware-Lite, the t et di st . cf g file is not required. If this test
suite is run on the local system using Distributed TETware, a syst ens file is required. In
addition, the t et di st . cf g file is required when this test suite is run on a remote system or
when Distributed TETware is built to use XTI as the network transport.

Page 124 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

The control file, t et _scen, lists the components of the test suite; and its contents determine the
scenarios that can be used in running the test suite. The control file, t et _scen, for the G- API
test suite contains the following lines:

chnod, fileno, stat, unane test suite

al |
"Starting Full Test Suite"
/ts/chnod/ chnod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/ unanme/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/chnod/ chnod-tc
"Fi ni shed chnod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Fi nished fil eno Test Case"

st at
"Starting stat Test Case"
/ts/stat/stat-tc
"Fi ni shed stat Test Case"

unane
"Starting unane Test Case"
/ts/ unanme/ unane-tc
"Fi ni shed unane Test Case"

EOF

The control file lists five scenarios for the test suite: al | (required), chnod, fi | eno, st at

and uname. Since the test suite is composed of four test cases, one for the chnod() system
call, one for the fil eno() system cal, one for the stat () system cal, and one for the
uname() system call, the control file has been written to allow each test case to be handled as a
separate scenario, or for the whole test suite to be run at once withtheal | scenario.

The lines enclosed in double quotes (") are optional information lines that get passed into the
journal file. The lines that begin with a slash or stroke character (/) name the executable test
cases associated with each scenario. Note that, even though these lines begin with a dlash
character, the location of the test cases is interpreted relative to the local directory (the root
directory for the test suite). In thisinstance, the test cases arein a subdirectory namedt s.

The clean tool is used to remove unwanted files after the build of each test case. It isinvoked in
the source directory of the test case. In this case it is set to exec nake cl ean to remove
unwanted object files as defined in each makefi | e.

13th January 1997 Page 125
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

14.3 Defining common test case functions and variables

Since most test suites lend themselves to lots of code redundancy, making an effort to group
together common functions and variables can greatly simplify the writing and debugging of atest
suite. With the C- API test suite (which isvery small), no common functions and variables other
than the standard onesint et api . h were created.

One additional result code was invented, however, which would normally be defined in a test
suite specific header file. But because it is only used within one test case in this very small test
suite, it isinstead defined within unane- t ¢. ¢ asfollows:

#undef TET_ | NSPECT /* nust undefine because TET_is reserved prefix */
#define TET _INSPECT 33 /* this would normally be in a test suite header */

14.4 Initialising test cases

Every test case requires some minimum initialisation of functions and variables. The
fil eno-t c test case provides agood illustration of how thisinitialisation can be handled.

/* fileno-tc.c : test case for fileno() interface */

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

#i ncl ude <tet_api.h>
extern char **environ

static void cleanup();
static void tpl(), tp2(), tp3(), tp4(), ch4();

/* Initialise TCM data structures */
void (*tet_startup)() = NULL;

void (*tet_cl eanup)() = cleanup

struct tet_testlist tet_testlist[] = {

{ tpl, 11},
{ tp2, 2},
{ tp3, 31},
{ tp4, 41},
{ NULL, 0}
}s
/* Test Case Wde Declarations */
static char nsg[256]; /* buffer for info lines */

After the #i ncl ude statements, several functions are declared. As described in the chapter
entitled *‘The C API"" earlier in this guide, TETware provides the option of naming both a startup
and a cleanup function. The named startup function will be called before the first test purpose is
executed; and the cleanup function will be called after all test purposes have been executed. In

Page 126 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

this test case, only the cleanup function is named. The cleanup function cl eanup() removes
files created during the course of the test case.

The st at -t c test case includes a more substantial cleanup function, as well as a startup
function. It requires that a file be created before the first test purpose, so this is handled by the
startup function; this same file, as well as another file and a directory created during the tests, is
then removed in the cleanup function. See the appendix entitled ‘‘ C language API test suite
sourcefiles” at the end of this guide for a complete code listing of the st at - t ¢ test case.

The fil eno-tc test case includes four test purposes, contained in the functions t p1(),
tp2(),tp3() andt pd() . First the functions are declared (including an extra function which
is a child process started by tp4()), as shown above. Then they are listed in the
tet testlist array with the invocable component to which they belong. In this case, each
test purpose can be executed individually, so they are assigned to separate invocable components.
If, say, t p2() depended on prior execution of t p1() , then they would be assigned the same IC
number. After the array is set, any test case wide declarations are made. This commonly
includes abuffer to use for constructing information lines to be output witht et _i nf ol i ne() .

14.5 Controlling and recording test case execution results

Identifying and executing highly specific tests is central to any test case. Each test purposein a
test case typicaly targets one specific test that is loosely or strongly related to the other test
purposes contained in the test case. The central purpose of each of these test purposesis to relay
information about the execution of the test for the tester to examine later. This relaying of
information can take the form of informational messages describing the test being executed, fatal
or non-fatal errors that were encountered, and specific test execution results, such as PASS or
FAI L.

The chnod- t ¢ test case contains test purposes as follows:
t pl A successful chnod of afile, expecting areturn code of 0.

tp2 A faled chnod of a non-existent file, expecting a return code of —1 and err no set to
ENCENT.

t p3 A failed chnod of afile that contains a non-directory path component, expecting a return
code of -1 and er r no set to ENOTDI R.

Functionst p1() andt p2() areshown hereand are described below.

static void
tpl() /* successful chnod of file: return 0 */

{
int ret, err;
node_t node;

tet _infoline("SUCCESSFUL CHMOD OF FI LE");
/* change node of file created in startup function */

errno = 0;
if ((ret=chnod(tfile, (nbde_t)0)) != 0)
{

err = errno;
(void) sprintf(nsg, "chnod(\"%\", 0) returned %, expected 0",

13th January 1997 Page 127
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

tfile, ret);
tet_infoline(nmsg);
if (err 1= 0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(msg);

}

tet result(TET_FAIL);

return;

}

/* check node was changed correctly */

if (stat(tfile, &buf) == -1)
{
(void) sprintf(nsg,
"stat(\"%\", buf) failed - errno %", tfile, errno);
tet _infoline(nsg);
tet result(TET_UNRESCOLVED)
return,
}

node = buf.st node & O ACCMODE
if (mode !'= 0)

{
(void) sprintf(nsg, "chnod(\"%\", 0) set node to 0% o, expected 0",
tfile, (long)node);
tet _infoline(nsg);
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
tp2() /* chnod of non-existent file: return -1, errno ENOENT */
{

int ret, err;
tet _infoline("CHVOD OF NON- EXI STENT FILE");
/* ensure file does not exist */

if (stat("chnod. 2", &uf) !'= -1 & unlink("chnod.2") == -1)
{

tet _infoline("could not unlink chnod.2");
tet result(TET_UNRESCOLVED)
return;

}

/* check return value and errno set by call */

errno = 0O;
ret = chnmod("chnod. 2", (node_t)O0);

Page 128 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

if (ret !'=-1]| errno != ENCENT)
{
err = errno;
if (ret !'=-1)
{
(void) sprintf(nsg,
"chrmod(\"chrmod. 2\", 0) returned %, expected -1", ret);
tet _infoline(msg);
}
if (err !'= ENOENT)
{
(void) sprintf(nsg,
"chrmod(\"chrmod. 2\", 0) set errno to %l, expected %l (ENCENT)",
err, ENOCENT);
tet _infoline(msg);
}
tet result(TET_FAIL);
}
el se

tet _result (TET_PASS);
}

The comments for the code should clarify what is happening on each line. However, it is
important to note that a lot of useful diagnostics have been written right into the tests. If any of
the system calls fail, whether it is the one being specifically tested or one that the test relies on,
that failure will be reported. Also, the tests begin the same, with a message about the test’s
purpose; and they end the same, with a pass/fail result being reported.

This sort of consistency yields two important benefits:
o Test purposes will be easier to write when they follow some sort of template.

o Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

14.6 Resultsthat must be verified by the user

Some test cases may require user verification of information generated by a test case. An
example of this can be found in the unane- t ¢ test case when system specific information is
being reported.

static void
tpl() /* successful unane: return 0 */

{

int ret, err;
struct utsnane nane;

tet _infoline("UNAME QUTPUT FOR MANUAL CHECK");
/* The test cannot deternine automatically whether the infornmation

returned by unane() is correct. It therefore outputs the
informati on with an I NSPECT result code for checking manually. */

13th January 1997 Page 129
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

errno = 0O;
if ((ret=unane(&nane)) != 0)
{
err = errno;
(void) sprintf(nsg, "unane() returned %, expected 0", ret);
tet _infoline(msg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet result(TET_FAIL);

}

el se

{
(void) sprintf(nsg, "System Name: \"%\"", nane.sysnane);
tet _infoline(nsg);
(void) sprintf(nmsg, "Node Nane: \"%s\"", nanme.nodenane);
tet _infoline(nsg);
(void) sprintf(nsg, "Release: \"%\"", nane.release);
tet _infoline(nsg);
(void) sprintf(nsg, "Version: \"%\"", name.version);
tet _infoline(nsg);
(void) sprintf(nsg, "Machine Type: \"%\"", nane. nmachine);
tet _infoline(nsg);
tet result(TET_I NSPECT);

}

}

Since the information from uname() will be different on every machine, the output needs to be
reported and then verified. Here the information is simply being printed out for the tester to see
and check, but no attempt has been made to interact with the tester to receive verification of the
information and then use that verification to set the pass/fail result. Instead, a result code of
INSPECT has been used.

14.7 Child processes and subprograms

Some test purposes require the creation of a child process or execution of a subprogram.
TETware provides several interfaces to facilitate this, asfollows:

tet _fork() an APl function called by test purposes to create a child process and perform
processing in parent and child concurrently.

tet _exec() anAPI function called by child processesto execute subprograms.
tet _main() a user-supplied function to be defined in subprograms executed by
tet _exec().

An example of their use can be found in test purposet p4 of thef i | eno test case:

Page 130 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

static void
t p4() /* on entry to main(), streamposition of stdin, stdout and
stderr is sane as fileno(strean) */

{
tet_infoline("ON ENTRY TO MAIN, STREAM PCSI TI ON OF STDI N, \
STDOUT AND STDERR');
/* fork and execute subprogram so that unique file positions can be
set up on entry to main() in subprogram*/
(void) tet fork(ch4, TET_NULLFP, 30, 0);
}
static void
ch4()
{
int fd, ret;
static char *args[] ={ "./fileno-t4", NULL };
/* set up file positions to be inherited by stdin/stdout/stderr
i n subprogram */
for (fd = 0; fd < 3; fd++)
{
(void) close(fd);
if ((ret=open("fileno.4", O RDWR O CREAT, S IRWKU)) != fd)
{
(void) sprintf(nsg, "open() returned %l, expected %", ret, fd);
tet _infoline(nsg);
tet _result(TET_UNRESOLVED);
return;
}
if (lseek(fd, (off _t)(123 + 45*fd), SEEK SET) == -1)
{
(void) sprintf(nsg, "lseek() failed - errno %", errno);
tet _infoline(nmsg);
tet _result(TET_UNRESOLVED);
return;
}
}
/* execute subprogramto carry out renai nder of test */
(void) tet_exec(args[O0], args, environ);
(void) sprintf(nsg, "tet_exec(\"%\", args, env) failed - errno %",
args[0], errno);
tet _infoline(nmsg);
tet _result(TET_UNRESOLVED);
}

All the testing is done in the child, so the function t p4() simply calstet fork() and

ignores the return value. If it needed to do any processing after the call to t et _fork(), it

should check that the return value was one of the expected child exit codes before continuing.

13th January 1997 Page 131
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Theargumentstot et _fork() areasfollows:
o A function to be executed in the child.

« A function to be executed in the parent. In this case no parent processing isrequired, so the
null function pointer TET_NULLFP (definedint et _api . h) isused.

« A timeout period in seconds.
o A bitwise OR of the valid child exit codes. Inthis case the only valid exit codeis zero.

Thefilefi | eno-t 4. c containsthe definition of t et _mai n() , asfollows:

i nt
tet _main(argc, argv)
int argc;
char **argv;
{
long ret, pos;
int fd, err, fail = 0;
static FILE *streans[] = { stdin, st dout , stderr };
static char *strnanes[] = { "stdin", "stdout", "stderr" };
/* check file positions of streans are same as set up in parent
for (fd = 0; fd < 3; fd++)
{
pos = 123 + 45*fd; /* nust match | seek() in parent */
errno = O;
if ((ret = ftell(streans[fd])) != pos)
{
err = errno;
(void) sprintf(nsg, "ftell (%) returned % d, expected %d",
strnanes[fd], ret, pos);
tet _infoline(nsg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);
}
fail = 1;
}
}
if (fail == 0)
tet _result (TET_PASS)
el se
tet _result(TET_FAIL);
return O;
}

The tet _fork() API function relies for its operation on the f or k() system call which is
provided by the UNIX operating system. Since f or k() is not available on the Windows NT
operating system, thetet fork() andtet exec() API functions are not provided when
TETware runs on the Windows NT system.

Page 132 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

In order to assist test suite authors in writing test cases which are portable to both UNIX and
Windows NT systems, TETware providesthet et _spawn() andt et wai t () API functions
which may be used to facilitate subprogram execution. These functions are available on UNIX
systems aswell as on Windows NT systems.

14.8 Cleaning up test cases

Since test cases often change and/or create data, it isimportant to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware's t et _cl eanup utility. The cleanup function named in the stat-tc test case
provides a good example.

static void
cl eanup()

{

/* renove file created by start-up */
(void) unlink(tfile);

/* renove files created by test purposes, in case they don't run
to conpletion */
(void) rndir("stat.d");
(void) unlink("stat.p");
}

Thecl eanup function is called when all the test purposes have finished executing. As shown, it
simply removes the files and directory that were created during the test.

13th January 1997 Page 133
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 134 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

15. Writing a Shell language API-conforming test suite

15.1 Introduction

This chapter describes a sample non-distributed test suite that conforms to TETware's shell
language binding of the API. The source code for the test suite can be found in the appendix
entitled ** Shell API test suite sourcefiles’ at the end of this guide.

This test suite has been designed to run on a UNIX type of operating system. Some minor
changes may be required in order to make this test suite function correctly on the Windows NT
operating system.

The test suite described in this chapter usesthe Shell (xpg3sh) TCM and API. It can be adapted
to use the Korn Shell (ksh) TCM and API by changing the single line in each test case which
determines which TCM isto be used. Thisis possible because test cases in the test suite do not
use syntax which is specific to either type of shell.

This sample test suite, like the one in the chapter entitled **Writing a C language API-conforming
test suite’’, is designed to illustrate how a test suite can be structured under TETware, as well as
how individual test cases and their test purposes relate to each other and to the API. Like the
C- API test suite, this test suite has been deliberately kept simple and realistic. However, instead
of system calls being tested, the equivalent user-level commands are tested. Sample tests include
checking a returned error code and error message against an expected error code and expected
error message and printing out system specific information for verification by the tester.

Note that no support for distributed test cases is provided by the Shell APl in Distributed
TETware. It is possible to execute test caseson alocal system or on one or more remote systems,
but no synchronisation between test parts on multiple systems is possible. When Distributed
TETwareisused it is necessary to supply asyst ens file. Inaddition, it is necessary to supply a
tetdi st.cfg file if the test suite is to be processed on remote systems or if Distributed
TETware has been built to use the XTI network transport.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ‘* Shell API test suite
sourcefiles” at the end of this guide to see the code in its entirety.

15.2 Defining atest suite

As explained in the chapter entitled ‘*Writing a C language API-conforming test suite’’, test
suites reside in subdirectories of tet-root. The name of the subdirectory and the test suite are the
same.

13th January 1997 Page 135
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called SHELL- API :

$TET_ROOT

SHELL- API

tet code tet _scen tetdist.cfg results
bin tetbuild. cfg tetcl ean.cfg ts_exec
ts /\
buiId{;;:///W\\\::;;ﬁtool t et exec. cfg lib
i nstall
chnod unane

makefile chnod-tc.sh nmakefile unane-tc.sh shf uncs

Figure 18. Directory structure for the example Shell language test suite

The make-up of this test suiteis similar to the C- API test suite and contains the following files:
o Aninstall script, build tool and clean tool in the bi n directory.
« Some configuration files for test build, execution, and cleanup
o A control file, t et _scen.
o A result codesfile, t et _code.
o Severa test casesin adirectory structure under the directory t s.
« An alternate execution directory t s_exec.
o A results directory.

The contral file, t et _scen, is similar to the control file for the C- APl test suite. See the
chapter entitled ‘*Writing a C language API-conforming test suite’’ for a description of the
control file and how its structure relates to the scenarios that can be run.

The instalation utility i nst al | creates the directory structure under the alternate execution
directory to match the structure under the t s directory. For the purpose of this example the
location of the alternate execution directory is fixed as $TET_ROOT/ SHELL- APl / t s_exec
but in general it would be obtained from the user and could be located anywhere.

Page 136 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

The build tool is used to build each test case. It isinvoked in the source directory of the test case
and installs the relevant files under the alternate execution directory. It does this by calling
make, setting TET_EXECUTE to the correct value on the nake command line in order to
override the default value in each makefi | e.

The clean tool is used to remove the installed files from under the alternate execution directory.
It works in the same way as the build tool except it executes a make cl ean instead of just
make.

15.3 Defining common test case functions and variables

Just as with the C- API test suite, it makes good sense to minimise code redundancy by grouping
together common functions and variables. In the process of writing the SHELL- API test suite,
several common functions were created. This code was collected into a file named shf uncs,
which isinthel i b subdirectory of thet s_exec directory. The shf uncs fileis sourced into
each of the two test cases using the shell built-in. (dot) command. The required TETware Shell
APl file, tcm sh (which in turn sources in the other required TETware Shell APl file
t et api . sh) is also sourced into each of the two test cases. It isimportant to note the point at
which these files are sourced in. Since the TETware API files read definitions and begin
execution when they are sourced in, they must be sourced in as the very last part of each test case.
Therefore, the last line of each of the test cases sourcesint cm sh.

shf uncs contains the following functions:

shfuncs : test suite common shell functions

tpstart() # wite test purpose banner and initialise variables

{

tet_infoline "$*"

FAI L=N
}
tpresult() # give test purpose result
{
$1 is result code to give if FAIL=N (default PASS)
if [SFAIL = N]
t hen
tet_result ${1-PASS}
el se
tet result FAIL
fi
}

check _exit() # execute conmand (saving output) and check exit code

{

$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=$?

if [$2 = 0 -a $CODE -ne 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 !'=0 -a $CODE -eq 0]

t hen

13th January 1997 Page 137

X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

Page 138

TET3-PG-1.0

tet _infoline "Command ($1) gave exit code $CODE, expected non-zero"

FAI L=Y
fi
}
check_nostdout () # check that nothing went to stdout
{
if [-s out.stdout]
t hen
tet _infoline "Unexpected output witten to stdout, as shown bel ow "
infofile out.stdout stdout:
FAI L=Y
fi
}
check_nostderr() # check that nothing went to stderr
{
if [-s out.stderr]
t hen
tet _infoline "Unexpected output witten to stderr, as shown bel ow "
infofile out.stderr stderr
FAI L=Y
fi
}
check _stderr() # check that stderr matches expected error
{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty
case $1 in
")
if [! -s out.stderr]
t hen
tet _infoline "Expected output to stderr, but none witten"
FAI L=Y
fi
*)
expfile="3$1"
K=Y
exec 4<&0 0< "$expfile" 3< out.stderr
whi | e read expline
do
if read Iine <&3
t hen
if expr "$line" "$expline" > /dev/nul
t hen
el se
OK=N
br eak
fi
el se
=N
13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

fi

done

exec 0<8&4 3<& 4<&-
if [K = N]

t hen

tet _infoline "Incorrect output witten to stderr, as shown bel ow
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAI L=Y
fi

esac

}

infofile() # wite file to journal using tet_infoline

{

$1 is file name, $2 is prefix for tet_infoline

prefix=$2
while read |ine
do
tet_infoline "$prefix$line"
done < $1

}

Since these functions perform commonly required tasks, they are better defined once rather than
twice. Also, should they ever need to be changed, this means changing only onefile.

Executing the test for each test purpose in some common, controlled way can make writing the
tests and checking their results much easier. The function check_exi t waswritten to:

— execute acommand in agiven argument ($1);

— capture both standard error and standard output in separate files (in case one or both need to
be checked);

— record the exit code in avariable called $CODE;
— output amessage to the journal if an unexpected exit code is found.
Thisfunction is coded as follows:

check _exit() # execute conmand (savi ng output) and check exit code

{
$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=%$"

if [$2 = 0 -a $CODE -ne 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 !'=0 -a $CODE -eq 0]

t hen
tet _infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAI L=Y

fi

}
13th January 1997 Page 139

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

15.4 Initialising test cases

Every test case requires some minimum initialisation of functions and variables. The
unane- t ¢ test case provides agood illustration of how this initialisation can be handled.

unanme-tc.sh : test case for unane command

tet startup="" # no startup function

tet cl eanup="cl eanup” # cleanup function
iclist="icl ic2" # list invocabl e conponents
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2

As described in the chapter entitled ‘‘Test case support’’ elsewhere in this guide, TETware
provides the option of naming both a startup and cleanup function. The named startup function
will be called before the first test purpose is executed; and the cleanup function will be called
after all test purposes have been executed. Here, only a cleanup function is named, by setting
t et _cl eanup equal to the name of the function that will be used.

A cl eanup function is used by both of the test cases.

cl eanup() # clean-up function

rm-f out.stdout out.stderr out.experr

}

It simply removes the files containing the actual standard output, actual standard error and
expected standard error for the test.

Thei cl i st variable must contain a space-separated list of the invocable components contained
in the test case. Thislist must be in the form shown above, meaning: i c1,i c2, and so on. No
other names can be used. The next lines define the correspondence between invocable
components (i cn) and the test purpose(s) that they contain. In this test case, each test purpose
can be executed individually, so they are assigned to separate invocable components. If, say,
t p2 depended on the prior execution of t p1, then the definitions would be:

iclist=icl # list invocabl e conponents
icl="tpl tp2" # functions for icl

15.5 Controlling and recording test case execution results

As shown above, alot of effort has been taken to report on the processing of each test case, and
even on the individual test purposes. The chnod-t ¢ test case, presented below, shows how
information about the processing of atest case can be handled.

Thechnod- t ¢ test case contains test purposes as follows:
t pl successful chnod of afile with an expected exit code of 0.
t p2 failed chnod of anon-existent file with an expected exit code of non-zero

t p3 failed chnod dueto invalid syntax with an expected exit code of non-zero.

Functiont p1 isshown here and is described below.

Page 140 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

tpl() # sinple chnod of file - successful: exit O

{
tpstart "SIMPLE CHMOD OF FILE: EXIT 0"
echo x > chnod. 1 2> out.stderr # create file
if [! -f chnod. 1]
t hen
tet _infoline "Could not create test file: chnod. 1"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return
fi
check _exit "chnod 777 chnod. 1" 0 # check exit val ue
MDE='Is -1 chnod.1 |cut -d" " -f1' # get and check node of file
if [X'$MODE" !'= X'-rwxrwxrwx"]
t hen
tet _infoline "chmod 777 set node to $MODE, expected -rwxrwxrwx"
FAl L=Y
fi
check _nost dout # shoul d be no stdout
check_nostderr # shoul d be no stderr
t presult # set result code
}

The comments for the code should clarify what is happening on each line. Like the C- APl test
cases, this test purpose begins with reporting information about what the test has been designed to
check and ends with setting the test result. In this case, thisis done by the functiont presul t,
where the test status variable $FAI L is tested and reported on. [f the file that is needed for the
test cannot be created, the test outputs diagnostics to the journal and returns a result of
UNRESCLVED. Note that in addition to checking the exit code, the file itself is checked to make
sure that the mode set by chnod was actualy set. Also, since a successful execution of this
command means that nothing is written to standard error or standard output, functions contained
inshf uncs are used to make sure that no data was output by the command.

In the test purpose, t p2, much of the same function calls are used, even though in this test
chnod is expected to fail.

tp2() # chnod of non-existent file : exit non-zero

{

tpstart "CHMOD OF NON- EXI STENT FILE: EXI T NON- ZERO!

ensure test file does not exist

rm-f chnod. 2 2> out. stderr

if [-f chrod. 2]

t hen
tet _infoline "Could not renmove test file: chnod. 2"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return

fi

13th January 1997 Page 141

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

check_exit "chnod 777 chnod. 2" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr # check error message
tpresult # set result code

}

Again, the description of the test is reported, the exit code is checked against that expected by
check_exit,tp_result iscalled to report the test result, and check _nost dout is used
to make sure no data was sent to standard output. In this case, however, an error message should
be produced; so the expected message is captured in afile in order that it can be later compared
with the error message received. This is done through the function check_st derr which is
defined in shf uncs and is shown here.

check_stderr() # check that stderr matches expected error

{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty
case $1 in
")
if [! -s out.stderr]
t hen
tet _infoline "Expected output to stderr, but none witten"
FAl L=Y
fi
*)
expfile="3$1"
K=Y
exec 4<&0 0O< "$expfile" 3< out.stderr
whil e read expline
do
if read Iine <&3
t hen
if expr "$line" : "$expline" > /dev/nul
t hen
el se
OK=N
br eak
fi
el se
OK=N
fi
done
exec 0<&4 3<& 4<&-
if [&K = N
t hen
tet_infoline "lIncorrect output witten to stderr, as shown bel ow'
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAl L=Y
fi
Page 142 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

esac

}

The two files, one containing the expected error output in regular expression form, and the other
containing the received error output, are compared line-by-line and, if they are identical, nothing
is done. However, if they differ, it isimportant to know how they differ; therefore, both files are
printed for the tester to evaluate later and the status of the test purpose is set to show a failed
result.

As shown here, a lot of useful diagnostics have been written right into the tests. If any of the
commands fail, whether it is the one being specifically tested or one that the test relies on, that
failure will be reported. Also, each test case and test purpose begins with information reported in
aconsistent format; and they end the same, with a pass/fail (or other) result being reported.

Aswith the C- API test suite, this sort of consistency yields two important benefits:
o Test purposes will be easier to write when they follow some sort of template.

o Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

15.6 Resultsthat must be verified by the user

Some test cases may require user verification of information generated by a test case. An
example of this can be found in the unamne- t ¢ test case when system specific information is
being reported.

tpl() # sinple unane of file - successful: exit O

{ tpstart "UNAME OUTPUT FOR MANUAL CHECK"
check _exit "uname -a" 0 # check exit val ue
i nfofile out.stdout # send output to journal
check_nostderr # shoul d be no stderr
tpresult | NSPECT # set result code

}

Since the output from unane will be different on every machine, this information needs to be
reported and then verified. Here the information is being printed out for the tester to see and
check; the test purpose result is INSPECT to indicate that the tester must inspect the output in the
journal.

15.7 Cleaning up test cases

Since test cases often change and/or create data, it isimportant to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware' st et _cl eanup utility. Thecl eanup function isthe most practical place to specify
the removal of temporary files.

13th January 1997 Page 143
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 144 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

16. Thedistributed demonstration test suite
16.1 Introduction

This chapter describes the official TETware demonstration test suite. The demonstration consists
of simple distributed test cases which use the C API. Each test caseis designed to execute on the
local (or master) system and a remote (or slave) system. This test suite is useful in that it helps
to delineate the basic components of adistributed test suite in its simplest form.

The distributed demonstration test suite has been designed to run on a pair of UNIX systems, a
pair of WindowsNT systems, or on one UNIX and one WindowsNT system. When the
demonstration is configured to run between a UNIX and a WindowsNT system, you may
configure either type of system to act as either master or slave.

Since thisis adistributed test suite, it must be processed using Distributed TETware. It cannot be
used with TETware-Lite.

Source files for this test suite is included below the directory tet-root/ src/ t et 3/ deno in the
TETware distribution. Instructions for building, installing and running the demonstration are
presented in the chapter entitled ** Running the TETware demonstrations” in the TETware User
Guide. An example of the journal file produced when the test case is build, executed and cleaned
by Distributed TETware is presented in the appendix entitled ‘*‘ TETware demonstration journal
file'’, asointhe TETware User Guide.

Examples of non-distributed test cases, are presented in the chapters entitled ‘‘Writing a
C language API-conforming test suite’’ and ‘‘Writing a Shell language API-conforming test
suite’’ elsewhere in this guide.

16.2 Test suitefiles

The following figure shows the file structure of the distributed demonstration test suite on the
master system. The same structure is replicated on the dlave system except that the
tetdist.cfg,tet code andtet scen files are not present. It is not necessary for the
value of tet-root to be the same on each system because configuration variables are available to
define it separately for each system.

Each file in the test suite is described in the sections that follow. For ease of reference, listings of
all the filesin this test suite are presented in the appendix entitled ‘' Example distributed test case
source files” at the end of this guide. You should refer to these listings when reading the
following sections.

13th January 1997 Page 145
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The following figure shows the component files of the example distributed test suite:

$TET_ROOT

bi n doc deno inc lib src syst ens

tetbuild. cfg tetdist.cfg tetcl ean.cfg
bin tet _scen ts t et exec. cfg results

makefile tcl.c tc2.c tc3.c

Figure 19. Directory structure for the distributed demonstration test suite

16.2.1 Thesyst ens file

This file contains the mappings that assign system identifiers to host names. The file must be
located in the tet-root directory on each system participating in the test.

In the distribution it contains the following lines:

Exanpl e systemfile for denobnstration
000 mast er
001 sl ave

Y ou must edit thisfile to contain values that are appropriate for your installation.

If you are using a version of TETware that uses the socket network interface, you only need to
replace the names mast er and sl ave with host names suitable for your instalation. In
addition, you should ensure that these host names are in the hosts databases on both systems.

If you are using a version of TETware that uses XTI as the network transport interface you will
need to add a third field to each entry in thisfile. The extrafield should contain the address of the
Test Case Controller daemon (t ccd) on each system. The format of this addressis described in
the section entitled ** System definitions’ elsewherein this guide.

Page 146 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

16.2.2 Thet et code file

Thet et _code fileislocated in the test suite root directory on the master system and contains
result code definitions for the test suite.

Thisfile contains the following lines:

tet _code file for the TETware denobnstration

TET reserved codes
" PASS"

"FAlI L"

" UNRESOLVED"

" NOTI NUSE"

" UNSUPPORTED"

" UNTESTED"

"UNI NI TI ATED"

" NORESULT"

NO O~ WNEFEOH* H*HH#

Test suite additional codes
101 " FATAL" Abor t
102 "1 NSPECT"

The first group of lines define the standard result codes that are specified in IEEE Std 1003.3-
1991. The second group of lines define some extra result codes for use with this particular test
suite. Note that when the action indicator field (the third field) is not present, a default action of
Cont i nue isassumed.

16.2.3 Thet et _scenfile

Thet et _scen fileislocated in the test suite root directory on the master system and contains
the test suite’ s scenario, or control, definitions.

Thisfile contains the following lines:

scenario file for the TETware denponstration
#
al |
"starting scenario"
. renot e, 000, 001:
/ts/tcl
/ts/tc2
"next is the last test case"
/ts/tc3
;. endr enpot e
"done"

This file controls the execution sequence of the test suite. The first non-comment line (al |)
defines the name of the scenario. Subsequent lines contain directives, scenario information lines
and test case names. The lines in double quotation marks are scenario information lines that are
printed into the journa file. Test case lines list names of test cases to be processed. Although
each test case name looks like an absolute path name, it isinterpreted relative to the test suite root
directory.

13th January 1997 Page 147
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

The : renpt e, 000, 001: and : endr enot e: directives tell TETware to process the test
cases specified between them on the systems designated 000 and 001 in the syst ens file on
the local system.?’ The fact that system 000 is specified with the r enot e directive tells
TETware to process the test cases as distributed test cases. The fact that system 000 appears
first in the system list tells TETware to treat system 000 (the local system) as the master system.

16.2.4 Thetetbuil d. cf gfile

The tetbuil d. cfg file contains variable definitions which determine the way in which
TETware processes each test case in build mode. One of these filesis provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_BUI LD_TOOL=nake
TET_BUI LD FI LE=-f makefile
TET_OUTPUT_CAPTURE=TT ue

The meanings of these variables are as follows:

TET_BUI LD TOOL specifies the command to use for building the test cases.
TET _BUI LD FI LE specifies arguments to pass to the build tool before the test case
name.

TET_OUTPUT_CAPTURE isused here to specify that all build tool standard output and standard
error should be captured and recorded in the journal file, rather than
being sent to the default place.

The values specified for these variables in the build configuration file instruct TETware to invoke
the following command in the test case source directory when it builds each test case:

make -f makefil e test-case

Setting the value of TET_OUTPUT_CAPTURE to Tr ue provides default values of Fal se for
TET_API _COWPLI ANT and True for TET_PASS TC NAME. The vaues of these two
variables tell TETware that the build tool does not use the API and that the test case name should
be passed as an argument to the build tool after the argument specified by TET _BUI LD _FI LE.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

The values defined in each file are correct when both of the systems are UNIX systems. The
comments in the file on each system show how these values may be changed to support other
combinations of system types. Note the way in which the default value of each variable in the
dave system is taken from the corresponding value defined on the master system. Also, note the
way in which the precedence of variable definitions is used to provide the correct values when
either system isaWindows NT system, with the minimum of reconfiguration.

When the test suite is built on a Windows NT system, the file nt bui | d. ksh is used as the
build tool. Thisfileisashell script which ensures that MKS Make uses the correct configuration

21. That is: the system on which t cc isinvoked.

Page 148 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

file, then it appends a . exe suffix to its last argument (the test case name). Finaly it invokes
make with al its arguments. This method of providing portability between UNIX and
Windows NT systems enables the number of changes that must be made during the porting
operation to be kept to a minimum.

16.2.5 Thet et cl ean. cf g file

The t et cl ean. cf g file contains parameters which determine the way in which TETware
processes each test case in clean mode. One of thesefilesis provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_CLEAN _TOOL=rm
TET_CLEAN FI LE=-f
TET_OUTPUT_CAPTURE=TT ue

The meanings of these variables are the same as those described in the previous section.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

When TETware processes each test case in clean mode, the following command will be executed
in the test case source directory:

rm-f test-case
Again, the default values in each file are correct when both of the systems are UNIX systems.

The comments in the file on each system show how these values may be changed to support other
combinations of system types.

When the test suite is cleaned on a Windows NT system, the file nt cl ean. ksh is used as the
clean tool. This file is a shell script which simply appends a . exe suffix to its last argument,
then invokes r mwith al its arguments.

16.2.6 Thet et exec. cf g file

The t et exec. cf g file contains variable definitions which determine the way in which
TETware processes each test case in execute mode. One of these files is provided on each
system.

In the distribution the following variables are defined in this file on the master system:

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC_| N_PLACE=Tr ue

The meanings of these variablesis asfollows:

TET_OUTPUT_CAPTURE Setting this variable to Fal se tells TETware not to record test case
output in the journa file.

TET_EXEC I N PLACE Setting this variable to Fal se tells TETware to copy all thefilesin
the test case source directory to a location below the temporary
execution directory before executing the test case. This location then
becomes the test case execution directory.

Since no value has been specified for TET _EXEC TOOL, TETware executes each test case

13th January 1997 Page 149
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

directly. Test case execution takes place in the test case execution directory. Setting the value of
TET _OQUTPUT_CAPTURE to False provides a default value of True for
TET_API _COWPLI ANT. Thevalue of this variabletells TETware that test cases use the API.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used. The values defined in these files in the distribution are
correct for both UNIX systems and Windows NT systems.

16.2.7 Thet et di st. cf g file

This file is only provided on the master system. It contains variable assignments that specify
parameters for slave systems that are equivaent to those parameters on the master system that
t cc obtains from environment variables or deduces from the current working directory. It may
a so be used to define network-related parameters when TETware is built to use the XTI network
interface.

In the distribution the following variables are defined in thisfile:

TET_REMDO1_TET_ROOT=/ home/ t et
TET_REMDO1_TET_TSROOT=/ hone/ t et / demo
TET_XTI _TPI =/ dev/ t cp

TET_XTI _MODE=t cp

TET_LOCALHOST=01. 02. 03. 04

When you install the demonstration you must change the values of al these variables to values
that are correct for your system.

TET_REMDO1_ is avariable name prefix used to define a variable' s value for a particular dave
system (in this case, a dave with system designation 001). The name of the variable being
defined is the part of the name after this prefix.

The variables defined in this file enable TETware to locate the test suite on the remote system and
(when XTI is used) to obtain information to be used by the network transport interface, as
follows:

TET_REMDO1 TET ROOT Thelocation of thetet root directory on the slave system.
TET_REMDO1_TET _TSROOT Thelocation of the test suite root directory on the slave system.

TET_XTI _TPI When the XTI network transport is used, the name of the
transport provider interface. This variable is not required when
the socket network interface is used.

TET_XTI _MODE When the XTI network transport is used, the type of transport
provider to use. This variable is not required when the socket
network interfaceis used.

TET_LOCALHOST When the XTI network transport is used and the transport
provider is TCP/IP, the master system’s external |IP address in
dotted-decimal notation. This variable is not required when the
socket network interface is used.

Page 150 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

16.2.8 Themakefi | e file
Thenakef i | e isused by the build tool (make) when building each test case.

This file is provided in the test case source directory on each system and contains the following
lines:
include file and library locations - don't change

LI BDI R ... /lib/ltet3
| NCDI R ..l..linc/tet3

SGS definitions - customi se as required for your system

nane of the C conpiler

cC = cc

the following is appropriate when using the defined build environnent
on a Wndows NT system

CC = ¢l -nol ogo

flags for the C conpiler
CFLAGS = -1$(INCDIR)

systemlibraries:

the socket version on SVR4 and Sol aris usually needs -Isocket -Insl
the XTI version usually needs -Ixti

the Wndows NT version needs wsock32.lib

SYSLI BS =

suffixes - customise as required for your system
object file suffix - .o on UNIX, .obj on Wndows NT

O=.o0

archive library suffix - .a on UNLX, .lib on wi ndows NT
A= _.a

executable file suffix - blank on UNI X, .exe on Wndows NT
E =

al | : t c1$E t c23$E t c3%E

t c1$E: tcl.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tcl$E tcl.c $(LIBDIR)/tcnBO $(LIBDI R)/1ibapi $A \
$(SYSLI BS)

t c2$E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc2$E tc2.¢ $(LIBDIR)/tcnBO $(LIBDIR)/1i bapi $A \
$(SYSLI BS)

t c3$E: tc3.c $(INCDR)/tet_api.h
$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDI R)/tcnBO $(LIBDI R)/1i bapi $A \
$(SYSLI BS)

Thisis atypical makefile which contains dependencies and rules for building each individual test
case. Note the use of variables to specify the different libraries and file name suffixes that are
used on different types of system.

The default values are correct when TETware is built to use the socket network interface on an
arbitrary UNIX system. You will probably need to customise each makefile for use on any
particular type of system.

13th January 1997 Page 151
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

16.2.9 Thetcl. c file
On each system thefilet c1. ¢ isthe sourcefile for the first test case in the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a single
test case information line to the journal file by calling t et _i nf ol i ne() and records a PASS
result by callingt et _resul t (). The dave part of the test purpose does the same. Therefore
the consolidated result of the test purpose is PASS.

16.2.10 Thet c2. c file
On each system thefilet c2. ¢ isthe source file for the second test case in the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a number
of information lines to the journal file by calling t et _ni nfoline() and records a PASS
result by callingtet _result(). The dave part of the test purpose prints a single test case
information line to the journal file by callingt et _i nf ol i ne() and records a FAI L result by
calingt et _resul t (). Thereforethe consolidated result of the test purposeis FAI L.

This test purpose illustrates how t et _m nf ol i ne() may be used to print severa lines to the
journal as a single operation. If the lines had been printed by calling tet _i nfoline() a
number of times from the master test purpose part, it is likely that the line printed by the slave
test purpose part would have appeared somewhere in between the lines printed by the master part.

16.2.11 Thet c3. c file

On each system the filet ¢3. ¢ isthe source file for the third test case in the test suite. This test
case contains two test purposes. Recall that TETware performs automatic synchronisation
between each part of a distributed test case at the start and end of each test purpose. Each test
purpose in this test case demonstrate how API functions can be used to perform synchronisation
at user-defined points during test purpose execution.

The master and slave parts of the first test purpose each print a message to the journal. Then they
synchronise with each other by calling thet et _r emsync() API function using sync point 101,
a sync vote of YES and a timeout value of 10 seconds. If the synchronisation request is
successful, each test purpose part reports a PASS result. Otherwise, diagnostics are printed to the
journal and each test purpose part reports an UNRESOLVED result.

The master and slave parts of the second test purpose each print a message to the journal. Then
they synchronise with each other by calling thet et _r ensync() API function using sync point
201, a sync vote of YES and a timeout value of 10 seconds. In addition, the master test purpose
part sends message data with the request and the slave test purpose part expects to receive
message data when the call returns. This is done by initialising members of at et _synnsg
structure and passing a pointer to this structure as one of the argumentstot et _remsync() . If
the synchronisation request is successful, each test purpose part reports a PASS result.
Otherwise, diagnostics are printed to the journa and each test purpose part reports an
UNRESCLVED result. In addition, the master test purpose part prints the message data before it
calst et _rensync() andthe dave test purpose part prints the message data received after the
successful return of thet et _rensync() cal.

A common function — error () — isused in both parts of the test case to print a diagnostic
when an API cal is unsuccessful. The first parameter to this function is the value of the global
t et _errno variable which is set by the APl whenever an API function call is unsuccessful.
The error () function uses this value to index thetet _errli st[] array, provided by the

Page 152 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit

TETware Programmers Guide

API, which contains short message strings describing each API error that can occur. The API
provides a global variable tet nerr which contains the number of entries in the
tet _errlist[] array. Note that the error () function uses this value to check that the

value obtained from tet _errno refers to an entry which is within the bounds of the
tet_errlist[] aray.

For more information on how TETware synchronisation works, see the chapter entitled *‘ Test
case synchronisation’’ in the TETware User Guide.

13th January 1997 Page 153

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 154 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

APPENDICES

13th January 1997 Page 155
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 156 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

A. TheTETware end-user licence

+++++++++++++++++++++++++++ TET END USER LICENCE +++++++++++++++++++++++++++

BY OPENING THE PACKAGE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT.
IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL
THE PRODUCT AND RETURN IT TO THE PLACE OF PURCHASE FOR A FULL REFUND.

TETWARE RELEASE 3.1 END USER LICENCE
REDISTRIBUTION NOT PERMITTED

This Agreement has two parts, applicable to the distributions as follows:
A. Freebinary evaluation copies — valid for 90 days, full functionality — no warranty.
B. Freebinary restricted versions — no warranty, limited functionality.

C. Licenced versions — full functionality, warranty fitness as described in documentation, includes
source, binary and annual support.

PART | (A & B above) - TERMS APPLICABLE WHEN LICENCE FEES NOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE).

GRANT.
X/Open grants you a non-exclusive licence to use the Software free of charge if

a. you are astudent, faculty member or staff member of an educational institution (K-12, junior college,
college or library) or an employee of an organisation which meets X/Open’s criteria for a charitable
non-profit organisation; or

b. your use of the Software is for the purpose of evaluating whether to purchase an ongoing licence to
the Software.

The evaluation period for use by or on behalf of a commercia entity is limited to 90 days; evaluation use
by others is not subject to this 90 day limit. Government agencies (other than public libraries) are not
considered educational or charitable non-profit organisations for purposes of this Agreement. If you are
using the Software free of charge, you are not entitled to hard-copy documentation, support or telephone
assistance. If you fit within the description above, you may use the Software for any purpose and without
fee.

DISCLAIMER OF WARRANTY.
Free of charge Softwareis provided onan ‘**AS IS’ basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
X/OPEN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

13th January 1997 Page 157
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

PART Il (C above) - TERMS APPLICABLE WHEN LICENCE FEES PAID.

GRANT.

Subject to payment of applicable licence fees, X/Open grants to you a non-exclusive licence to use the
Software and accompanying documentation (** Documentation’’) as described below.

Copyright 0 1996 X/Open Company Ltd.

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated
as directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted. Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open.
Distribution of sources containing adaptations is expressly prohibited. Modifications sent to the authors are
humbly accepted and it is their prerogative to make the modifications official.

Portions of thiswork contain code and documentation derived from other versions of the Test Environment
Toolkit, which contain the following copyright notices:

Copyright O 1990,1992 Open Software Foundation

Copyright O 1990,1992 Unix International

Copyright 0 1990,1992 X/Open Company Ltd.

Copyright O 1991 Hewlett-Packard Co.

Copyright 0 1993 Information-Technology Promotion Agency, Japan
Copyright O 1993 SunSoft, Inc.

Copyright 0 1993 UNIX System Laboratories, Inc., a subsidiary of Novell, Inc.
Copyright 0 1994,1995 Uni Soft Ltd.

The unmodified source code of those works is freely available from ft p. xopen. or g. The modified
code contained in TETware restricts the usage of that code as per this licence.

e S

Page 158 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

B. Example C language API test suite sourcefiles

B.1 Introduction

This appendix contains listings for the files that comprise the example C language test suite
presented in the chapter entitled ‘* Writing a C language A PI-conforming test suite’”.

This test suite has been designed to run on a UNIX type of operating system.

B.2 tet code

TET reserved codes
0 " PASS"

1 "FAIL"

2 " UNRESOLVED"

3 " NOTI NUSE"

4 " UNSUPPCORTED"
5 "UNTESTED"

6 "UN N Tl ATED"
7 " NORESULT"

#

3

Test suite additional codes
3 "1 NSPECT"

B.3 i nstall

echo This is the CGAPI test suite install tool

B.4 cl eant ool

exec nmake cl ean

B.5 tet _scen

chnod, fileno, stat, unane test suite.

al |
"Starting Full Test Suite"
/ts/ chnod/ chnod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/ unane/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/ chnod/ chnod-tc
"Fi ni shed chnmod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Finished fileno Test Case"

st at

13th January 1997 Page 159

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

"Starting stat Test Case"
/ts/stat/stat-tc
"Fi ni shed stat Test Case"

unane
"Starting unane Test Case"
/ t s/ unanme/ unane-tc
"Fi ni shed unane Test Case"
EOF

B6 tetbuild.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_BUI LD_TOOL=nake
TET_BUI LD FI LE=-f makefile

B.7 tetexec. cfg
TET_OUTPUT_CAPTURE=Fal se

The nane of a character device file (or "unsup" if not supported)
CHARDEV=/ dev/ nul |

The nane of a block device file (or "unsup" if not supported)
BLOCKDEV=unsup

B.8 tetclean.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_CLEAN TOOL=cl eant ool
TET_CLEAN FI LE=

B.9 Makefilefor chnod-tc. c

TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CcC = ccC
CFLAGS = -1$(INCDIR) -D_POSI X_SOURCE
chnod-tc: chnod-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 chnod-tc chnod-tc.c $(LIBDIR)/tcmo \
$(LIBDIR) /i bapi.a
-rm-f chnpd-tc.o
cl ean:
rm-f chnpd-tc chnod-tc.o
lint:
lint $(CFLAGS) chnod-tc.c -ltcm
Page 160 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

B.10 chnod-tc. c

/* chnod-tc.c : test case for chnod() interface */

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i ncl ude <tet_api.h>

static void tpl(), tp2(), tp3();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet _startup)() = startup;

void (*tet_cleanup)() = cleanup;
struct tet testlist tet testlist[] = {

{ tpl, 11},

{ tp2, 2},

{ tp3, 31},

{ NULL, 0}
1
/* Test Case Wde Decl arations */
static char *tfile = "chnod. 1"; /* test file name */
static char *tndir = "chnod. 1/chnod. 1"; /* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char nsg[256]; /* buffer for info lines */
static void
startup()
{

int fd;

static char *reason = "Failed to create test file in startup”

if ((fd=creat(tfile, S IRWU)) < 0)

{

(void) sprintf(nsg,
"creat(\"%\", S IRWKU failed in startup - errno %",
tfile, errno);

tet _infoline(nmsg);

/* Prevent tests which use this file from executing */
tet _delete(l, reason);
tet _del ete(3, reason);

}
el se
(void) close(fd);
}
static void
cl eanup()
{
/* renove file created by start-up */
(void) unlink(tfile);
}
13th January 1997 Page 161

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

static void
tpl() /* successful chnod of file: return O */

{

int ret, err;
node t node;

tet _infoline("SUCCESSFUL CHMOD OF FI LE");
/* change node of file created in startup function */
errno = 0;

if ((ret=chnod(tfile, (nbde_t)0)) != 0)
{

err = errno;
(void) sprintf(nsg, "chnod(\"%\", 0) returned %, expected 0",

tfile, ret);
tet _infoline(nsg);
if (err '=0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

}

tet_result (TET_FAIL);

return;

}

/* check node was changed correctly */

if (stat(tfile, &uf) == -1)
{
(void) sprintf(nsg,
"stat (\"%\", buf) failed - errno %", tfile, errno);
tet _infoline(nmsg);
tet _resul t (TET_UNRESOLVED);
return;

}

node = buf.st_node & O ACCMODE;
if (mode !'= 0)

{
(void) sprintf(nsg, "chnod(\"%\", 0) set node to 0% o, expected 0"
tfile, (long)node);
tet _infoline(nmsg);
tet _result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
tp2() /* chnod of non-existent file: return -1, errno ENOENT */
int ret, err;
tet_infoline("CHMOD OF NON- EXI STENT FILE");
/* ensure file does not exist */
if (stat("chnod. 2", &uf) !'= -1 & unlink("chnod.2") == -1)
Page 162 13th January 1997

X/Open Company Ltd

TET3-PG-1.0

tet _infoline("could not unlink chnod.2");
tet result(TET_UNRESCOLVED)
return;

}

/* check return value and errno set by call */

errno = 0;
ret = chnmod("chnod. 2", (node_t)O0);

if (ret '= -1 || errno != ENCENT)
{

err = errno;
if (ret !'=-1)

(void) sprintf(nsg,

Test Environment Toolkit
TETware Programmers Guide

"chrmod(\"chrmod. 2\", 0) returned %, expected -1", ret);
tet _infoline(msg);
}
if (err != ENOENT)
(void) sprintf(nsg,
"chrmod(\"chnmod. 2\", 0) set errno to %, \
expected %d (ENCENT)", err, ENOCENT);
tet _infoline(msg);
}
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
t p3() /* non-directory path conponent: return -1, errno ENOTDI R */
{
int ret, err;
tet_infoline("CHVOD OF NON DI RECTORY PATH PREFI X COVPONENT") ;
/* tndir is a pathname containing a plain file (created by the
startup function) in the prefix */
errno = 0;
ret = chnod(tndir, (node_t)O0);
/* check return value and errno set by call */
if (ret !'=-1 || errno != ENOID R
{
err = errno;
if (ret !=-1)
(void) sprintf(nsg,
"chrmod(\"%\", 0) returned %, expected -1", tndir, ret);
tet _infoline(nmsg);
}
13th January 1997 Page 163

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

if (err !'= ENOID R

{
(void) sprintf(nsg,
"chrmod(\"%\", 0) set errno to %l, expected %l (ENOTDI R)",
tndir, err, ENOID R);
tet _infoline(msg);
}
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
B.11 Makefilefor fil eno-tc.c
TET_ROOT = ../../..
LIBDOR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
cC = ccC
CFLAGS = -1$(INCDIR) -D PGCsI X SOURCE
fileno-tc: fileno-t4 fileno-tc.c $(INCDIR)/tet_api.h

$(CC $(CFLAGS) -o fileno-tc fileno-tc.c $(LIBDIR)/tcmo \
$(LIBDIR)/1ibapi.a
-rm-f fileno-tc.o

fil eno-t4: fileno-t4.c $(INCDIR)/tet_api.h
$(CC) PB(CFLAGS) -o fileno-t4 fileno-t4.c \
$(LIBDIR)/tcnchild.o $(LIBDIR)/1ibapi.a
-rm-f fileno-t4.0

cl ean:
rm-f fileno-tc fileno-tc.o fileno-t4 fileno-t4.0

lint:

lint $(CFLAGS) fileno-tc.c -ltcm
lint $(CFLAGS) fileno-t4.c -ltcnt

B.12 fil eno-tc.c

/* fileno-tc.c : test case for fileno() interface */

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i nclude <fcntl. h>

#i ncl ude <tet_api.h>
extern char **environ

static void cleanup();
static void tpl(), tp2(), tp3(), tp4(), ch4();
/* Initialize TCM data structures */

Page 164 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

void (*tet_startup)() = NULL;
void (*tet _cleanup)() = cleanup
struct tet testlist tet testlist[] = {
{ tpl, 11},
{ tp2, 21},
{ tp3, 31},
{ tp4, 41},
{ NULL, O}
i

/* Test Case Wde Decl arations */
static char nsg[256]; /* buffer for info Iines */

static void
cl eanup()

(void) unlink("fileno.1");
(void) unlink("fileno.4"),

}
static void
tpl() /* successful fileno: return fd associated with stream */
FILE *fp
struct stat bufl, buf2;
tet_infoline("FD RETURNED BY FI LENO REFERS TO FI LE OPEN ON STREAM');
/* open streamto test file */
if ((fp=fopen("fileno.1", "w')) == NULL)
{
(void) sprintf(nsg, "fopen(\"fileno.1\", \"w") failed - errno %",
errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
/* check device and inode nunmbers fromfile descriptor associated
with the streammatch those fromthe file itself */
if (stat("fileno.1", &bufl) == -1)
{
(void) sprintf(nsg, "stat(\"fileno.1\", bufl) failed - errno %",
errno);
tet _infoline(msg);
tet_result(TET_UNRESOLVED);
return;
}
if (fstat(fileno(fp), &buf2) == -1)
(void) sprintf(nsg, "fstat(fileno(fp), buf2) failed - errno %",
errno);
tet _infoline(nsg);
tet _resul t(TET_FAIL);
}
else if (bufl.st_ino !'= buf2.st_ino || bufl.st_dev != buf2.st_dev)
13th January 1997 Page 165

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

{
tet_infoline("fileno(fp) does not refer to sane file as fp");
(void) sprintf(nsg, "st_dev, st_ino of file: Ox%x, %d",
(1 ong) buf1.st_dev, (long)bufl.st_ino);
tet _infoline(nsg);
(void) sprintf(nsg, "st_dev, st_ino of fileno(fp): Ox%x, %d",
(1 ong) buf 2. st _dev, (Iong)buf2.st_ino);
tet _infoline(nsg);
tet result(TET_FAIL);
}
el se

tet result(TET_PASS);

(void) fclose(fp);

}
static void
tp2() /* fileno on stdin/stdout/stderr: return 0/1/2 */
{
int fd, fail = 0;
tet _infoline("FILENO ON STDI N STDOUT/ STDERR") ;
/* check return value of fileno() for stdin/stdout/stderr */
/* this code relies on the fact that the TCM does not interfere
with these streans */
if ((fd = fileno(stdin)) !'= 0)
{
(void) sprintf(nsg, "fileno(stdin) returned %, expected 0", fd);
tet _infoline(nmsg);
tet result(TET_FAIL);
fail = 1;
}
if ((fd = fileno(stdout)) != 1)
{
(void) sprintf(nsg, "fileno(stdout) returned %, expected 1", fd);
tet _infoline(nmsg);
tet _result(TET_FAIL);
fail = 1;
}
if ((fd = fileno(stderr)) != 2)
{
(void) sprintf(nsg, "fileno(stderr) returned %, expected 2", fd);
tet _infoline(nmsg);
tet_result(TET_FAIL);
fail = 1;
}
if (fail == 0)
tet_result(TET_PASS);
}
static void
tp3() /* on entry to main(), stdin is readable, stdout and stderr
are witable */
{
Page 166 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

int flags, fail = 0;

tet _infoline("ON ENTRY TO MAIN, STDIN | S READABLE, STDOUT AND STDERR \
ARE WRI TABLE") ;

/* this code relies on the fact that the TCM does not interfere
with these streans */

/* check file descriptor associated with stdin is readable */

if ((flags = fentl (fileno(stdin), F GETFL)) == -1)

(void) sprintf(nsg, "fcntl (fileno(stdin), F GETFL) failed - errno %",
errno);

tet _infoline(nmsg);

tet result(TET_UNRESOLVED);

return;

}

flags & O_ACCMODE;
if (flags !'= O RDONLY && flags != O RDWR)

{
tet _infoline("stdin is not readable");
fail = 1;
}
/* check file descriptor associated with stdout is witable */
if ((flags = fentl (fileno(stdout), F_GETFL)) == -1)
{
(void) sprintf(nsg, "fcntl (fileno(stdout), F_GETFL) failed - errno %",
errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}

fl ags & O ACCMODE;
if (flags !'= O WRONLY && flags ! = O RDWR)

{
tet _infoline("stdout is not witable");
fail = 1;
}
/* check file descriptor associated with stderr is witable */
if ((flags = fentl (fileno(stderr), F_GETFL)) == -1)
{
(void) sprintf(nmsg, "fcntl(fileno(stderr), F_GETFL) failed - errno %",
errno);
tet _infoline(nsg);
tet _result (TET_UNRESCLVED);
return;
}

flags & O_ACCMODE;
if (flags '= O WRONLY && flags != O RDWR)

{
tet_infoline("stderr is not witable");
fail = 1;
13th January 1997 Page 167

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

}
if (fail == 0)
tet _result(TET_PASS);
el se
tet result(TET_FAIL);
}
static void
t p4() /* on entry to main(), streamposition of stdin, stdout and
stderr is sane as fileno(strean) */
{
tet_infoline("ON ENTRY TO MAIN, STREAM PCSI TI ON OF STDI N, STDOUT \
AND STDERR') ;
/* fork and execute subprogram so that unique file positions can be
set up on entry to main() in subprogram*/
(void) tet_fork(ch4, TET_NULLFP, 30, 0);
}
static void
ch4()
{
int fd, ret;
static char *args[] ={ "./fileno-t4", NULL };
/* set up file positions to be inherited by stdin/stdout/stderr
i n subprogram */
for (fd = 0; fd < 3; fd++)
{
(void) close(fd);
if ((ret=open("fileno.4", O RDWR O CREAT, S IRWKU)) != fd)
{
(void) sprintf(nsg, "open() returned %l, expected %", ret, fd);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
if (Iseek(fd, (off_t)(123 + 45*fd), SEEK SET) == -1)
{
(void) sprintf(nsg, "lseek() failed - errno %", errno);
tet _infoline(nmsg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
}
/* execute subprogramto carry out renmainder of test */
(void) tet_exec(args[0], args, environ);
(void) sprintf(nsg, "tet_exec(\"%\", args, env) failed - errno %",
args[0], errno);
tet _infoline(msg);
tet_result(TET_UNRESOLVED);
}
Page 168 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

B.13 fil eno-t4.c

/* fileno-t4.c : child programof test purpose 4 for fileno() */

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <errno. h>

#i ncl ude <tet_api.h>
static char nsg[256]; /* buffer for info Iines */
/* ARGSUSED */
i nt
tet _main(argc, argv)
int argc;
char **argv;
{
long ret, pos;
int fd, err, fail = 0;
static FILE *streans[] =
static char *strnanes[] =

stdin, st dout , stderr };
"stdin", "stdout", "stderr" };

~

/* check file positions of streans are sanme as set up in parent */

for (fd =0; fd < 3; fd++)
{
pos = 123 + 45*fd; /* rmust match | seek() in parent */
errno = 0;
if ((ret = ftell(streans[fd])) != pos)
{
err = errno;
(void) sprintf(nsg, "ftell (%) returned %d, expected % d",
strnanmes[fd], ret, pos);
tet _infoline(nmsg);
if (err 1= 0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nmsg);

}
fail = 1;

}

if (fail == 0)
tet _result(TET_PASS)
el se
tet_result(TET_FAIL);

return O;

13th January 1997 Page 169
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

B.14 Makefilefor stat-tc.c

TET ROOT = ../../..

LIBDOR = $(TET_ROOT)/lib/tet3

INCDIR = $(TET_ROOT)/inc/tet3

CcC = ccC

CFLAGS = -1$(INCDIR) -D PGCsSI X SOURCE

stat-tc: stat-tc.c $(INCDIR)/tet_api.h
$(CCO $(CFLAGS) -0 stat-tc stat-tc.c $(LIBDIR)/tcmo \

$(LIBDIR)/1ibapi.a

-rm-f stat-tc.o

cl ean:
rm-f stat-tc stat-tc.o

lint:

lint $(CFLAGS) stat-tc.c -ltcm

B.15 stat-tc.c

/* stat-tc.c : test case for stat() interface */

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

#i ncl ude <tet_api.h>

static void tpl(), tp2(), tp3(), tpd(), tp5(), tp6(), tp7();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet_startup)() = startup

void (*tet_cleanup)() = cleanup

struct tet testlist tet testlist[] = {

{ tpl, 11},
{ tp2, 2},
{ tp3, 31},
{ tp4, 41},
{ tp5, 51},
{ tp6, 61},
{ tp7, 7},
{ NULL, O}
I
/* Test Case Wde Decl arations */
static char *tfile = "stat.1"; /[* test file name */
static char *tndir = "stat.1l/stat.1"; /[* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char nsg[256]; /* buffer for info lines */
static void
startup()
{
int fd;
static char *reason = "Failed to create test file in startup"
Page 170 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

if ((fd=creat(tfile, S_IRWKU)) < 0)

{
(void) sprintf(nsg,
"creat(\"%\", SIRWU failed in startup - errno %",
tfile, errno);
tet _infoline(msg);
/* Prevent tests which use this file fromexecuting */
tet _delete(l, reason);
tet _delete(7, reason);
}
el se
(void) close(fd);
}
static void
cl eanup()
{
/* renove file created by start-up */
(void) unlink(tfile);
/* renove files created by test purposes, in case they don't run
to conpletion */
(void) rndir("stat.d");
(void) unlink("stat.p");
}
static void
tpl() /* successful stat of plain file: return 0 */
int ret, err;
tet _infoline("SUCCESSFUL STAT OF PLAIN FILE");
/* stat file created in startup function and check node indicates
a plain file */
errno = O;
if ((ret=stat(tfile, &uf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"9%\", buf) returned %, expected 0"
tfile, ret);
tet _infoline(nmsg);
if (err 1= 0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nmsg);
tet_result(TET_FAIL);
}
else if (IS I SREE buf.st_node))
{
tet _infoline("S_ | SREG st_npde) was not true for plain file");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st_node);
tet _infoline(nmsg);
tet_result(TET_FAIL);
}
13th January 1997 Page 171

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

el se
tet result (TET_PASS);
}
static void
tp2() /* successful stat of directory: return 0 */
{
int ret, err;
char *tdir = "stat.d";
tet _infoline("SUCCESSFUL STAT OF DI RECTORY");
/* create a test directory */
if (nkdir(tdir, S_IRWKU == -1)
{
(void) sprintf(nsg,
"nkdir(\"9%\", SIRWU failed in startup - errno %",
tdir, errno);
tet _infoline(msg);
tet_resul t (TET_UNRESOLVED) ;
return;
}
/* stat the directory and check nbde indicates a directory */
errno = 0;
if ((ret=stat(tdir, &buf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",
tdir, ret);
tet _infoline(nmsg);
if (err 1= 0)
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nmsg);
}
tet _result(TET_FAIL);
}
else if (IS _ISD R(buf.st_node))
{
tet_infoline("S_ISDI R(st_npde) was not true for directory");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st_node);
tet _infoline(nmsg);
tet _result(TET_FAIL);
}
el se
tet_result(TET_PASS);
(void) rmdir(tdir);
}
static void
tp3() /* successful stat of FIFOfile: return 0 */
int ret, err;
char *tfifo = "stat.p";
Page 172 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

tet _infoline("SUCCESSFUL STAT OF FI FO');
/* create a test FIFO */

if (nkfifo(tfifo, S IRWU == -1)
{
(void) sprintf(nsg,
"nkfifo(\"%\", S IRWU) failed in startup - errno %",
tfifo, errno);
tet _infoline(msg);
tet _result(TET_UNRESOLVED);
return;

}
/* stat the FI FO and check npde indicates a FIFO */

errno = O;
if ((ret=stat(tfifo, &bouf)) !'= 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",

tfifo, ret);
tet _infoline(nsg);
if (err '=0)

{

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet_resul t (TET_FAIL);

}
else if (!S_ISFIFQ buf.st_node))
{
tet _infoline("S ISFIFQ(st_node) was not true for FIFO file");
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(msg);
tet result(TET_FAIL);
}
el se

tet _resul t (TET_PASS)
(void) unlink(tfifo);

}
static void
t p4() /* successful stat of character device file: return 0 */
{
int ret, err;
char *chardev;
tet _infoline("SUCCESSFUL STAT OF CHARACTER DEVI CE FI LE");
/* obtain device name from execution configuration paraneter */
chardev = tet _getvar (" CHARDEV");
if (chardev == NULL || *chardev == "\0")
{
tet _infoline("paraneter CHARDEV is not set");
tet_resul t (TET_UNRESCLVED);
return;
13th January 1997 Page 173

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

}

/* check if paraneter indicates character devices are not supported */

if (strcnp(chardev, "unsup") == 0)

{
tet _infoline("paraneter CHARDEV is set to \"unsup\"");
tet _result(TET_UNSUPPORTED) ;
return;

}

/* stat the device and check npde indicates a character device */

errno = O;
if ((ret=stat(chardev, &buf)) != 0)
{
err = errno;
(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",
chardev, ret);
tet _infoline(msg);
if (err 1= 0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(msg);

tet_resul t (TET_FAIL);

}
else if (1S I SCHR(buf.st node))
{
(void) sprintf(nsg, "S |ISCHR(st_ node) was not true for \"o%s\"",
char dev) ;
tet _infoline(msg);
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(msg);
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
t p5() /* successful stat of block device file: return 0 */
int ret, err;
char *bl ockdev;
tet _infoline("SUCCESSFUL STAT OF BLOCK DEVI CE FILE");
/* obtain device name from execution configuration paraneter */
bl ockdev = tet_getvar (" BLOCKDEV");
if (blockdev == NULL || *blockdev == "\0")
{
tet _infoline("paranmeter BLOCKDEV is not set");
tet_result(TET_UNRESOLVED);
return;
}
/* check if paraneter indicates block devices are not supported */
Page 174 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide
i f (strcnp(bl ockdev, "unsup") == 0)

tet_infoline("parameter BLOCKDEV is set to \"unsup\"");
tet result(TET_UNSUPPORTED) ;

return;
}
/* stat the device and check npde indicates a bl ock device */
errno = 0O;
if ((ret=stat(blockdev, &buf)) !'= 0)
{

err = errno;

(void) sprintf(nsg, "stat(\"%\", buf) returned %, expected 0",
bl ockdev, ret);

tet _infoline(nmsg);

if (err '=0)

(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

}
tet _result (TET_FAIL);

}
else if (!SI SBLK(buf.st nopde))
{
(void) sprintf(nsg, "S |ISBLK(st_node) was not true for \"%s\"",
bl ockdev) ;
tet _infoline(nmsg);
(void) sprintf(nsg, "st_node = 0% 0", (Ilong)buf.st node);
tet _infoline(nmsg);
tet result(TET_FAIL);
}
el se
tet _result(TET_PASS)
}
static void
t p6() /* stat of non-existent file: return -1, errno ENOCENT */
{
int ret, err;
tet _infoline("STAT OF NO\ EXI STENT FI LE");
/* ensure file does not exist */
if (stat("stat.6", &buf) I'= -1 & unlink("stat.6") == -1)
{
tet_infoline("could not unlink stat.6");
tet_resul t (TET_UNRESCLVED) ;
return;
}
/* check return value and errno set by call */
errno = O;
ret = stat("stat.6", &buf);
if (ret !'=-1]| errno !'= ENCENT)
{
13th January 1997 Page 175

X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

err errno;
if (ret !'=-1)
{
(void) sprintf(nsg,
"stat(\"stat.6\",
tet _infoline(nsg);

0) returned %,

}
if (err

{

I = ENCENT)

(void) sprintf(nsg,
"stat(\"stat.6\",
err, ENOCENT);

tet _infoline(nsg);

0) set errno to %,

}

tet _result (TET_FAIL);
}

el se
tet _result (TET_PASS);

}

static void
tp7()
{

/* non-directory path conponent:

int ret, err;

expected -1",

return -1,

TET3-PG-1.0

ret);

expected %d (ENOCENT)",

errno ENOTDI R */

tet_infoline("STAT OF NON- DI RECTORY PATH PREFI X COVPONENT") ;

/* tndir
startup function)

0;

stat(tndir,

in the prefix */

errno
ret

&buf);
/* check return value and errno set */

I= -1]| errno != ENOID R)

by call

if (ret
{

err errno;
if (ret !'=-1)
{

(void) sprintf(nsg,
"stat(\"%\", 0)
tet_infoline(nsg);

returned %,

}
if (err

{

I = ENOTDI R)

(void) sprintf(nsg,
"stat(\"%\", 0) set errno to %,
tndir, err, ENOTDIR);

tet _infoline(msg);

}

tet _result(TET_FAIL);
}

el se
tet_result (TET_PASS);

Page 176
X/Open Company Ltd

expected -1",

is a pathnane containing a plain file (created by the

tndir, ret);

expected % (ENOTDIR)",

13th January 1997

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

}

B.16 Makefilefor unane-tc. c

TET ROOT = ../../..

LIBDOR = $(TET_ROOT)/lib/tet3

INCDIR = $(TET_ROOT)/inc/tet3

cC = ccC

CFLAGS = -I1$(INCDIR) -D PCSI X SOURCE

unane-tc: uname-tc.c $(INCDIR)/tet_api.h
$(CC $(CFLAGS) -0 unane-tc unane-tc.c $(LIBDIR)/tcmo \

$(LIBDIR)/1ibapi.a

-rm-f uname-tc.o

cl ean:
rm-f unane-tc unanme-tc.o

lint:

lint $(CFLAGS) unane-tc.c -ltcm

B.17 unane-tc.c

/* uname-tc.c : test case for uname() interface */

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/utsnane. h>

#i ncl ude <tet_api.h>

#undef TET_I NSPECT /* must undefine because TET_ is reserved prefix */
#define TET_INSPECT 33 /* this would normally be in a test suite header */

static void tpl();

/* Initialize TCM data structures */
void (*tet_startup)() = NULL; /* no start-up function */

void (*tet_cl eanup) () = NULL; /* no clean-up function */
struct tet testlist tet _testlist[] = {
{ tpl, 11},
{ NULL, 0}
}
/* Test Case Wde Declarations */
static char nsg[256]; /* buffer for info lines */

static void
tpl() /* successful unane: return 0 */

int ret, err;
struct utsnane nane;
tet _infoline("UNAVE QUTPUT FOR MANUAL CHECK");

/* The test cannot deternine automatically whether the infornmation
returned by unane() is correct. It therefore outputs the
infornmati on with an I NSPECT result code for checking manually. */

13th January 1997 Page 177
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

errno = 0O;
if ((ret=unane(&nane)) != 0)
{
err = errno;
(void) sprintf(nsg, "unane() returned %, expected 0", ret);
tet _infoline(msg);
if (err '=0)
{
(void) sprintf(nsg, "errno was set to %", err);
tet _infoline(nsg);

tet result(TET_FAIL);

}

el se

{
(void) sprintf(nsg, "System Name: \"%\"", nane.sysnane);
tet _infoline(nsg);
(void) sprintf(nmsg, "Node Nane: \"%s\"", nanme.nodenane);
tet _infoline(nsg);
(void) sprintf(nsg, "Release: \"%\"", nane.release);
tet _infoline(nsg);
(void) sprintf(nsg, "Version: \"%\"", name.version);
tet _infoline(nsg);
(void) sprintf(nsg, "Machine Type: \"%\"", nane. nmachine);
tet _infoline(nsg);
tet _result(TET_I NSPECT);

}

}
Page 178 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

C. Example Shell API test suite sourcefiles

C.1 Introduction

This appendix contains listings for the files that comprise the example Shell test suite presented
in the chapter entitled ‘* Writing a Shell language API-conforming test suite’”.

This test suite has been designed to run on a UNIX type of operating system. Changes to some of
the support files may be required in order to make this test suite function correctly on the
Windows NT operating system using utilities provided in the MK S Toolkit.

The changes required include at |east the following:

« The names of the build tool, clean tool and i nst al | scripts need a. ksh suffix in order
to make them executable. The tool definitionsint et bui | d. cfg andt et cl ean. cf g
must be updated to reflect this change.

e The name of each test case must include a . ksh suffix. The install target in each test
case’' s makefile, must be updated to reflect this change, as should each test case name listed
inthet et _scen file.

e The rule in each test case's makefile which installs the test case must be modified so that
the name of the test case after installation has a. ksh suffix. The chnmpod command is not
required in the install rule and may be removed.

¢ It isrecommended that each test case should be modified to use the Korn Shell API.

When testing command output, some of the test purposes in this test suite make assumptions
about the format of the output which are not correct for the WindowsNT system. Therefore
some of the test purposes which report a PASS result when run on a UNIX system can be
expected to report a FAI L result when the test suite is run on aWindows NT system.

C.2 tet _code

TET reserved codes
0 " PASS"

1 "FAIL"

2 " UNRESOLVED'
3 " NOTI NUSE"

4 " UNSUPPORTED"'
5 "UNTESTED"

6 "UN N Tl ATED'
7 "NORESULT"

#
3

Test suite additional codes
3 " | NSPECT"

13th January 1997 Page 179
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

C3install
echo Installing SHELL-API test suite
cd SHELL-API || exit 1

create alternate execution directory hierarchy
find ts -type d -print
while read d
do
if test ! -d ts_exec/"$d"
then nkdir ts_exec/"$d"
fi
done

C.4 bui | dt ool

Check TET_EXECUTE is set
if [-z "$TET_EXECUTE"]
t hen
echo >& "No alternate execution directory supplied to buildtool"
exit 1
fi

Set TET_EXECUTE on command |ine to override default value in nakefile
exec make TET_EXECUTE="S$TET_EXECUTE"

C.5 cl eant ool

Check TET_EXECUTE is set
if [-z "$TET_EXECUTE"]
t hen
echo >& "No alternate execution directory supplied to cl eantool"
exit 1
fi

Set TET_EXECUTE on command line to override default value in nmakefile
exec nmake TET_EXECUTE="$TET_EXECUTE" cl ean

Cb6tet _scen

chnmod, unane test suite
al |
"Starting Full Test Suite"
/ts/chnod/ chnod-tc
/ts/ unanme/ unane-tc
"Conpl eted Full Test Suite"

chnod
"Starting chnod Test Case"
/ts/chnod/ chnod-tc
"Fi ni shed chnod Test Case"
unane

"Starting unane Test Case"

Page 180 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

/ t s/ unanme/ unane-tc
"Fi ni shed unane Test Case"
EOF

C7tetbuild.cfg

TET_OUTPUT_CAPTURE=TT ue
TET_BUI LD_TOOL=bui | dt ool

C8 tetexec.cfg

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC | N_PLACE=Tr ue

COtetclean.cfg

TET_OUTPUT_CAPTURE=Tr ue
TET_CLEAN TOOL=cl eant ool

C.10 shf uncs — common functionsused in the Shell API
test suite

shfuncs : test suite common shell functions

tpstart() # wite test purpose banner and initialize variables

{

tet _infoline "$*"

FAI L=N
}
tpresult() # give test purpose result
{
$1 is result code to give if FAIL=N (default PASS)
if [SFAIL = N]
t hen
tet_result ${1-PASS}
el se
tet result FAIL
fi
}

check_exit() # execute conmand (saving output) and check exit code

{
$1 is command, $2 is expected exit code (0 or "N' for non-zero)
eval "$1" > out.stdout 2> out.stderr

CODE=$7

if [$2 = 0 -a $CODE -ne 0]

t hen
tet_infoline "Command ($1) gave exit code $CODE, expected 0"
FAI L=Y

elif [$2 1= 0 -a $CODE -eq O]

t hen
tet_infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAI L=Y

13th January 1997 Page 181

X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

Page 182

fi

TET3-PG-1.0

}
check_nostdout () # check that nothing went to stdout
{
if [-s out.stdout]
t hen
tet _infoline "Unexpected output witten to stdout, as shown bel ow "
infofile out.stdout stdout:
FAI L=Y
fi
}
check _nostderr() # check that nothing went to stderr
{
if [-s out.stderr]
t hen
tet _infoline "Unexpected output witten to stderr, as shown bel ow "
infofile out.stderr stderr
FAl L=Y
fi
}
check _stderr() # check that stderr matches expected error
{
$1 is file containing regexp for expected error
if no argunent supplied, just check out.stderr is not enpty
case $1 in
")
if [! -s out.stderr]
t hen
tet _infoline "Expected output to stderr, but none witten"
FAl L=Y
fi
*) v
expfil e="$1"
K=Y
exec 4<&0 0< "S$expfile" 3< out.stderr
whi |l e read expline
do
if read Iine <&3
t hen
if expr "$line" "$expline" > /dev/nul
t hen
el se
OK=N
br eak
fi
el se
=N
fi
done
exec 0<&4 3<& 4<&-
13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

if [K = N]

t hen
tet _infoline "Incorrect output witten to stderr, as shown bel ow
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"

FAI L=Y
fi
esac
}
infofile() # wite file to journal using tet_infoline
{
%1 is file name, $2 is prefix for tet_infoline
prefix=$2
while read |line
do
tet_infoline "$prefix$line"
done < $1
}
C.11 Makefilefor chnod-tc. sh
TET_EXECUTE = ../../ts_exec
I NSTALL_DI R = $(TET_EXECUTE)/t s/ chnod

$(I NSTALL_DI R)/ chnod-tc: chnod-tc. sh clean
cp chnod-tc.sh $@
chnod 755 $@

cl ean:
rm-f $(INSTALL_DI R)/chnod-tc

C.12 chnod-tc. sh

chnod-tc.sh : test case for chnbd command

tet_startup="" # no startup function
tet _cl eanup="cl eanup” # cl eanup function
iclist="icl ic2 ic3" # list invocabl e components
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2
ic3="tp3" # functions for ic3
tpl() # sinple chnod of file - successful: exit O
{
tpstart "SIMPLE CHMOD OF FILE: EXIT 0"
echo x > chnod. 1 2> out.stderr # create file
if [! -f chnod. 1]
t hen
tet _infoline "Could not create test file: chnod. 1"
tet infoline ‘cat out.stderr’
tet_result UNRESOLVED
return
13th January 1997 Page 183

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

fi

check_exit "chnod 777 chnmod. 1" O # check exit val ue
MDE='Ils -1 chnod.1 |cut -d" " -f1' # get and check node of file
if [X'$MODE" !'= X'-rwxrwxrwx"]
t hen
tet _infoline "chmod 777 set node to $MODE, expected -rwxrwxrwx"
FAl L=Y
fi
check_nost dout # shoul d be no stdout
check_nostderr # shoul d be no stderr
t presult # set result code

}

tp2() # chnod of non-existent file : exit non-zero

tpstart "CHMOD OF NON-EXI STENT FI LE: EXIT NON-ZERO'

ensure test file does not exist
rm-f chnod.2 2> out.stderr
if [-f chrod. 2]
t hen
tet _infoline "Could not renove test file: chnod. 2"
tet _infoline ‘cat out.stderr’
tet _result UNRESOLVED
return
fi

check_exit "chnmod 777 chnod. 2" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr # check error nmessage
tpresult # set result code

}

tp3() # chnod with invalid syntax: exit non-zero

{
tpstart "CHMOD W TH | NVALI D SYNTAX: EXI T NON ZERO'
expected error nessage
echo "chnod: illegal option -- :\n.*" > out.experr
check_exit "chnmod -:" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr out.experr # check error message
t presult # set result code

}

cl eanup() # clean-up function

{

rm-f out.stdout out.stderr out.experr
rm-f chnod. 1
}

source common shell functions
$TET_EXECUTE/ | i b/ shf uncs

Page 184 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

execute shell test case nanager - nust be last line
$TET_ROOT/ | i b/ xpg3sh/tcm sh

This test case can be converted to use the Korn Shell APl simply by changing the last line in this
fileto:
$TET_ROOT/ | i b/ ksh/tcm ksh

C.13 Makefilefor unane-tc. sh

TET_EXECUTE = ../../ts_exec
| NSTALL_DI R = $(TET_EXECUTE) / t s/ unane

$(I NSTALL_DI R)/ unane-tc: uname-tc.sh clean
cp unane-tc.sh $@
chnod 755 $@

cl ean:
rm-f $(INSTALL_DI R)/ unanme-tc
C.14 unane-tc. sh

unanme-tc.sh : test case for unane command

tet_startup="" # no startup function
tet _cl eanup="cl eanup” # cl eanup function
iclist="icl ic2" # list invocabl e components
icl="tpl" # functions for icl
ic2="tp2" # functions for ic2
tpl() # sinple unane of file - successful: exit O
{
tpstart "UNAME OUTPUT FOR MANUAL CHECK"
check _exit "unanme -a" 0 # check exit val ue
i nfofile out.stdout # send output to journa
check_nostderr # shoul d be no stderr
tpresult | NSPECT # set result code
}
tp2() # unane with invalid syntax: exit non-zero
{
tpstart "UNAVE W TH | NVALI D SYNTAX: EXI T NON- ZERO!
expected error nessage
echo "unane: illegal option -- :\n.*" > out.experr
check _exit "uname -:" N # check exit val ue
check_nost dout # shoul d be no stdout
check_stderr out.experr # check error nmessage
tpresult # set result code
}
cl eanup() # clean-up function
{
13th January 1997 Page 185

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

rm-f out.stdout out.stderr out.experr

}

source common shell functions
$TET_EXECUTE/ | i b/ shf uncs

execute shell test case nmnager - nust be last |ine
$TET_ROOT/ | i b/ xpg3sh/tcm sh
This test case can be converted to use the Korn Shell APl simply by changing the last line in this
fileto:

$TET_ROOT/ | i b/ ksh/ tcm ksh

Page 186 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

D. Exampledistributed test case sourcefiles

D.1 Introduction

This appendix contains listings for the files that comprise the distributed demonstration test suite
presented in the chapter entitled ** The distributed demonstration test suite’’.

This test suite has been designed to run on a pair of UNIX systems, a pair of WindowsNT
systems, or on one UNIX and one Windows NT system. When the demonstration is configured
to run between a UNIX and a Windows NT system, you may configure either type of system to
act as either master or slave.

As distributed these files contain values which are appropriate when you run the demonstration
on two UNIX systems. You must edit some of these these files if you run either part of the
demongtration on a WindowsNT system. Details of the changes that you must make are
presented in comments contained in each file.

D.2 Filessupplied on the master system
D.21 tet code

tet code file for the TETware denonstration

TET reserved codes
" PASS"

"FAI L"

" UNRESOLVED"

" NOTI NUSE"

" UNSUPPORTED"

" UNTESTED"

"UNI NI TI ATED'

" NORESULT"

NO O~ WNE O H#H H* H

Test suite additional codes
101 " FATAL" Abor t
102 " | NSPECT"

D.2.2 tet _scen

al |
"starting scenario"
:renot e, 000, 001:
/ts/tcl
/ts/tc2
"next is the last test case"
/ts/tc3
:endrenpte
"done"

13th January 1997 Page 187
X/Open Company Ltd

Test Environment Toolkit
TETware Programmers Guide

D23 tetbuild.cfg

HHEIFHFHFHHFEHFHEHFHHEHFFEHFET OHHH

#
#

#

mast er system build node configuration file for
denonstration

the build tool:

if both master and slave are UN X-1i ke systens,
set TET _BU LD TOOL to "make" in this file

if both master and sl ave are W ndows NT systens,
set TET BUI LD TOOL to "ntbuild.ksh" in this file

TET3-PG-1.0

t he TETware

if the master is a UNI X-1ike systemand the slave is a Wndows NI system

set TET _BU LD TOOL to "meke" in this file and

set TET_BUI LD TOCL in tetbuild.cfg on the slave systemto "ntbuild. ksh"

if the master is a Wndows NI systemand the slave is a UNI X-1i ke system

set TET _BU LD TOOL to "meke" in this file and

set TET_REMDOO_TET BUI LD TOOL in this file to "ntbuild. ksh"
TET_BU LD TOOL=nake

TET_BUI LD _TOOL=nt bui | d. ksh
TET_REMDOO_BUI LD _TOOL=nt bui | d. ksh

don’ t change

TET BUI LD FI LE=-f nakefile
TET_OUTPUT _CAPTURE=TT ue

D.24 tetcl ean.cfg

HHEIFHFEHFHHEHFHEHFHHEHFEHFEH OHHH

Page 188

mast er system cl ean node configuration file for
denonstration

the cl ean tool:

if both master and slave are UN X-1i ke systens,
set TET CLEAN.TOOL to "rnmf in this file

if both master and sl ave are W ndows NT systens,
set TET _CLEAN TOOL to "ntclean.ksh" in this file

t he TETware

if the master is a UNI X-1i ke system and the slave is a Wndows NT system

set TET CLEAN. TOOL to "rmt in this file and

set TET_CLEAN TOOL in tetclean.cfg on the slave systemto "ntcl ean. ksh"

if the master is a Wndows NT systemand the slave is a UNI X-1i ke system

set TET CLEAN. TOOL to "rmt in this file and

set TET _REMDOO_TET CLEAN TOOL in this file to "ntclean. ksh”
TET_CLEAN TOOL=rm

X/Open Company Ltd

13th January 1997

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

TET_CLEAN TOOL=nt cl ean. ksh
TET_REMDOO_CLEAN TOOL=nt cl ean. ksh

don’t change
TET_CLEAN FI LE=-f
TET_OUTPUT_CAPTURE=Tr ue

D.25 tetdist.cfg

exanpl e distributed configuration file for the TETware denonstration

Pl ease refer to the chapter entitled "Running the TETware
denonstration” in the TETware User Guide for
instructions on how to custom se this file for your installation

H o H R

TET_REMDO1_TET_ROOT=/ hore/ t et
TET_REMDO1_TET_TSROOT=/ hone/ t et / demo

The followi ng variables are referenced only by XTIl -based versi ons of
TETwar e

TET_XTI _TPI =/ dev/tcp
TET_XTI _MODE=t cp
TET_LOCALHOST=01. 02. 03. 04

D.2.6 tet exec. cfg

mast er system exec node configuration file for the TETware
denonstration
#

TET_OUTPUT_CAPTURE=Fal se
TET_EXEC_| N_PLACE=Fal se

D.27 ts/ nakefil e

include file and library | ocations - don't change
LI BD R ..l../lib/tet3
| NCDI R ..l..linc/tet3

SGS definitions - customi se as required for your system

nane of the C conpiler

CcC = ccC

the following is appropriate when using the defined build environment
on a Wndows NT system

CC = cl -nol ogo

flags for the C compiler
CFLAGS = -1$(INCDI R

systemlibraries:

the socket version on SVR4 and Sol aris usually needs -Isocket -Ilns
the XTI version usually needs -Ixti

the Wndows NT version needs wsock32.1lib

SYSLI BS =

suffixes - custom se as required for your system
object file suffix - .o on UNIX, .obj on Wndows NT

13th January 1997 Page 189
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

O=.0

archive library suffix - .a on UNNX, .lib on wi ndows NT
A= .a

executable file suffix - blank on UNI X, .exe on W ndows NT
E =

all: t C1$E t c2%$E t c3$E

tcl$E: tcl.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tcl$E tcl.c $(LIBDI R)/tcn$bO $(LIBDIR)/1ibapi $A \
$(SYSLI BS)

tc23E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc2$E tc2.c $(LIBDIR)/tcn$bO $(LIBDIR)/ i bapi $A \
$(SYSLI BS)

tc33E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDIR)/tcn$O $(LIBDIR)/!ibapi $A \
$(SYSLI BS)

D28 ts/tcl.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL, O} };
void tpl()
{

tet_infoline("This is the first test case (tcl)");
tet _resul t (TET_PASS)

}

D29 ts/tc2.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL,O} };

void tpl()
{
static char *lines[] = {
"This is the second test case (tc2, naster).",

"The nmaster part of this test purpose reports PASS'
"but the slave part of this test purpose reports FAIL",
"so the consolidated result of the test purpose is FAIL.",

"The lines in this block of text are printed by a single",
"call to tet_minfoline() in the master part of the test",
"purpose so output fromthe slave part of the test purpose"
"won't be mxed up with these |ines."

Page 190 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit

TETware Programmers Guide

1
static int NNines = sizeof lines / sizeof |ines[0];
tet_minfoline(lines, Nines);
tet _result(TET_PASS)
}

D.210 ts/tc3.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <tet_api.h>

#defi ne TI MEQUT 10 /* sync tinme out */

int sysl[] ={ 1 }; /* systemIDs to sync with */
static void error(err, rptstr)

int err; /* tet _errno value, or zero if NA */
char *rptstr; /* failure to report */

{

char *errstr, *colonstr =": ";
char errbuf[20];

if (err == 0)
errstr = colonstr ="";
else if (err >0 & err < tet_nerr)

errstr tet _errlist[err];

el se {
(void) sprintf(errbuf, "unknown tet_errno value %",
errstr = errbuf;

}

if (tet_printf("%%%", rptstr, colonstr, errstr) < 0) {

tet _errno);

(void) fprintf(stderr, "tet _printf() failed: tet_errno %\ n",

tet _errno);
exit (EXI T_FAI LURE) ;
}
}
static void tpl()
{
tet infoline("This is tpl in the third test case (tc3, nmaster)");
(void) tet _printf("sync with slave (sysid: %)", *sysl);
if (tet_remsync(101L, sysl1, 1, TIMQUT, TET_SV_YES,

(struct tet_synnsg *)0) = 0) {
error(tet_errno, "tet_rensync() failed on master");
tet _resul t (TET_UNRESCLVED) ;

}
el se
tet _result (TET_PASS)
}
static void tp2()
{
i nt rescode = TET_UNRESOLVED
struct tet_synnsg nsg;
13th January 1997 Page 191

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

static char tdata[] = "test data"
tet _infoline("This is tp2 in the third test case (tc3, master)");

(void) tet _printf("send nmessage
tdata, *sysl);

nsg.tsm flags = TET_SMSNDVBG
nsg.tsmdl en si zeof (tdata);
nsg.tsmdata = tdata

if (tet_rensync(201L, sysl, 1, TIMEQUT, TET_SV_YES, &nsg) != 0)
error(tet_errno, "tet _remsync() failed on nmaster");
else if ((nmeg.tsmflags & TET _SMSNDVMBG == 0)
error(0, "tet _remsync() cleared TET_SMSNDVSG flag on master");
else if (nsg.tsmflags & TET_SMIRUNC)
error(0, "tet _renmsync() set TET_SMIRUNC flag on naster");

el se
rescode = TET_PASS;

tet result(rescode);

}
void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;

struct tet testlist tet testlist[] ={ {tpl,1}, {tp2,2}, {NULL, O} };

D.3 Filessupplied on the slave system
D3l1ltetbuild.cfg

sl ave system build node configuration file for the TETware
denonstration

nost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

the build tool

HHH OFHHHHHHFHH

when the slave is a UNI X-1i ke systemor both naster and slave systens

are of the same type, the value of TET_BU LD TOOL to use is the one

inherited fromthe naster system

#

when the nmaster is a UNI X-1i ke system and the slave is a Wndows NT system
set TET_BUILD TOOL to "ntbuild.ksh” in this file, thus:

#

TET_BUI LD _TOOL=nt bui | d. ksh

Page 192 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

D.32 tetcl ean.cfg

sl ave system cl ean node configuration file for the TETware
denonstration

nost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

the cl ean tool

HHH OFHHHHHHHH

when the slave is a UNI X-1ike systemor both master and sl ave systens

are of the sanme type, the value of TET_CLEAN TOOL to use is the one

inherited fromthe naster system

#

when the master is a UNI X-like systemand the slave is a Wndows NT system
set TET_CLEAN TOOL to "ntclean.ksh" in this file, thus:

#

TET_CLEAN TOOL=nt cl ean. ksh

D.3.3 tetexec. cfg

sl ave system exec node configuration file for the TETware
denonstration

nost of the configuration variables are inherited fromthe
mast er system

only variables that are specific to the slave system appear here

H o HHH R

D.34 ts/ makefil e

include file and library |l ocations - don't change
LIBDOR = ../../lib/tet3
INCDIR = ../../inc/tet3

SGS definitions - customise as required for your system

nane of the C conpiler

CcC = ccC

the following is appropriate when using the defined build environment
on a Wndows NT system

CC = cl -nol ogo

flags for the C compiler
CFLAGS = -1$(INCDI R

systemlibraries:

the socket version on SVR4 and Solaris usually needs -1socket -Ins
the XTI version usually needs -Ixti

the Wndows NT version needs wsock32.1ib

SYSLIBS =

13th January 1997 Page 193
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

suffixes - custom se as required for your system
object file suffix - .o on UNIX, .obj on Wndows NT

O=.0

archive library suffix - .a on UNNX, .lib on wi ndows NT
A= .a

executable file suffix - blank on UNI X, .exe on Wndows NT
E =

all: t c1$E t c2$E t c33E

tcl$E: tcl.c $(INCDIR)/tet_api.h

$(CC) $(CFLAGS) -0 tcl$E tcl.c $(LIBDIR)/tcnBO $(LIBDI R)/Ii bapi $A \

$(SYSLI BS)
tc2%E: tc2.c $(INCDIR)/tet_api.h

$(CC) $(CFLAGS) -0 tc2$E tc2.c¢ $(LIBDIR)/tcnBO $(LIBDIR)/ i bapi $A \

$(SYSLI BS)
tc33E: tc3.c $(INCDIR)/tet_api.h

$(CC) $(CFLAGS) -0 tc3$E tc3.c $(LIBDIR)/tcnBO $(LIBDIR)/1ibapi $A \

$(SYSLI BS)

D35 ts/tcl.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL, O} };
void tpl()

{

tet_infoline("This is the first test case (tcl)");
tet _result (TET_PASS);

}

D36 ts/tc2.c

#i ncl ude <stdlib. h>
#i ncl ude <tet_api.h>

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
void tpl();

struct tet testlist tet testlist[] ={ {tpl,1}, {NULL,O} };

void tpl()
{

tet _infoline("This is the second test case (tc2, slave)");

tet _result (TET_FAIL);

Page 194 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

D.37ts/tc3.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <tet_api.h>

#define TI MEQUT 10 /* sync tinme out */

int sysO[] ={ 0 }; /* systemIDs to sync with */
static void error(err, rptstr)

int err, /* tet_errno value, or zero if NNA */
char *rptstr; /* failure to report */

{

char *errstr, *colonstr =": ";
char errbuf[20];

if (err == 0)
errstr = colonstr ="";
else if (err >0 & err < tet_nerr)

errstr tet _errlist[err];

el se {
(void) sprintf(errbuf, "unknown tet_errno value %", tet_errno);
errstr = errbuf;

}

if (tet_printf("%%%", rptstr, colonstr, errstr) < 0) {
(void) fprintf(stderr, "tet _printf() failed: tet_errno %\ n",
tet _errno);
exit (EXI T_FAI LURE) ;

}
}
static void tpl()
{
tet infoline("This is tpl in the third test case (tc3, slave)");
(void) tet _printf("sync with master (sysid: %)", *sysO);
if (tet_rensync(101L, sysO, 1, TIMEQUT, TET _SV_YES,
(struct tet_synnsg *)0) !'= 0) {
error(tet_errno, "tet _remsync() failed on slave");
tet _result (TET_UNRESCLVED) ;
}
el se
tet _result(TET_PASS)
}
static void tp2()
{
i nt rescode = TET_UNRESOLVED;
struct tet_synnsg nsg;
char rcvbuf[TET_SMVEGVAX] ;
tet_infoline("This is tp2 in the third test case (tc3, slave)");
(void) tet_printf("sync with master (sysid: %) and receive data"
*sys0);
13th January 1997 Page 195

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

}

nsg.tsm flags = TET SMRCVMBG
nsg.tsmdl en = sizeof (rcvbuf);
nsg.tsm dat a rcvbuf;

if (tet_remsync(201L, sysO, 1, TIMEQUT, TET_SV_YES, &nmsg) != 0)
error(tet_errno, "tet _remsync() failed on slave");
else if (neg.tsmsysid == -1)
error(0, "tet _remsync() set tsmsysid to -1 on slave");
else if (msg.tsmflags & TET_SMIRUNC)
error(0, "tet _remsync() set TET _SMIRUNC flag on sl ave");
else if (msg.tsmdlen <= 0)
error(0, "tet _remsync() set tsmdlen <= 0 on slave");

el se
{
(void) tet_printf("received nessage
nsg.tsmdl en, rcvbuf);
rescode = TET_PASS;
}

tet _result(rescode);

void (*tet _startup)() = NULL, (*tet_cleanup)() = NULL;
struct tet testlist tet testlist[] ={ {tpl,1}, {tp2,2}, {NULL, O} };

D.4 Filessupplied both systems

D41 systens
Exanpl e systemfile for the TETware denonstration
#
Pl ease refer to the chapter entitled "Running the TETware
denonstration” in the TETware User Guide for
instructions on how to custom se this file for your installation
#
000 mast er
001 sl ave

D.42 ts/ ntbuil d. ksh

#
#

build tool for use when the distributed denp suite is to be built

on a Wndows NT system using MKS Make

MAKESTARTUP=${ ROOTDI R: - c: }/ et c/ msc. nk

export

args=

MAKESTARTUP

while test $# -gt 1

do

done

args="$%args $1"
shi ft

exec make $args $1. exe

Page 196

13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

D.43 ts/ ntcl ean. ksh

clean tool for use when the distributed denp suite is to be cl eaned
on a Wndows NT system

args=

while test $# -gt 1

do

args="$args $1"
shift
done

exec rm $args $1. exe

13th January 1997 Page 197
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 198 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

E. Scenario language syntax summary

This appendix contains a brief summary of the syntax of the language that is used in a scenario

file. A more complete description is presented in the chapter entitled ‘*The scenario file
elsawherein this guide.

In these descriptions, a language element enclosed in square brackets ([]) is optional and an
ellipsis (. ..) indicates that the previous element(s) may be repeated.

Scenario elements

A scenario consists of a scenario name, followed by zero or more scenario elements. A
scenario element may be asimple element, adirective or adirective group.

Elements are separated from each other by white space. A directive or directive group may have
an attached element associated with it. An attached element is a simple element that has no
white space between it and its directive or directive group.

Form of input

A scenario starts at the start of aline, and may be continued on one or more continuation lines.
A continuation line is a line which starts with white space. A comment is introduced by # and
ends at the end of the line. Blank lines and comments are ignored.

The genera form of ascenariois:
scenario-name element ...
or:

scenario-name
element

or some combination of the two.

Simple elements
The genera form of asimple scenario element is:

simple-element
The simple elements are:

" scenario information line"
| test-case-name
/ file-name
" scenario-name
A " scenario information line" always appears by itself.

A / test-case-name may appear by itself or may be attached to a directive. When a/ test-case-
name is attached to a directive, it is preceded by a @character, thus:

: directive: @ test-case-name
A/ file-name is always attached to adirective.

A~ scenario-name may appear by itself or may be attached to a directive.

13th January 1997 Page 199
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

A test case name may have alist of invocable components attached to it, thus:
| test-case-name{ ic-list}

An ic-list consists of one or more numbers or number ranges. Each number or number range is
separated from the next by a, character. A number range consists of a pair of numbers separated
by a— character.

Directives
The general form of adirectiveis:

: directive], parameter. . .]: attached-element
or:

: directive], parameter. .]:
element

: enddirective:

An attached-element may be one of:

@ test-case-name
/ file-name
~ scenario-name

The directives that are supported in both TETware-Lite and Distributed TETware are:

;i ncl ude:

:parall el [, count]:

: repeat [, count]:

:ti med_| oop, seconds:
s random

In addition, gr oup is accepted as asynonym for par al | el .

The directives that are supported only in Distributed TETware are:
:renote, nnn[, ...]:
2distributed, nnn[, .. .]:
The end directives that are in both TETware-Lite and Distributed TETware are:

:endparall el :

. endrepeat :
>endti ned_| oop:
: endrandom

In addition, endgr oup is accepted as asynonym for endpar al | el .

The end directives that are only in Distributed TETware are:

: endr enot e:
:enddi stri but ed:

Page 200 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Directive groups
The genera form of adirective group is:

- directive,; directive,. ... attached-element

or:

- directive,; directive,. . ..

element

. ...enddirective,; enddirective;:
Includefiles

A file specified by a/ file-nameis an include file. Each of the (non-blank, non-comment) linesin
an include file contains a single simple scenario el ement.

The following simple scenario elements may appear in an include file:
" scenario information line"
/ test-case-name

Directives and other simple elements may not appear in an include file. Leading spaces are not
permitted. A comment isintroduced by a# character and ends at the end of the line. Blank lines
and comments are ignored.

13th January 1997 Page 201
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 202 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

F. Conceptual modelsused by TETware

F.1 Introduction

This appendix contains diagrams which represent the conceptual models used by TETware. The
diagrams presented here are based on similar diagrams which appear in the TET and dTET2
specifications.

13th January 1997 Page 203
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

F.2 TETware-Lite conceptual model

Build
file

Prebuild Build
file tool

\
Prebuild Build Clean AN
tool configuration tool N
\
\
\ \
Clean AN N
configuration file AN N
Removes AN

Execute Test Case
configuration Controller

Scenario Execution
results
Build fail
tool

Journal

Report Treatment Formatted
generator filter report

Figure 20. TETware-Lite conceptual model

Build fail
file

Page 204 13th January 1997
X/Open Company Ltd

TET3-PG-1.0

Test Environment Toolkit

TETware Programmers Guide

F.3 Distributed TETwar e conceptual model — local system

Distributed
configuration

Prebuild
file

Prebuild
tool

Clean
configuration

Execute
configuration

Scenario

Build fail
tool

Build fail
file

Build
configuration

Build
file

Build
tool

tool

Produces
\ \
\ \
Clean N N
file \ N
\ \
Removes
\ \
\ \
Controller test cases
\
\\ ‘
\] ,
Communicates Execution ,
with results J/
\\ //
\ /
N /
o —
\wj AW W]
Remote system
Journal
Report Treatment Formatted
generator filter report

Figure 21. Distributed TETware conceptual model — local system

13th January 1997

X/Open C

ompany Ltd

Page 205

Test Environment Toolkit TET3-PG-1.0

TETware Programmers Guide

F.4 Distributed TETware conceptual model — remote system

Build
file

Build
tool

\
Build Clean N
configuration tool N
\
\
\ \
Clean Clean ' N
configuration file AN N
Removes AN

Execute Remote Remote
configuration server test cases

R |
' \
\] ,
Communicates Execution ,
with resuts J
\ //
\\ \ //
Y
Build fail
tool I — 0
\wj AW W]
Local system

Build fail
file

Figure 22. Distributed TETware conceptual model — remote system

Page 206 13th January 1997

X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

G. Background and goals

G.1 Introduction

The goa behind creating TETware and its predecessors is to produce a test driver that
accommodates current and future testing needs of the test development community. To achieve
this goal, input from a wide sample of the test development community has been used for the
specification and development of TETware’ s functionality and interfaces.

G.2 Previous TET implementations

G.2.1 TheTest Environment Toolkit

The TET project started in September of 1989, when the Open Software Foundation, UNIX
International, and X/Open entered into an announced agreement to produce a specification for a
test environment. These organisations agreed to develop and make fredy available an
implementation written to that specification; additionally, the three organisations committed to
producing test suites for execution within that environment.

In the process of developing a specification, the project invited interested members of the test
software development community to discuss their requirements for atest driver. It wasthe belief
of the project that, through careful study of these requirements, a reasonably comprehensive and
effective test driver could be specified. Having achieved this, the project expected that a
substantial portion of the test development community would begin using TET for the
development of conformance testing software.

G.2.2 TheDistributed Test Environment Toolkit

The first set of maor extensions made to the TET by X/Open was the Distributed Test
Environment Toolkit (DTET) project that started in October 1991. The objective of the project
was to extend the functionality of the TET to support the execution of distributed test cases and
be backwards compatible with the TET. The DTET defined a distributed test case as a test case
executing partly on amaster system and partly on one or more slave systems. In such atest case,
synchronisation between the test case controlling software on the multiple systemsis required.

Initially, the DTET was designed for use as the underlying test harness for the development of a
number of network testing requirements, including the X.400 Application Programming Interface
(API), the OSF Distributed Computing Environment (DCE) and the X/Open Network File
System (XNFS) test suites. Following this, the DTET was installed at other sites and has proved
to be portable across awide range of different systems.

The DTET was a so able to execute non-distributed test cases (on either the master system or on
asingle or multiple remote systems). However, to do this the test cases had to be linked with the
TET API library (1i bapi.a) and not the DTET library (I i bdapi . a). Depending on
whether you were writing distributed or non-distributed test cases, you had to be aware of which
library to use when linking your test case. However, many users found the ability of the DTET to
execute TET test cases an advantage because they did not have to recompile or relink their test
suites.

13th January 1997 Page 207
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

G.2.3 The Extended Test Environment Toolkit

In parallel with X/Open’s development of the DTET, another extension to the base TET emerged.
This TET version is known as the Extended Test Environment Toolkit and provides a number of
enhancements to the base TET which have proved popular with members of the testing
community. The latest version of this toolkit variant is ETET release 1.10.3 which appeared in
1994. This ETET release is based on TET release 1.10 and the enhancements contained therein
were provided by SunSoft Inc., UNIX Systems Laboratories Inc., and others. The Korn Shell
bindings included with ETET were provided by Hewlett-Packard Co.

Features provided in ETET over and above those in the base TET include additional directives to
enable complex scenarios to be specified and additional configuration variables to enable more
precise control to be exercised over the way in which the Test Case Controller processes test
cases.

In addition to the Korn Shell binding mentioned above, the ETET distribution includes a C++
language binding, a Perl APl and a quantity of user-contributed demonstration test suites and
other software.

G.2.4 TheDistributed Test Environment Toolkit Version 2

X/Open then wished to enhance the DTET by incorporating all the features of the TET to produce
a common toolkit called dTET2. dTET2 was produced during 1993 and 1994. The dTET2
toolkit rationalised the differencesin the TET and DTET toolkits by providing:

« A singletoolkit for writing distributed and non-distributed tests, using only asingle API.
o New Users’ and Programmers’ Guides.

« Support for the X/Open Transport Interface (XTI) in addition to Berkeley Sockets in the
transport-specific parts of the toolkit.

o Fixesto problemsinherited from the DTET and the TET.

G.3 TETware

Lately, X/Open has produced TETware with the objective of combining all the functionality of
TET, dTET2 and ETET. In addition, X/Open wished to make TETware available on platforms
running the Windows NT operating system as well as on UNIX systems and in other POSIX-
conforming environments.

TETware is available in two major versions; namely, TETware-Lite and Distributed TETware.
Distributed TETware provides al the functionality required to process both non-distributed and
distributed test cases on numbers of systems at one time, whereas TETware-Lite is able to
process non-distributed test cases on a single system. On POSIX-conforming platforms,
TETware-Lite may be built to use only those features specified in POSIX. 1.

Unlike previous TET implementations, TETware is provided to users under the terms of a
software licence. X/Open intend to make demonstration versions of TETware with restricted
functionality available for evaluation purposes.

Page 208 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

G.4 Relationship between TETware and its predecessor s

TETware includes all of the functionality provided by previous TET implementations, in addition
to anumber of new features. Thisisillustrated in the following diagram. Note that this diagram
is not to scale.

TET 1.10 ETET 1.10.3

dTET2 TETware

Figure 23. Relationship between TETware and its predecessors

13th January 1997 Page 209
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 210 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

H. Terminology
H.1 Test casetypes

Certain terms described here are used throughout the TETware documents to describe the
different types of test case that may be executed by TETware.

A local test case is one that executes on the local system; that is, the system on which the Test
Case Controller t cc is executed.

A remotetest caseis one that executes on a system other than the one on whicht cc is executed.
t cc collects the test case’ s execution results file output from the remote system and includesit in
the journa file on the local system. Although it is possible for severa remote test cases to
execute concurrently on different remote systems, the test harness does not provide for interaction
between remote test cases.

A distributed test case is one that has several parts; these parts execute concurrently on different
systems. When a distributed test case is being executed, the test harness ensures that each test
purpose part starts at the same time on each system. Thus each part of a particular distributed test
case must always contain identical number of invocable components and test purposes, even if
this means that some of the test purpose parts do nothing. It is likely that parts of a distributed
test purpose will interact with each other in some way during the course of their execution. In
particular, the test harness provides a means by which the different parts of a test purpose may
synchronise with each other. Each test purpose part submits a result which indicates the success
or failure of that part of the test purpose. The test harness arbitrates between the results submitted
by the parts of the test purpose that are executing on each system and enters a single consolidated
result in the journa file.

Distributed TETware can process al of these types of test case. TETware-Lite can only process
local test cases.

H.2 Glossary
The following terms are used throughout this document.

Alter nate execution directory

A directory specified by the user below which test case execution isto occur. When such
adirectory is specified, it is the responsibility of the build tool to copy test case files from
the test case source directory to their location below this directory.

Application programming interface (API)

An application programming interface is the set of software interfaces between an
application and the system. In the case of TETware, the APl libraries offer specific
facilities for use by test cases.

API-conforming test case

A test case that uses one of the TETware APIs. In particular, the test case uses the API to
report test results.

Build file
A build fileis a set of instructions passed to the build tool. The provision of abuild fileis
optional.

13th January 1997 Page 211

X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Build tool
The build tool controls how test cases are prepared for execution, such as in creating
binaries from source files. |f configuration variables are needed by the build tool, it must
use the TETware API. A test suite must define a build tool in order to enable TETware to
processit in build mode.

Build fail file

A build fail file is a set of instructions passed to the build fail tool. The provision of a
build fail fileis optional.

Build fail tool
A test suite defined utility which is executed by the test case controller when the prebuild

tool or build tool cannot be executed or returns non-zero exit status. The provision of a
build fail tool is optional.

Clean file

A clean fileisaset of instructions passed to the clean tool. The provision of acleanfileis
optional.

Clean tool

A clean tool controls how files or conditions created for or during execution of the test
cases are removed, such as removing binary versions of test cases and any object files that
were built when the binaries were created. If configuration variables are needed by the
clean tool, it must use the TETware API. A test suite must define a clean tool in order to
enable TETware to processit in clean mode.

Communication variable

Communication variables are environment variables that are used by the Test Case
Controller to provide information to the build tool, clean tool, and test cases during
execution. The names of communication variables all start with the prefix TET_.

Configuration variable
Configuration variables are used to change the execution behaviour of the TCC and the
tools that it executes. Configuration variables are set via configuration variable files and
via the TCC user interface. The names of variables used by TETware all begin with the
prefix TET .

Configuration variables may also be used to pass parameters to API-conforming test cases
and tools. Test suite authors are cautioned to use obvious and consistent naming
conventions to avoid potential conflicts with other configuration variables.

Distributed configuration variable

In Distributed TETware, distributed configuration variables are used to inform TCC of the
location of test suite files and directories on remote systems. In addition, when
Distributed TETware is built to use XTI as the network transport, distributed
configuration variables are used to specify certain parameters needed by the transport-
specific code.

Distributed test case
Refer to the description presented in the previous section.

Page 212 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Distributed testing

Within the context of TETware, this term refers to the processing of distributed test cases.
It does not refer to the processing of non-distributed test cases on remote systems.

Exec file

An exec file is a set of test suite defined instructions for use in executing test cases under
control of an exec tool.

Exec tool

A tool used for executing test cases under special control; for example: a debugger or
command interpreter. Normally no exec tool is specified, which means that test cases are
executed directly.

Execution results daemon

In Digtributed TETware, the server used by the APl to manage execution results files on
behalf of test cases. The name of this server ist et xr esd.

Execution resultsfile

An API-conforming test case or tool places results and other journal information into the
execution results file. A non-distributed test case each has its own execution results file.
When Distributed TETware executes a distributed test case, all parts of the test case share
asingle execution results file. The TCC transfers the contents of the execution results file
to the journal when processing of each test case finished.

I nvocable component

An invocable component is the smallest unit that the TCM can execute individually.
Invocable components are made up of one or more test purposes.

Journal

A journa is the file into which test results and tracking data are deposited by the TCC.
This file may be processed by a report generator and/or test suite supplied treatment filter
to create formatted reports of test results.

Local system

The system from which the building, execution and cleaning of the tests is controlled.
This system contains the test scenario for a particular TCC invocation and (when test
cases are to be processed on remote systems) transmits information to each of the remote
systems in order that they undertake the necessary tasks as specified in the scenario file.
Each Distributed TETware invocation has exactly one local system and zero or more
remote systems. A TETware-Lite invocation only has a local system and no remote
systems.

Local test case
Refer to the description presented in the previous section.

Master configuration

The master configuration for a particular mode of operation is constructed by reading
configuration variables from a user-supplied file on the local system and adding variables
defined on the TCC command line. In TETware-Lite this is the only configuration for a
particular mode of operation. In Distributed TETware, the master configuration is used in
conjunction with variables defined in configuration files on each remote system to
generate each of the per-system configurations for a particular mode of operation.

13th January 1997 Page 213
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Master system

In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. The master
system is the first (or only) system in the list. Note that in TETware the meaning of this
term is different from that defined in previous TET implementations.

Mode of operation
When the TCC processes test cases, it does so in one or more modes of operation. These
modes are: build mode, execute mode and clean mode. The selected mode(s) of operation
are specified for each TETware invocation by options on thet cc command line. At least
one mode of operation must be selected for each TETware invocation.

Non API-conforming test case
A test case that does not use one of the TETware APIs. TETware deduces the result of
this type of test case from the test case' s exit status.

Output capture mode
When this mode is enabled, the TCC executes each test case or tool with standard output
and standard error directed to atemporary file. TETware copies the contents of thisfile to
the journal when the test case or tool finishes execution.

Per -system configuration
In Distributed TETware, the per-system configuration contains variables which are
specific to that system for a particular mode of operation.

Prebuild file
A prebuild file is a set of test suite defined instructions to the prebuild tool for use in
preparing for the building of executable versions of test cases.

Prebuild tool

When a prebuild tool is defined, the TCC usesit to undertake the preparation for the build
operation. When Distributed TETware processes remote or distributed test cases on more
than one system, the prebuild phase is only performed on the master system.

Remote system

In Distributed TETware, a system on which test cases are processed other than the system
on which the TCC isinvoked. A Distributed TETware invocation may control test cases
on any number of remote systems.

Remotetest case
Refer to the description presented in the previous section.

Result code
A result code is the determination made by a test purpose as to the status of the test it
performed. TETware supports the result codes defined by |EEE Std 1003.3—-1991, as well
as additional, user-defined result codes. The status of test cases, represented by result
codes, is recorded by the API in the journal, and can be analysed by the report generator
and appropriate treatment filters.

Page 214 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Runtimedirectory
When a runtime directory is specified, the TCC copies the directory hierarchy below the
test suite root directory to a location below the runtime directory before processing the
test suite. This location then becomes the new test suite root directory for that particular
TCC invocation.

Scenario file
A scenariofileis afile containing test scenario definitions.

SGS Software generation system.

Slave system
In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. When the
system list contains more than one entry, the slave systems are defined by the second and
subsequent entries in the list. Note that in TETware the meaning of this term is different
from that defined in previous TET implementations.

Softwar e gener ation system
The set of tools and other files that are used to compile programs on a particular system.
This set includes (at least) the compiler and linker, archive maintainer, header and library
files.

Synchronisation
In Distributed TETware, the process of ensuring that each part of a distributed test case
has reached an agreed point in its execution. Certain synchronisation points are
negotiated automatically by the TCMs (for example: at test purpose start) while others are
defined by the test suite author and occur during test purpose execution.

Synchronisation daemon

In Distributed TETware, the server used by the APl to manage the synchronisation
process. The name of thisserverist et syncd.

System ID
Distributed TETware systems are identified by a three-digit system identification. The
system IDs are mapped to some information (such as a host name) in the syst ens file
which may be used to establish a connection with the TCCD on that system. The exact
format of this mapping is transport dependent.

Thelocal system always has system ID 000. Other system IDs refer to remote systems.
TCC TheTest Case Controllert cc.

TCCD

In Distributed TETware, the Test Case Controller daemon (t ccd). When the Distributed
version of the TCC wants to perform some action while processing a test case, it does not
perform the action itself but instead instructs a TCCD to perform the action on a particular
system. This separation of the control logic from processing actions enables Distributed
TETware to control test case processing on an arbitrary humber of systems from a single
TCC invocation.

13th January 1997 Page 215
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

TCM The Test Case Manager.

Test case

A test case is the software which conductstests. The scope of theterm ‘‘test’’ isbroad. It
may range from a single test purpose for a single function being tested, all the way to a
complete suite of conformance tests for a specification. The TCC builds test cases when
invoked in build mode, executes the invocable components within test cases when in
execute mode, and cleans up any unwanted files when in clean mode.

Test case controller (TCC)

The TCC is the tool that provides structure and control for test cases. The tool handles
such functions as sequencing of invocable component execution, unexpected event
handling, cleanup, parameter passing, and transferring of test case execution results into
thejournal.

Test case execution directory

The directory in which atest case is executed. When an alternate execution directory is
specified, the test case execution directory is below the alternate execution directory;
otherwise, the test case execution directory is the same as the test case source directory.

Test case manager (TCM)

The TCM is a component of each TETware API. This component acts as a *‘wrapper’”’
for test cases, providing interpretation of the command line, selection of invocable
components, and support for the automatic sequencing of test purposes and invocable
components, aswell asinsulation from spurious signals.

Test case source directory
The directory which contains the source files for a particular test case. It isusual to have a
separate source directory for each test casein al but the smallest of test suites.

Test case processing

The action performed on a test case which depends on TCC's selected modes of
operation. That is: the test case is built when build mode is selected, executed when
execute mode is selected and cleaned when clean mode is selected.

Test purpose
A test purpose is the software that represents the smallest level of granularity of a test
specification. A test purpose always leads to a single result. In the case of an IEEE Std
1003.3-1991 conforming test suite, for example, test purposes would correspond to
assertions.

Test scenario

A test scenario is a sequence of one or more invocable components associated with a
single user-exposed name. When the TCC is invoked with a scenario name, all invocable
components associated with it are built, executed, and/or cleaned depending on the TCC
mode selected.

Test suite

A test suiteis a set of test case files and other required and optional files that are used by
TETware when processing test cases. A test suite must contain at |east one test case.

Page 216 13th January 1997
X/Open Company Ltd

TET3-PG-1.0 Test Environment Toolkit
TETware Programmers Guide

Test suiteinstaller
The test suite installer is used to execute an installation tool supplied with the test suite.
TETware does not provide this tool; instead test suite authors are responsible for
providing and documenting the installation procedures.

Test suiteroot directory
The top of the directory subtree which contains the test suite. Usually, this directory
resides immediately below the tet root directory.

Tet root directory
The top of the directory subtree in which TETware resides.

13th January 1997 Page 217
X/Open Company Ltd

Test Environment Toolkit TET3-PG-1.0
TETware Programmers Guide

Page 218 13th January 1997
X/Open Company Ltd

CONTENTS

1. Introduction

11
12
13
14
15
16

Preface . .

Product definition

Audience :
Conventions used in thls gU| de
Related documents

Problem reporting

2. Testing structure

21
2.2

2.3

Directory structure

Test case structure .

221 Test Case Manager .
2.2.2 API-conforming and non API conforml ng test cases
Test suite structure

23.1 Requiredfilesand utllltles

2.3.2 Optiona filesand utilities

3. The Test Case Controller

3.1 Introduction
3.2 Modes of operation
3.3 Initia processing .
3.4 Build mode processing
3.5 Execute mode processing
3.6 Clean mode processing
3.7 Rerun and resume processing
3.7.1 Introduction
3.7.2 Resume processing
3.7.2.1 Description
3.7.2.2 Processing apar al | eI dlrectlve in resume
mode .
3.7.2.3 Processing ar andomdlrectlve in resume mode
3.7.2.4 Processing at i med_I oop directive in resume
mode
3.7.3 Rerun processing
3.7.3.1 Description
3.7.3.2 Procng ar andomdlrectlve in rerun mode
3.7.3.3 Processing ati med_| oop directive in rerun
mode
3.8 Communication variables
3.9 Journal entries
3.10 Locking

3.11 Usingt cc to process atest swte on aread only fllesystem

4. The scenario file

4.1
4.2

Introduction .

The scenario language
421 Introduction

422 Scenariolines
4.2.3 Thescenario name

el
ONDRRPOOOO OCUBRBRRWWW NRRRRERR

ol el
© © ©

20
20

20
20
20
21

21
21
22
22
23

25
25
25
25
25
26

424

4.2.5

4.2.6
4.2.7

Simple scenario elements

4.2.4.1 Introduction .

4.2.4.2 Scenario information Ime

4.2.4.3 Test case name

4.2.4.4 Referenced scenario name

4245 Filename .

Scenario directives

4.2.5.1 Introduction

4.25.2 repeat — processscenario elements aspecmed number of
times

4253 timed_|l oop - proce&sscenano elements unt|I aspecmed

period of time expires
4.25.4 random- processatestcaseselectedatrandom
4255 paral | el —processscenario elementsin
parallel
4256 group - proceﬁscenarloelementsmparallel
4.2.5.7 r enot e - process test cases on remote systems
4.25.8 di stri but ed — process distributed test cases
4.25.9 i ncl ude - process scenario elementsllstedlnanlnclude
file .
Directive groups
Directive nesting rules

4.3 Example scenarios

5. Configuration files
51 Introduction .
5.2 Useof configuration varlables .
5.3 Configuration file format
5.4 Configuration variable procas ngin TETware-the
55 Configuration variable processing in Distributed TETware
5.6 Configuration variables which modify TETware' s operation
5.7 Distributed configuration variables used by Distributed TETware

6. Other test suitefiles
6.1 Introduction
6.2 Result codes

6.2.1
6.2.2
6.2.3
6.24

Description .

Result code definitions
File format .
Examplerewltscodeflle .

6.3 System definitions

6.3.1
6.3.2
6.3.3

Description .
File format .
Examplesyst ens flles .

7. The Test Case Manager .
7.1 Introduction
7.2 TCMsin Distributed TETware
7.3 TCM flow of control
7.4 Portability .

8. TheCAPI .

26
26
26
26
27
28
28
28

29

30
31

32
35
35
36

37
37
38
39

51
51
51
51
52
52
55
58

61
61
61
61
61
62
63
63
63
63

65
65
66
67
68

69

8.1
8.2
8.3
8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

Introduction .
C language binding
TCC dependencies
Test case structure and management
8.4.1 Introduction
842 tet _testlist, tet startup andtet cI eanup
843 tet _thistest,tet_nosigreset and
tet _pnane
Insulating from the test envi ronment
Error handling and reporting
8.6.1 Introduction
862 tet_errno .o
863 tet _errlist andtet _nerr
Making Journal entries
8.7.1 Introduction
872 tet setcontext() andtet set bI ock() .o
873 tet_infoline(),tet_mnfoline(),tet _pri ntf() and
tet_vprlntf() Ce e e
874 tet _result()
Cancelling test purposes
8.8.1 Introduction :
882 tet_delete()
883 tet_reason() .
Accessing configuration variables .
89.1 Introduction
89.2 tet _getvar()
Generating and executing processes
8.10.1 Introduction
8.10.2 tet fork(),tet exec() andtet Chl|d
8.10.3 tet_spawn() e
8104 tet wait()
8105 tet _Kkill()
Executed process functions .
8.11.1 Introduction e
8112 tet_main(),tet eX|t() andtet _logoff()
Test case synchronisation e e
8.12.1 Introduction .
8122 tet _remsync()
8.12.3 tet_sync() andtet nBync()
8.12.4 Control over sync error reporting
Remote system information .
8.13.1 Introduction . .
8132 tet rengetlist ()
8.13.3 tet _rengetsys()
8.134 tet_getsysbyid()
8135 tet_rentine()
Remote process control
8.14.1 Introduction
8.14.2 tet _renexec()
8143 tet _remait ()

69
69
70
71
71
71

72
73
74
74
74
75
76
76
76

77
78
79
79
79
80
81
81
81
82
82
82

85
86
86
86
88
88
88
91
92
93
93
93
93
94
94
95
95
95
96

0.

10.

11.

8144 tet_renkill()

The C++ AP

9.1 Introduction . .

9.2 C++ language bi ndlng :
9.3 Using the C++ language bindi ng

The Thread-safe C and C++ APIs .
10.1 Introduction . .
10.2 Clanguage binding
10.3 C++ language binding . .
10.4 Functionsthat are specific to the Thread sefeAPIs .
10.4.1 Introduction Coe
104.2 tet _thr create() and
tet _pthread _create()
1043 tet forkl()
10.5 Unavailable interfaces
10.6 AP differences
10.6.1 Introduction .o
10.6.2 Thread-specific data
10.6.3 Block and sequence numbers
10.6.4 tet spawn()
1065 tet_fork()
10.7 TCM differences .
10.7.1 Introduction .
10.7.2 Clean-up of left-over threads
10.7.3 Signal handling
10.8 Synchronisation requests in multi threaded test cases

The Shell and Korn Shell APIs .
11.1 Introduction . .
11.2 Shell language blndlng
11.3 Korn Shell language binding
11.4 TCC dependencies
115 Test case structure and management
11.5.1 Introduction
1152 iclist,icn,tet st art up andt et cI eanup
1153 tet _thistest
11.6 Insulating from the test environment
11.7 Making journal entries
11.7.1 Introduction
11.7.2 tet_setcontext andt et set bI ock
1173 tet_infoline
1174 tet result
11.8 Canceling test purposes .
11.8.1 Introduction
1182 tet_delete .
11.83 tet_reason . . .
11.9 Manlpulatrng configuration vanabl& .
11.10 Generation and execution of processes
11.11 Executed process support

-V -

98

99
99
99
100

101
101
101
101
102
102

102
103
103
103
103
103
103
104
104
104
104
104
105
105

107
107
107
107
108
108
108
108
109
109
110
110
110
111
111
112
112
112
112
112
112
113

12. The Perl API

121
122

Introduction
Description

13. Test reporting and journaling

131

13.2

133

134

Making journal entries

13.1.1 Entriesfrom the API
13.1.2 Entriesfrom test purposes
Journal files Coe
13.2.1 Description .

13.2.2 Journd line parameters
13.2.3 Journal line descri ptlons
Result file processing

13.3.1 Execution resultsfrom an API conformlng test case .
13.3.2 Processing results from anon API-conforming test case
13.3.3 Processing results from a non-distributed API-conforming test

case

13.3.4 Processing results from a distributed API-conforming test

Support for user-supplied report writers

14. Writing a C language API-conforming test suite

141
14.2
14.3
144
145
14.6
14.7
14.8

Introduction

Defining atest suite

Defining common test casefunctlons and varlables
Initialising test cases

Controlling and recording test case executlon results
Results that must be verified by the user

Child processes and subprograms .

Cleaning up test cases

15. Writing a Shell language API-conforming test suite

16.

151
152
15.3
154
155
15.6
157

Introduction

Defining atest suite .

Defining common test case functlons and varlables
Initialising test cases .

Controlling and recording test case executl on results
Results that must be verified by the user

Cleaning up test cases

The distributed demonstration test suite

16.1
16.2

Introduction

Test suite files .

16.21 Thesystens flle

16.22 Thetet code file
16.2.3 Thetet scenfile .
16.24 Thet et bui | d. cf g file
16.25 Thet et cl ean. cf g file
16.2.6 Thet et exec. cfgfile .
16.2.7 Thetetdist.cfgfile .
16.2.8 Thenmakefil e file
16.29 Thetcl. c file

115
115
115

117
117
117
118
118
118
118
119
120
120
120

120

121
121

123
123
123
126
126
127
129
130
133

135
135
135
137
140
140
143
143

145
145
145
146
147
147
148
149
149
150
151
152

16.2.10 Thet c2. c file
16.2.11 Thet c3. c file

A. The TETware end-user licence .

B. Example C language API test suite sourcefiles .

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17

Introduction

tet _code

i nstal l

cl eant ool

tet _scen .
tetbuild.cfg
tetexec. cfg
tetclean.cfg .
Makefile for chnpd- tc c
chnod-tc.c
Makefilefor fi | eno- tc c
fileno-tc.c
fileno-t4.c .
Makefileforstat-tc. c
stat-tc.c

Makefile for unane- tc c
unanme-tc.c

C. Example Shell API test suite sourcefiles .

C1l
C2
C3
Cc4
C5
C.6
C.7
C.8
C9
C.10
cl
C.12
C.13
C.14

Introduction

tet code

i nstall

bui | dt ool

cl eant ool

tet _scen .
tetbuild.cfg
t et exec. cfg
tetcl ean. cfg

shf uncs — common functlons used in the Shell API test swte

Makefilefor chnod-t c. sh
chnod-tc. sh .
Makefile for unane-t c. sh
unanme-tc. sh

D. Example distributed test case sourcefiles

D.1
D.2

Introduction

Files supplied on the master slstem
D.21 tet_code .
D22 tet_scen . .
D.23 tetbuild.cfg
D.24 tetclean.cfg
D.25 tetdist.cfg
D.26 tetexec.cfg
D.27 ts/nakefile
D.28 ts/tcl.c .
D.29 ts/tc2.c .

-Vi -

152
152

157

159
159
159
159
159
159
160
160
160
160
161
164
164
169
170
170
177
177

179
179
179
180
180
180
180
181
181
181
181
183
183
185
185

187
187
187
187
187
188
188
189
189
189
190
190

D.210 ts/tc3.c . : :
D.3 Flleswpplledontheslavewstem

D.31 tetbuild.cfg

D.32 tetclean.cfg

D.33 tetexec.cfg

D.34 ts/nmakefile

D35 ts/tcl.c .

D.36 ts/tc2.c .

D.37 ts/tc3.c . :
D.4 Files supplied both systems

D41 systens . .

D.42 ts/ntbuild. ksh

D.43 ts/ntclean. ksh

E. Scenario language syntax summary

F. Conceptual models used by TETware .
F.1 Introduction
F.2 TETware-Lite conceptuaJ model .o
F.3 Distributed TETware conceptual model — local wstem
F.4 Distributed TETware conceptual model — remote system

G. Background and goals
G.1 Introduction .
G.2 Previous TET impl ementatlons .
G.21 TheTest Environment Toolkit
G.2.2 TheDistributed Test Environment Toolkit
G.2.3 The Extended Test Environment Toolkit

G.2.4 TheDistributed Test Environment Toolkit Version 2

G.3 TETware .
G.4 Relationship between TETware and |ts predecrs

H. Terminology
H.1 Test casetypes
H.2 Glossary

- Vii -

191
192
192
193
193
193
194
194
195
196
196
196
197

199

203
203
204
205
206

207
207
207
207
207
208
208
208
209

211
211
211

LIST OF FIGURES

Figure 1. Test caseinteraction Ce e e 3
Figure2. Test caseprocessinginbuildmode 13
Figure 3. Test caseprocessing inexecutemode 16
Figure4. Testcaseprocessingincleenmode 18
Figure5. Processingtest casesinsequence 40
Figure 6. Processingtest casesinparaled 41
Figure 7. Processing multiple instances of asingle test casein parallel Ce e 42
Figure 8. Processing referenced scenario elementsin parallel whenin dTET2
mode . 4
Figure 9. Processing referenced scenario elementsin paralel whenin ETET
mode .. 4
Figure 10. Processing ar epeat directiveinexecutemode 45
Figure11. Processingr epeat directivesinparalled 46
Figure 12. Processing randomly selected test casesin paralel for a specified period of
time . 48
Figure 13. Processing remote and distributedtestcases 49
Figure 14. Configuration variable processing in TETware-Lite 52
Figure 15. Configuration variable processing in Distributed TETware 54
Figure 16. Precedence of result code definitions 62
Figure 17. Directory structure for the example C language test suite 124
Figure 18. Directory structure for the example Shell language test suite 136
Figure 19. Directory structure for the distributed demonstration test suite 146
Figure 20. TETware-Liteconceptualmoded 204
Figure 21. Distributed TETware conceptual model — local syslem 205
Figure 22. Distributed TETware conceptual model — remotesystem 206
Figure 23. Relationship between TETwareand itspredecessors 209

- viii -

