
ttcccc((11)) ttcccc((11))

NNAAMMEE
tcc − TETware test case controller

SSYYNNOOPPSSIISS
tcc −−{bec} [options] [test-suite [scenario]]

tcc −−{bec} −−m codelist [options] old-journal-file [test-suite [scenario]]

tcc −−{bec} −−r codelist [options] old-journal-file [test-suite [scenario]]

DDEESSCCRRIIPPTTIIOONN
tcc is the TETware test case controller. It provides support for the building, execution and clean-up of test
scenarios.

When TETware-Lite is built, scenarios may only contain test cases which are to be executed on the local
system and tcc performs all the actions required to process such test cases itself. When Distributed
TETware is built, scenarios can contain local, remote and distributed test cases. The distributed version of
tcc does not perform the actions required to process test cases itself but instead sends requests to the test
case controller daemon tccd which runs on the local system and also on each participating remote system
(see the tccd(1) manual page for details).

Apart from the scenario directives which relate to the processing of remote and distributed test cases, the
user interface to tcc is the same irrespective of whether TETware-Lite or Distributed TETware is being
used.

tcc has three modes of operation, namely build, execute and clean, which may be invoked singly or in any
combination. These modes are specified by the −−b, −−e and −−c command-line options, at least one of which
must appear. All of the other options modify the behaviour of tcc in one or more of these operational
modes. Each mode (with optionally modified behaviour) is applied to the test cases and invocable com-
ponents selected for processing.

By default, tcc builds, executes or cleans test cases in the named scenario contained in the scenario file
tet_scen, which is located in the test suite root directory for test-suite (see DIRECTORIES below). If no
scenario is specified, the default scenario named all is used. If no test-suite is specified, tcc attempts to
deduce a default test suite name using the following rules:

1. If the TET_SUITE_ROOT environment variable is set and the current directory lies under the
directory hierarchy specified by this variable, then the test suite is the component of the current
directory’s path name which lies immediately below $TET_SUITE_ROOT. For example, if
$TET_SUITE_ROOT is /usr/tet3 and the current directory is /usr/tet3/suite1/results, then the
name of the default test suite is suite1.

2. If the TET_SUITE_ROOT environment variable is not set and the current directory lies under
the directory hierarchy specified by the TET_ROOT environment variable, then the test suite is
the component of the current directory’s path name which lies immediately below $TET_ROOT.

3. If the current directory lies outside of the directory hierarchy specified by the
TET_SUITE_ROOT environment variable (if set) or the TET_ROOT environment variable (if
TET_SUITE_ROOT is not set), then no default test suite name can be deduced.

DDIIRREECCTTOORRIIEESS
By default, tcc interprets test case names relative to the test suite root directory. The location of this
directory is determined as follows on the local system:

1. If the TET_SUITE_ROOT environment variable is set, the test suite root directory is deter-
mined by the test suite name, relative to $TET_SUITE_ROOT.

- 1 - Formatted: January 7, 1997

ttcccc((11)) ttcccc((11))

2. If the TET_SUITE_ROOT environment variable is not set, the test suite root directory is
determined by the test suite name, relative to $TET_ROOT.

3. If the TET_RUN environment variable is set, then the directory subtree below the test suite
root (determined as described above) is copied to the location below $TET_RUN and this loca-
tion becomes the new test suite root directory.

However, an alternate execution directory on the master system may be specified by the TET_EXECUTE
environment variable or by a command-line option (see OPTIONS below). If an alternate execution direc-
tory is specified, tcc interprets test case names relative to this directory when operating in execute mode.

By default, tcc creates a directory called tet_tmp_dir below the test suite root directory. However, a dif-
ferent temporary directory name on the local system may be specified by the TET_TMP_DIR environ-
ment variable. Each invocation of tcc creates a unique subdirectory below the temporary directory on
startup and removes it and its contents on normal completion.

CCOONNFFIIGGUURRAATTIIOONN FFIILLEESS
During execution, tcc reads configuration variables from certain configuration files on both the local and
the remote systems (if any). By default, the name of the build mode configuration file is tetbuild.cfg, that
of the execute mode configuration file is tetexec.cfg and that of the clean mode configuration file is
tetclean.cfg. The build and clean mode configuration files reside in the test suite root directory on each
system. The execute mode configuration file resides in the alternate execution directory if one has been
specified, otherwise in the test suite root directory.

Variables used in all three modes of operation that relate to remote and distributed testing are read from the
file named tetdist.cfg in the test suite root directory on the local system. This file must at least contain
assignments for the tet root and test suite root directories for any remote systems that are specified in the
scenario being processed.

JJOOUURRNNAALL FFIILLEE
By default, tcc creates a sequentially numbered directory below the results directory in the test suite root
directory for the named test-suite on the local system, and places the journal file and saved intermediate
result files there. On startup, tcc writes the name of the journal file being used to the standard output.

RREESSUULLTT CCOODDEESS
tcc uses a table of result codes to interpret the results generated by API-conforming test cases. A default
table containing standard codes is built in to tcc. It is possible to specify additional codes in user-supplied
result codes files located below the tet root and test suite root directories on the local system. These files
are optional but, if they exist, the codes specified in them are added to the table of standard codes. The
default name for each of these files is tet_code but this name can be changed by means of the
TET_RESCODES_FILE configuration variable.

OOPPTTIIOONNSS
The following options alter the default behaviour described above:

−−a directory
Use directory as the alternate execution directory instead of the one specified by the
TET_EXECUTE environment variable (if any).

−−f file Use file as the clean mode configuration file instead of the default.

−−g file Use file as the build mode configuration file instead of the default.

−−i directory
Place the default journal file and saved intermediate results files in directory instead of in the
default location.

−−j file Use file as the journal file instead of the default.

- 2 - Formatted: January 7, 1997

ttcccc((11)) ttcccc((11))

−−l scenario-line
Process scenario-line as if it appeared in a scenario file below a scenario named all. More than
one −−l option may be specified; the scenario-lines are processed in the order in which they appear
on the command line. scenario-line must be presented as a single argument so it must be quoted if
it contains embedded spaces. If a scenario file is specified by a −−s option, any scenario-lines are
processed before that scenario file is read. If no −−s option is specified, the default scenario file
tet_scen is not read when −−l is used.

−−n string
Do not process test case names that contain string . More than one −−n option may appear.

−−p Enable progress reporting. As each build, execute or clean operation is started, a line indicating
the time, mode and scenario line being processed is printed on the standard output.

−−s file Use file as the scenario file instead of the default.

−−t timeout
Terminate the build, execute or clean of an individual test case if processing would continue for
more than timeout seconds.

−−v variable=value
The specified configuration variable is set to value , overriding any assignment in the configuration
file for the current mode. It is probably best to surround value with single quotes if it contains
characters which have special meaning to the Shell. More than one −−v option may appear.

−−x file Use file as the execute mode configuration file instead of the default.

−−y string
Only process test case names that contain string . More than one −−y option may appear. The −−n
option has higher precedence than the −−y option; thus, a test case is not processed if its name is
matched by strings specified with both the −−n and the −−y options.

RREERRUUNN AANNDD RREESSUUMMEE OOPPTTIIOONNSS
The following options are mutually exclusive:

−−m code-list
Causes tcc to resume the previous run of the specified scenario in the named test-suite whose
results are in old-journal-file . code-list specifies the point in the previous run from which process-
ing is to be resumed and may consist of a comma-separated list of result codes, or of one or more
of the letters b, e and c to specify failures in particular processing modes. If code-list consists of
result codes, then processing resumes at the first invocable component whose result in the previ-
ous run matched one of those in the list. If code-list specifies processing modes, then processing
resumes at the first test case which failed to build or clean or the first invocable component which,
when executed, did not report PASS in the previous run.

For example:

tcc −−b −−m b

Resume building from the first test case that failed to build.

tcc −−e −−m FAIL,UNRESOLVED

Resume execution from the first invocable component that reported FAIL or UNRESOLVED.

tcc −−bec −−m b,e

Resume building, execution and cleaning from the first test case which failed to build or from the
first invocable component that did not report PASS.

- 3 - Formatted: January 7, 1997

ttcccc((11)) ttcccc((11))

−−r code-list
Causes tcc to re-run individual test cases and invocable components from the specified scenario in
the named test-suite whose results are in old-journal-file . code-list specifies the elements that are
to be re-run and may consist of a comma-separated list of result codes, or of one or more of the
letters b, e and c to specify failures in particular processing modes. If code-list consists of result
codes, then test cases and invocable components are re-run if the corresponding result in the pre-
vious run matched one of the result codes in the list. If code-list specifies processing modes, then
a test case is re-run if it failed to build or clean and an invocable component is re-run if it did not
report PASS when it was executed in the previous run.

For example:

tcc −−b −−r b

Re-build test cases that previously failed to build.

tcc −−e −−r FAIL,UNRESOLVED

Re-execute all invocable components that previously reported FAIL or UNRESOLVED.

tcc −−bec −−r b,e

Re-build, execute and clean all test cases that previously failed to build or execute, and all invoca-
ble components that did not previously report PASS when executed.

- 4 - Formatted: January 7, 1997

hhhh hhhh

