
Test Environment Toolkit

TETware Knowledge Base
Revision 1.1

TET3-KB-1.1

������������������������������

Released: 19th November 1999
��������������������������������
�
�

��
�
�

The Open Group



The information contained within this document is subject to change without notice.

Copyright  1998 The Open Group

All rights reserved. No part of this source code or documentation may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user licence agreement, without the prior permission of the copyright
owners. A copy of the end-user licence agreement is contained in the file Licence which accompanies
the TETware distribution.

Motif, OSF/1, UNIX and the ‘X’ device are registered trademarks and IT DialTone and The Open Group
are trademarks of The Open Group in the US and other countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

Win32TM, Windows NTTM and Windows 95TM are registered trademarks of Microsoft Corporation.

This document is produced by The Open Group at:

Apex Plaza
Forbury Road
READING
Berkshire
RG1 1AX
United Kingdom



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . 1
2. Running tcc and tccd with different user IDs in Distributed TETware . . . . 3
3. How does TETware handle the tet_xres temporary results file? . . . . . . 5
4. How does tcc locate the build tool? . . . . . . . . . . . . . . . 7
5. Relationship between TET_SUITE_ROOT and TET_TSROOT . . . . . . . 9
6. Error message: tcc/tcp: unknown service . . . . . . . . . . 11
7. How to create a new process using tet_spawn() and tet_wait() . . . . 13
8. Relationship between TET_OUTPUT_CAPTURE and

TET_API_COMPLIANT . . . . . . . . . . . . . . . . . . 17
9. How to solve test case locking problems . . . . . . . . . . . . . . 19

10. Repeated scenario execution without modifying the scenario file . . . . . . 21
11. Error message: can’t log on to TCCD on system n . . . . . . . 23
12. How to run test cases in a known environment . . . . . . . . . . . . 25
13. Problems when running the perl demo . . . . . . . . . . . . . . 27
14. Executing a set-UID test case . . . . . . . . . . . . . . . . . 29
15. How to get the standard error from an API-conforming test case to appear in the

journal . . . . . . . . . . . . . . . . . . . . . . . . 31
16. How to run a distributed test case which reboots one of the systems . . . . . . 33
17. How to link the tet_main() function when using the C++ API . . . . . . 37
18. Problems with SIGCHLD in the Perl API . . . . . . . . . . . . . 39
19. How to handle POSIX signals in a C language test case . . . . . . . . . 41
20. How to create multiple processes using tet_fork() . . . . . . . . . 43
21. Porting Korn Shell arithmetic expressions from UNIX to Win32 systems . . . . 47
22. Running tccd from the command line . . . . . . . . . . . . . . 49
23. How to determine the value of an XTI address string . . . . . . . . . . 51
24. Variable types used in TETware . . . . . . . . . . . . . . . . 55
25. Displaying scenario trees with tetscpp . . . . . . . . . . . . . 57
26. Writing a new API . . . . . . . . . . . . . . . . . . . . 61
27. Error message: tetsyncd: client connection closed . . . . . . 65
28. tccd can’t execute make on a remote system . . . . . . . . . . . . 67
29. Does in.tccd source .profile on a remote system? . . . . . . . . . 69
30. ER_ERR — the general error code . . . . . . . . . . . . . . . 71
31. How to use the dynamic test case interface in the C API . . . . . . . . . 73
32. How to run test cases in a clean environment . . . . . . . . . . . . 77
33. How to copy executed commands output to the journal . . . . . . . . . 79
34. How to run individual Invocable Components from the tcc command

line . . . . . . . . . . . . . . . . . . . . . . . . . 81
35. How to identify test case timeouts in the journal file . . . . . . . . . . 83
36. Running different randomly selected test cases in parallel on several

systems . . . . . . . . . . . . . . . . . . . . . . . 85
37. How do environment variables get passed to test cases? . . . . . . . . . 87
38. How to process a scenario that contains test cases that use different APIs . . . . 89
39. How to create a new thread in a Java API-conforming test case . . . . . . . 93
40. How to run TETware from an NFS server . . . . . . . . . . . . . 97
41. Configuration variable exchange errors in Distributed TETware . . . . . . . 99
42. Error message: tccd: refused login request from

hostname . . . . . . . . . . . . . . . . . . . . . . . 101

- i -



- ii -



PERMUTED INDEX

How to determine the value of an XTI address string ...............................................................................23
link the tet_main() function when using the C++ API How to...............................................................................17

Problems with SIGCHLD in the Perl API ..............................................................................................18
Writing a new API ..............................................................................................26

to use the dynamic test case interface in the C API How...................................................................................31
How to create a new thread in a Java API-conforming test case ............................................................39

journal How to get the standard error from an API-conforming test case to appear in the ..................................15
that contains test cases that use different APIs How to process a scenario ...............................................38

error from an API-conforming test case to appear in the journal How to get the standard ..........................15
systems Porting Korn Shell arithmetic expressions from UNIX to Win32 .............................21

How does tcc locate the build tool? ......................................................................................4
to link the tet_main() function when using the C++ API How ..........................................................................17

to use the dynamic test case interface in the C API How ...............................................................................31
How to handle POSIX signals in a C language test case ....................................................................19

tccd can’t execute make on a remote system ......................................28
Error message: can’t log on to TCCD on system n ..............................................11

How do environment variables get passed to test cases? ...........................................................................................37
How to run test cases in a clean environment .......................................................................32
Error message: tetsyncd: client connection closed ..............................................................27

Error message: tetsyncd: client connection closed ...........................................................................................27
ER_ERR — the general error code .............................................................................................30

Running tccd from the command line ..............................................................................22
individual Invocable Components from the tcc command line How to run ........................................................34

How to copy executed commands output to the journal ..................................................33
How to run individual Invocable Components from the tcc command line.....................................34

Distributed TETware Configuration variable exchange errors in ..................................41
Error message: tetsyncd: client connection closed ........................................................................27
How to process a scenario that contains test cases that use different APIs ..................................38

How to copy executed commands output to the journal ..........................33
tet_wait() How to create a new process using tet_spawn() and..................................7

test case How to create a new thread in a Java API-conforming ...........................39
How to create multiple processes using tet_fork() ...................................20

Problems when running the perl demo ............................................................................................13
How to determine the value of an XTI address string .............................23

a scenario that contains test cases that use different APIs How to process .................................................38
parallel on several systems Running different randomly selected test cases in .....................................36

Running tcc and tccd with different user IDs in Distributed TETware ...................................2
Displaying scenario trees with tetscpp ........................................25

How to use the dynamic test case interface in the C API.....................................31
How to run test cases in a known environment .................................................................................12

How to run test cases in a clean environment .................................................................................32
How do environment variables get passed to test cases? ..........................37

ER_ERR — the general error code .............................................30
Configuration variable exchange errors in Distributed TETware ....................................................41

Configuration variable exchange errors in Distributed TETware ....................................41
tccd can’t execute make on a remote system ...............................................28

How to copy executed commands output to the journal ...................................33
Executing a set-UID test case......................................................14

Repeated scenario execution without modifying the scenario file ............................10
Porting Korn Shell arithmetic expressions from UNIX to Win32 systems .................................21

execution without modifying the scenario file Repeated scenario...............................................................10
TETware handle the tet_xres temporary results file? How does ............................................................................3

to identify test case timeouts in the journal file How ....................................................................................35
How to link the tet_main() function when using the C++ API ...............................................17

ER_ERR — the general error code ........................................................................30
How to handle POSIX signals in a C language test case .........................19

How does TETware handle the tet_xres temporary results file? ....................................3

- iii -



Error message: tccd: refused login request from hostname......................................................................................42
How to identify test case timeouts in the journal file ...............................35

Running tcc and tccd with different user IDs in Distributed TETware ..........................................................2
command line How to run individual Invocable Components from the tcc ..........................34

Does in.tccd source .profile on a remote system? ................................29
How to use the dynamic test case interface in the C API ..................................................................31

Introduction ...................................................................................1
How to run individual Invocable Components from the tcc command line ....................34

How to create a new thread in a Java API-conforming test case ....................................................39
an API-conforming test case to appear in the journal How to get the standard error from ..............................15

How to copy executed commands output to the journal..........................................................................................33
How to identify test case timeouts in the journal file ...................................................................................35

How to run test cases in a known environment .....................................................................12
Win32 systems Porting Korn Shell arithmetic expressions from UNIX to .......................21

How to handle POSIX signals in a C language test case ........................................................................19
Running tccd from the command line ...............................................................................................22

Invocable Components from the tcc command line How to run individual .......................................................34
API How to link the tet_main() function when using the C++ .......................17
How does tcc locate the build tool? .....................................................................4

How to solve test case locking problems ...........................................................................9
Error message: can’t log on to TCCD on system n .......................................................11

Error message: tccd: refused login request from hostname .......................................................42
Repeated scenario execution without modifying the scenario file ..........................................................10

How to create multiple processes using tet_fork() .............................................20
How to run TETware from an NFS server ...................................................................................40

How to copy executed commands output to the journal ....................................................................33
different randomly selected test cases in parallel on several systems Running ........................................36

How do environment variables get passed to test cases? ....................................................................37
Problems with SIGCHLD in the Perl API .......................................................................................18

Problems when running the perl demo .....................................................................................13
UNIX to Win32 systems Porting Korn Shell arithmetic expressions from .........................21

How to handle POSIX signals in a C language test case .....................................19
How to solve test case locking problems ........................................................................................9

Problems when running the perl demo........................................13
Problems with SIGCHLD in the Perl API ..................................18

that use different APIs How to process a scenario that contains test cases ..................................38
How to create a new process using tet_spawn() and tet_wait() ......................................7

How to create multiple processes using tet_fork()............................................................20
Does in.tccd source .profile on a remote system?........................................................29

several systems Running different randomly selected test cases in parallel on..................................36
How to run a distributed test case which reboots one of the systems ..........................................................16

Error message: tccd: refused login request from hostname ..........................................42
TET_API_COMPLIANT Relationship between TET_OUTPUT_CAPTURE and ...............8

TET_TSROOT Relationship between TET_SUITE_ROOT and ...........................5
tccd can’t execute make on a remote system..............................................................................28

Does in.tccd source .profile on a remote system? ............................................................................29
the scenario file Repeated scenario execution without modifying ........................10

Error message: tccd: refused login request from hostname ................................................................42
How does TETware handle the tet_xres temporary results file?.....................................................................................3

of the systems How to run a distributed test case which reboots one ..............................16
tcc command line How to run individual Invocable Components from the ..........................34

How to run test cases in a clean environment ..........................................32
How to run test cases in a known environment........................................12
How to run TETware from an NFS server ...............................................40

in parallel on several systems Running different randomly selected test cases ..........................36
Distributed TETware Running tcc and tccd with different user IDs in............................2

Running tccd from the command line .........................................22
Problems when running the perl demo .................................................................13

scenario file Repeated scenario execution without modifying the ..................................10
scenario execution without modifying the scenario file Repeated...............................................................10

- iv -



different APIs How to process a scenario that contains test cases that use .....................................38
Displaying scenario trees with tetscpp...........................................................25

systems Running different randomly selected test cases in parallel on several......................................36
How to run TETware from an NFS server ...........................................................................................40

Error message: tcc/tcp: unknown service............................................................................................6
Executing a set-UID test case..........................................................................14

randomly selected test cases in parallel on several systems Running different ...........................................36
systems Porting Korn Shell arithmetic expressions from UNIX to Win32 ....................21

Problems with SIGCHLD in the Perl API ...........................................................18
How to handle POSIX signals in a C language test case .................................................19

How to solve test case locking problems ...................................................9
Does in.tccd source .profile on a remote system? ............................................29

to appear in the journal How to get the standard error from an API-conforming test case .......................15
How to determine the value of an XTI address string ............................................................................................23

tccd can’t execute make on a remote system ..........................................................................................28
Does in.tccd source .profile on a remote system? ........................................................................................29

Error message: can’t log on to TCCD on system n .......................................................................................11
distributed test case which reboots one of the systems How to run a ...............................................................16

Shell arithmetic expressions from UNIX to Win32 systems Porting Korn ...............................................................21
selected test cases in parallel on several systems Running different randomly .......................................36

Distributed TETware Running tcc and tccd with different user IDs in ..........................................2
to run individual Invocable Components from the tcc command line How.............................................................34

How does tcc locate the build tool?................................................................4
tccd can’t execute make on a remote system ..............................28

Running tccd from the command line ........................................................22
Error message: can’t log on to TCCD on system n ......................................................................11

Error message: tccd: refused login request from hostname .................................42
TETware Running tcc and tccd with different user IDs in Distributed ....................................2

Error message: tcc/tcp: unknown service ...............................................................6
How does TETware handle the tet_xres temporary results file? ...................................................................3

Executing a set-UID test case .......................................................................................14
How to handle POSIX signals in a C language test case .......................................................................................19

to create a new thread in a Java API-conforming test case How............................................................................39
How to use the dynamic test case interface in the C API ...................................................31

How to solve test case locking problems.............................................................9
How to identify test case timeouts in the journal file ............................................35

get the standard error from an API-conforming test case to appear in the journal How to .................................15
How to run a distributed test case which reboots one of the systems .................................16

How do environment variables get passed to test cases? ....................................................................................37
How to run test cases in a clean environment ................................................32
How to run test cases in a known environment ..............................................12

Running different randomly selected test cases in parallel on several systems ......................................36
How to process a scenario that contains test cases that use different APIs .................................................38

between TET_OUTPUT_CAPTURE and TET_API_COMPLIANT ..............................................................8
How to create multiple processes using tet_fork()......................................................................................20

How to link the tet_main() function when using the C++ API .............................17
Relationship between TET_OUTPUT_CAPTURE and TET_API_COMPLIANT.........8

Displaying scenario trees with tetscpp..........................................................................................25
How to create a new process using tet_spawn() and tet_wait() .............................................................7

Relationship between TET_SUITE_ROOT and TET_TSROOT.....................................5
Error message: tetsyncd: client connection closed ...............................................27

Relationship between TET_SUITE_ROOT and TET_TSROOT ..............................................................................5
to create a new process using tet_spawn() and tet_wait() How............................................................................7

How does TETware handle the tet_xres temporary results file? .....................................................3
How to create a new thread in a Java API-conforming test case ..................................39

How to identify test case timeouts in the journal file ...........................................................35
How does tcc locate the build tool? ...............................................................................................4

Displaying scenario trees with tetscpp .........................................................................25
Variable types used in TETware ................................................................24

Porting Korn Shell arithmetic expressions from UNIX to Win32 systems .............................................................21

- v -



Error message: tcc/tcp: unknown service ............................................................................6
a scenario that contains test cases that use different APIs How to process ...........................................38

API How to use the dynamic test case interface in the C ................................31
Running tcc and tccd with different user IDs in Distributed TETware ..................................................2

How to create multiple processes using tet_fork() ............................................................................20
How to create a new process using tet_spawn() and tet_wait() ...................................................7

How to link the tet_main() function when using the C++ API .......................................................................17
How to determine the value of an XTI address string ....................................................23

Configuration variable exchange errors in Distributed TETware ......................41
Variable types used in TETware .................................................24

How do environment variables get passed to test cases? ...............................................37
Korn Shell arithmetic expressions from UNIX to Win32 systems Porting.............................................................21

Repeated scenario execution without modifying the scenario file .............................................10
Writing a new API.......................................................................26

How to determine the value of an XTI address string .......................................................................23

- vi -



TET3-KB-1.1 Test Environment Toolkit
TETware Knowledge Base

1. Introduction

1.1 Preface
The TETware Knowledge Base contains articles which describe how to use TETware to solve
particular testing problems. Many of the articles contain information that has previously been
provided in response to specific questions from TETware users.

TETware is implemented on UNIX operating systems and also on the Windows NT and
Windows 95 operating systems. It includes all of the functionality of the Test Environment
Toolkit Release 1.10 (TET), the Distributed Test Environment Toolkit Version 2 Release 2.3
(dTET2) and the Extended Test Environment Toolkit Release 1.10.3 (ETET), together with a
number of new features.

Throughout this document, the Windows NT and Windows 95 operating systems are referred to
collectively as Win32 systems. The individual system names are only used when it is necessary
to distinguish between them.

1.2 Audience
This document is intended to be read by software engineers are already familiar with TETware.
People who are new to TETware should first refer to the documents described in the section
entitled ‘‘Related documents’’ later in this chapter.

1.3 Conventions used in this document
The following typographic conventions are used throughout this document:

� Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

� The names of variables are presented in italic font . You should substitute the variable’s
value when typing a command that contains a word in this font.

� Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a \ character
for formatting purposes. If you type such an example, you should type it in all on one line and
omit the \ character.

Unless stated to the contrary, shell script examples in this document assume the use of a Bourne,
Korn or POSIX shell on UNIX systems or, where applicable, the MKS Korn Shell on Win32
systems.

1.4 Related documents
Refer to the following documents for additional information about TETware:

� Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
is implemented.

� Test Environment Toolkit: TETware Programmers Guide

19th November 1999 Page 1
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� Test Environment Toolkit: TETware User Guide

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use
each new release of TETware.
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2. Running tcc and tccd with different user IDs in
Distributed TETware

This information is not applicable to Win32 systems.

Normally, tcc and tccd are run with the same user ID on the local system. This should be the
same as the owner of the files below the test suite root directory on the local system. This
arrangement is desirable because in Distributed TETware both tcc and tccd may create files in
the test suite directory hierarchy. By default, tccd runs with the ID of the user tet and so it is
appropriate for tcc to run with the ID of the user tet as well.

Sometimes it is necessary to run tcc with a different user ID from the one used by tccd. These
instructions assume that you will run tccd as the user tet and the people who invoke tcc will
use their own login IDs.

You should perform the following operations:

1. Create a group called tet in the /etc/group file. Arrange for the supplementary group
list of all the users who will use Distributed TETware to include the tet group. On most
systems, you do this by listing all the login names in the last field of the tet entry in
/etc/group.

For example:

tet::102:tet,john,paul,george,ringo

2. In the /etc/passwd file, make sure that the tet user has the tet group as the primary
group (this is shown in the fourth field in the password entry).

For example:

tet:x:106:102:TETware user:/home/tet:/bin/ksh

Note that the 102 is the same as the 102 in the tet group entry.

3. Run tccd with a umask of 2 (by using the -m command-line option). This will cause
files created by tccd and the test cases and tools that tccd executes to be writable by
group as well as by user.

For example, you might put the following entry in /etc/inetd.conf:

tcc stream tcp nowait tet /home/tet/bin/in.tccd in.tccd -m2

4. Make sure that each user who will work with Distributed TETware has a umask of 2 (or
less restrictive). You can do this by putting the line:

umask 2

in each user’s .profile.

5. Make sure that all the directories below $TET_ROOT belong to the group tet and are
writable by group. You can do this by executing the following commands:

cd $TET_ROOT
find . -type d ! -group tet -print | xargs chgrp tet
find . -type d -print | xargs chmod g+w

Note that this assumes that you have not yet built any of the test cases. If you have, you
will need to find all the build products and change them to group tet and mode 664 as

19th November 1999 Page 3
The Open Group



Test Environment Toolkit TET3-KB-1.1
TETware Knowledge Base

well.

6. Make sure that files and directories created below $TET_ROOT inherit the group of the
directory in which they are created. On some systems this is the default behaviour,
whereas on others you must turn on each directory’s set-GID bit in order to enable this
behaviour. If you need to turn on the set-GID bits you can do this by executing the
following commands:

cd $TET_ROOT
find . -type d -print | xargs chmod g+s

Points to note:

a. These instructions assume that the test case files are readable by owner and group (at least).
If they’re not, the following command will fix this:

cd $TET_ROOT
find . -type f -print | xargs chmod ug+r

b. The instruction to set the set-GID bit on directories is to ensure that newly-created files and
directories inherit their group ID from the parent directory. If this is your system’s default
behaviour, you don’t need to set the set-GID bit in order to achieve this.

c. These instructions assume that your system keeps password and group information in
/etc/passwd and /etc/group. If your system uses NIS for its password and group
databases you should ask your system administrator what to do.

d. On some systems it is not advisable to edit the password and group files directly. Instead
you should use the appropriate system administration commands to add and/or change
entries in these files.

See also

� ‘‘The Test Case Controller daemon tccd’’ in the TETware User Guide.

� The tccd manual page in the TETware User Guide.
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3. How does TETware handle the tet_xres
temporary results file?

If the test case is a distributed API-conforming test case, then the API must use tetxresd (the
execution results daemon) for the journal. Otherwise, the API may either use tetxresd or
generate its own tet_xres file (but not both!).

In this context:

1. distributed means that either

a. the :distributed: scenario directive is used; or

b. the :remote: scenario directive is used and system 0 is included in the system list

2. API-conforming means that either

a. TET_API_COMPLIANT is true; or

b. TET_API_COMPLIANT is unset and TET_OUTPUT_CAPTURE is false

The TETware tcc looks for a tet_xres file in the test case execution directory when an API
which does not support distributed testing is used. (Currently: all the APIs except the Distributed
C and C++ APIs.)

All the journal processing is performed by tcc. tccd is only used when a tet_xres file is on
a remote system, and then only to copy it to the local system for processing by tcc.

Implementation details
Journal processing is performed by one of the functions in tcc’s execution engine. This function
is called tcs_journal() in file tcc/proctc.c. A large comment in the code describes the
strategy that is used; it reads as follows:

/*
** for an API-conforming test case:
** if there is a journal at this level:
** if the tool used XRESD:
** process the XRESD file;
** otherwise:
** the tool should have used tet_xres;
** if there are child proctabs:
** process each child’s tet_xres file;
** otherwise:
** process this level’s tet_xres file;
** otherwise:
** for each child journal:
** if the tool used XRESD:
** process the XRESD file;
** otherwise:
** the tool should have used tet_xres;
** process the tet_xres file;
** otherwise:
** if there is a journal at this level:
** if PRF_AUTORESULT is set (i.e., non-API in EXEC mode):
** generate a TP result from pr_exitcode;
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** otherwise:
** for each child journal:
** if PRF_AUTORESULT is set:
** generate a TP result from pr_exitcode;
**
*/

Note that the words ‘‘test case’’ and ‘‘tool’’ are used interchangeably — tcc processes test cases
and tools in the same way.

In the simple case of an API-conforming test case running on the local system,
tcs_journal() calls jnlproc_api() which is in file tcc/jnlproc.c.

A combined execution results file is always opened (by tetxresd) for an API-conforming test
case before the test case is processed. However, this file will remain empty unless an API that
supports distributed testing is used. The code in jnlproc_api() looks at the combined
execution results file to see if there is anything there, and uses it if there is. Otherwise,
jnlproc_api() assumes that another API has been used and looks for the tet_xres file
instead. In the simple case, this processing is performed by a call to jp_tetxres(), which
opens the file. Once the tet_xres file is opened, a call to jp_xres() transfers the contents
of the file to the journal.

See also

� ‘‘Test reporting and journaling’’ in the TETware Programmers Guide.

� ‘‘Simple TETware architecture diagrams’’ and ‘‘The Execution Results Daemon
tetxresd’’ in the TETware User Guide.
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4. How does tcc locate the build tool?
tcc locates the build tool by using the PATH environment variable in the normal way. When
tcc processes a test case in build mode it first changes to the test case source directory. Then
tcc executes the build tool exactly as specified by the TET_BUILD_TOOL variable in the build
mode configuration file.

Sometimes a test suite is organised so that the tools are located in a bin directory below the test
suite root directory. tcc does not search this location automatically so, if you want to organise
your test suite in this way, you should include this directory in your PATH. Alternatively, you
can specify the location of the build tool relative to the test case source directory.

For example, in the SHELL-API test suite that is part of the contrib distribution, the build
tool is tet-root/contrib/SHELL-API/bin/buildtool and the test cases live in
directories below tet-root/contrib/SHELL-API/ts. The build mode configuration file
contains the line

TET_BUILD_TOOL=buildtool

and the test case setup script prepends tet-root/contrib/SHELL-API/bin to the PATH
environment variable. Thus tcc is able to find the build tool by using PATH. The same result
could have been achieved without the need to modify PATH by specifying the location of the
build tool relative to each test case source directory, thus:

TET_BUILD_TOOL=../../bin/buildtool

(Note that when this is done it is necessary for all the test case source directories to be on the
same level in the directory hierarchy.)

Distributed TETware
In Distributed TETware the build tool is located as described above on each system. On a remote
system the value of PATH that is used is the one in tccd’s environment on that system. On
UNIX systems where tccd is started on demand from an entry in /etc/inetd.conf, the
default value of PATH that tccd inherits from inetd is usually fairly minimal; for example:
PATH=:/bin:/usr/bin. If necessary you can specify a different value of PATH by using the
-e option to tccd. For example, on a SVR4 system where the compilation tools live in
/usr/ccs/bin, you might put the following entry in /etc/inetd.conf:

tcc stream tcp nowait tet tet-root/bin/in.tccd \
in.tccd -e PATH=:/usr/bin:/usr/ccs/bin

Win32 systems
On Windows NT the o/s defines an environment variable called Path and the MKS shell defines
a variable called PATH.

The getenv() function in the Microsoft C runtime support library is case-insensitive, so when
tcc locates the build tool, it is possible that either the value of PATH or Path may be used.
Therefore, if you change the value of PATH from the MKS shell, you should be sure to change
the value of Path as well.
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If you use a Shell script build tool on a Win32 system, its name must have a .ksh suffix.
Alternatively you can say:

TET_BUILD_TOOL=sh
TET_BUILD_FILE=mybuildtool

in the execute mode configuration file.

A shell script should not start with a #! line since the MKS shell tries to interpret this and
probably won’t do what you expect. In any event, using #! is always non-portable on Win32
systems since the location of files can vary from system to system.

Other tools
All the information in this article also applies to the prebuild tool, the build fail tool and the clean
tool.

The exec tool is processed slightly differently by tcc in that it might be executed in the test case
source directory, in a location below the alternate execution directory, or in a location below the
temporary directory, depending on the settings of certain configuration and environment
variables. Therefore it is best not specify a TET_EXEC_TOOL with a relative path name because
when the execution directory is changed the tool will no longer be found.

See also

� ‘‘Build mode processing’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.

� The tccd manual page in the TETware User Guide.
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5. Relationship between TET_SUITE_ROOT and
TET_TSROOT

The TETware tcc provides support for the TET_SUITE_ROOT environment variable and the
TET_TSROOT distributed configuration variable. The TET_SUITE_ROOT functionality is
derived from ETET, whereas the TET_TSROOT functionality is derived from dTET2. Both these
variables are used by tcc to locate the test suite root directory, but the meanings of the variables
are not the same. In summary, TET_TSROOT refers to the test suite root directory itself, whereas
TET_SUITE_ROOT refers to some path prefix of the test suite root directory (usually the parent
directory).

Soon after tcc starts up it determines the location of the test suite root directory. Normally, tcc
locates the test suite root directory below the tet root directory. However, you can use the
TET_SUITE_ROOT environment variable to instruct tcc to look for the test suite root directory
below a different location.

TET_SUITE_ROOT is also one of the communication variables. tcc puts this variable in the
environment when it executes a test case or tool. If you don’t specify a TET_SUITE_ROOT
environment variable, tcc supplies one with a default value which is the same as the value of the
TET_ROOT environment variable.

In Distributed TETware, TET_SUITE_ROOT is only used on the local system. The location of
the test suite root directory on each remote system is specified explicitly by a
TET_REM_nnn_TET_TSROOT distributed configuration variable in the tetdist.cfg file.

Since the TET_SUITE_ROOT feature is derived from ETET, remote and distributed test cases
don’t normally access this environment variable. So, by default, tcc puts an empty
TET_SUITE_ROOT variable in the environment when it executes a test case or tool on a remote
system.

However, in order to enable ETET test cases that expect to read TET_SUITE_ROOT from the
environment to be processed on remote systems, it is possible to specify a value for
TET_REM_nnn_TET_SUITE_ROOT in the distributed configuration file. When this is done,
tcc assigns the specified value to the TET_SUITE_ROOT environment variable before
processing the test case or tool on the remote system.

Note that the TET_REM_nnn_TET_SUITE_ROOT distributed configuration variable is only
supported in order to provide backwards compatibility for ETET test cases on remote systems. It
is not used by tcc itself since the location of the test suite root directory on a remote system
must always be specified by the TET_REM_nnn_TET_TSROOT distributed configuration
variable.

See also

� ‘‘Directory structure’’, ‘‘Communication variables’’ and ‘‘Distributed configuration
variables used by Distributed TETware’’ in the TETware Programmers Guide.

� ‘‘Environment variables’’ in the TETware User Guide.

� The tcc manual page in the TETware User Guide.
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6. Error message: tcc/tcp: unknown service
Question
When I run the Distributed version of tcc it prints the message:

tcc (tccdport.c, 80): tcc/tcp: unknown service: Bad file number
tcc (dtcc.c, 217): can’t log on to TCCD on system 0

Answer
This message means that tcc can’t find the entry for the tcc service in the services database on
your system.

The services database associates service names with well-known port numbers. On UNIX
systems it might be a file (usually /etc/services) or it might be an NIS database. On
Windows NT systems it usually resides in the file
c:/winnt/system32/drivers/etc/services.

You should find out where the services database is on your system and add an entry to it which
describes the tcc service.

See also

� ‘‘Services database entry’’ in the TETware Installation Guide for your system type.

19th November 1999 Page 11
The Open Group



Test Environment Toolkit TET3-KB-1.1
TETware Knowledge Base

Page 12 19th November 1999
The Open Group



TET3-KB-1.1 Test Environment Toolkit
TETware Knowledge Base

7. How to create a new process using tet_spawn()
and tet_wait()

Question
Can you send me an example of how to use tet_spawn() and tet_wait().

Answer
Here is a trivial test case that uses tet_spawn(). The source file is called tc16.c. You
should compile it, then link with tcm.o and libapi.a in the usual way. (Or tcm.obj and
libapi.lib on Win32 systems.)

#include <stdlib.h>
#ifndef _WIN32
# include <sys/wait.h>
#endif
#include "tet_api.h"

void (*tet_startup)() = TET_NULLFP, (*tet_cleanup)() = TET_NULLFP;
void tp1();

struct tet_testlist tet_testlist[] = { {tp1, 1}, {TET_NULLFP, 0} };

#ifndef _WIN32
extern char **environ;
#endif

void tp1()
{

pid_t pid;
int status;
static char *argv[] = {

"./tc16child",
"an-argument-string",
(char *) 0

};

tet_infoline("this is tc16 parent");

if ((pid = tet_spawn(*argv, argv, environ)) == -1) {
tet_printf("tet_spawn(%s) failed: tet_errno = %d",

*argv, tet_errno);
tet_result(TET_UNRESOLVED);
return;

}

status = 0;
if (tet_wait(pid, &status) == -1) {

tet_printf("tet_wait(%ld) failed: tet_errno = %d",
(long) pid, tet_errno);

tet_result(TET_UNRESOLVED);
return;

}
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#ifdef _WIN32
if (status != 0) {

tet_infoline("child process returned unexpected exit status");
tet_printf("expected exit status 0, observed %d", status);
tet_result(TET_FAIL);

}
else

tet_infoline("child exit status = 0");
#else

if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {

tet_infoline("child process returned unexpected \
exit status");

tet_printf("expected exit status 0, observed %d",
WEXITSTATUS(status));

tet_result(TET_FAIL);
}
else

tet_infoline("child exit status = 0");
}
else if (WIFSIGNALED(status)) {

tet_printf("child process terminated with signal %d",
WTERMSIG(status));

tet_result(TET_UNRESOLVED);
}
else if (WIFSTOPPED(status)) {

tet_printf("child process stopped by signal %d",
WSTOPSIG(status));

tet_result(TET_UNRESOLVED);
}
else {

tet_printf("can’t decode child process exit status (%#x)",
status);

tet_result(TET_UNRESOLVED);
}

#endif

}

This is the child process that is launched by the call to tet_spawn() in tc16.c. The source
file is called tc16child.c. You should compile it, then link with tcmchild.o and
libapi.a. (Or tcmchild.obj and libapi.lib on Win32 systems.)

#include "tet_api.h"

int tet_main(argc, argv)
int argc;
char **argv;
{

tet_infoline("this is tc16 child");
if (argc > 1) {

tet_printf("argument is \"%s\"", argv[1]);
tet_result(TET_PASS);

}
else {
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tet_infoline("no arguments received");
tet_result(TET_UNRESOLVED);

}
return(0);

}

Here is the journal that is generated when tc16 is run on a Win32 system:

0|3.2-lite 23:19:40 19970714|User: unknown TCC Start, \
Command line: tcc -epl /ts/tc16

5|Windows_95 TEXEL 4 0 586|System Information
20|c:/tet3/suite/tetexec.cfg 1|Config Start
30||TET_EXEC_IN_PLACE=false
30||TET_API_COMPLIANT=True
30||TET_PASS_TC_NAME=False
30||TET_VERSION=3.2-lite
40||Config End
10|0 /ts/tc16 23:19:40|TC Start, scenario ref 1-0
15|0 3.2-lite 1|TCM Start
400|0 1 1 23:19:42|IC Start
200|0 1 23:19:42|TP Start
520|0 1 0004883443 1 1|this is tc16 parent
520|0 1 0001218837 2 1|this is tc16 child
520|0 1 0001218837 2 2|argument is "an-argument-string"
520|0 1 0004883443 3 1|child exit status = 0
220|0 1 0 23:19:42|PASS
410|0 1 1 23:19:42|IC End
80|0 0 23:19:43|TC End, scenario ref 1-0
900|23:19:43|TCC End

See also

� ‘‘C language binding’’ and ‘‘Generating and executing processes’’ in the TETware
Programmers Guide.
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8. Relationship between TET_OUTPUT_CAPTURE and
TET_API_COMPLIANT

Question
When I execute a test case I don’t get any results in the journal.

Here is the start of the journal file:

0|3.2-lite 08:13:20 19970813|User: unknown TCC Start, \
Command line: tcc -ep

5|Windows_95 WS1 4 0 586|System Information
20|c:/Tet3.2/suite/tetexec.cfg 1|Config Start
30||TET_OUTPUT_CAPTURE=true
30||TET_RESCODES_FILE=tet_code
30||TET_EXEC_IN_PLACE=true
30||TET_API_COMPLIANT=False
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.2-lite
40||Config End
700|3|Repeat Start, scenario ref 3-0
700|4|Repeat Start, scenario ref 6-0
10|0 /ts/tc1/tc1 08:13:20|TC Start, scenario ref 9-0
15|0 3.2-lite 1|TCM Start (auto-generated by TCC)
400|0 1 1 08:13:20|IC Start (auto-generated by TCC)
200|0 1 08:13:20|TP Start (auto-generated by TCC)
220|0 1 0 08:13:36|PASS (auto-generated by TCC)
410|0 1 1 08:13:36|IC End (auto-generated by TCC)
80|0 0 08:13:36|TC End, scenario ref 9-0

Answer
This journal contains a couple of clues as to what is going wrong:

1. The part that reports the configuration variables shows that you have set
TET_OUTPUT_CAPTURE=true in the execute mode configuration. This supplies a
default value of TET_API_COMPLIANT=false.

2. You will see that the TCM Start and the IC and TP Start and End lines are all marked
‘‘auto-generated by TCC’’. This shows that these lines were generated by tcc and not by
the test case.

When you set TET_API_COMPLIANT=false (whether explicitly or by default), you are
telling tcc that the test case or tool does not use the TETware API. So tcc doesn’t copy output
generated by API functions to the journal.

Normally you would set TET_OUTPUT_CAPTURE=false in the execute mode configuration
when executing API-conforming test cases. If there is some reason why you want output capture
mode enabled when executing API-conforming test cases, you should make the following
assignments in the execute mode configuration:

TET_OUTPUT_CAPTURE=true
TET_API_COMPLIANT=true
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See also

� ‘‘Test case structure’’ and ‘‘Configuration variables which modify TETware’s operation’’
in the TETware Programmers Guide.

� ‘‘TETware journal lines’’ in the TETware User Guide.
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9. How to solve test case locking problems
Question
Occasionally when running tcc we get the following type of messages:

110|59 /tset/tc1/tc1 12:25:52|Build Start, scenario ref 24-0
50||(lock.c, 120): can’t acquire exclusive lock \

c:/Tet3.2/suite/tset/tc1/tet_lock on system 000, \
server reply code = ER_NOENT

130|59 -3 12:25:52|Build End, scenario ref 24-0
10|60 /tset/tc1/tc1 12:25:52|TC Start, scenario ref 24-0
50||(lock.c, 120): can’t acquire exclusive lock \

c:/Tet3.2/suite/tset/tc1/tet_lock on system 000, \
server reply code = ER_NOENT

80|60 -3 12:25:53|TC End, scenario ref 24-0

The lock appears to be a file in the test directory. Any ideas as to what might be causing this?

Answer
When tcc processes a test case, it uses a locking scheme to prevent multiple tcc processing
threads from interfering with each other. The error messages that you describe are generated
when tcc can’t create a lock for some reason.

Usually this is because either:

— the directory in which the lock is to be created doesn’t exist or is not writable; or:

— the lock already exists when tcc attempts to create it.

Clearly, the first case is evidence of a test suite setup problem. The directory containing a test
case that is mentioned in a scenario must exist and be writable by tcc (in TETware-Lite) or
tccd (in Distributed TETware).

Here are some common reasons for the second case:

a. The test suite is being processed by more than one instance of tcc.

b. The scenario uses the :parallel: directive and the test suite has not been structured in
a way that permits parallel processing.

c. A previous tcc run has crashed or has been killed, leaving locks in place.

The solutions to these problems are:

a. Make sure that the test suite is only being processed by one instance of tcc. If you are
using Distributed TETware, remember to check that your system is not being used as a
remote target of tcc running on another system.

b. If you are using the :parallel: directive, you must arrange for each test case to have
its own directory. If you use :parallel,count: to execute more than one copy of each
test case, you must set TET_EXEC_IN_PLACE=false in the execute mode
configuration.

c. Make sure that there is no other instance of tcc processing the test case, then remove the
lock by hand.
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See also

� ‘‘Build mode processing’’, ‘‘Execute mode processing’’, ‘‘Clean mode processing’’ and
‘‘Locking’’ in Chapter 3 of the TETware Programmers Guide.
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10. Repeated scenario execution without modifying the
scenario file

Question
A requirement of our manufacturing people is for tcc to be able to invoke repeated executions
(for example: for hardware stress testing) without having to change the scenario files. Developers
write the scenarios and don’t want repetitive execution. But manufacturing, who wish to reuse
the tests, do.

Answer
There are a couple of ways that you can do this using existing TETware functionality.

Method 1
(When you know how many times the manufacturing people want to repeat when you write the
scenario.)

You can provide more than one scenario when you write the scenario file. One scenario can list
all the tests, and the other can repeat the first scenario the required number of times.

For example:

manufacturer
:repeat,100:ˆdeveloper

developer
/ts/tc1/tc1
/ts/tc2/tc2
. . .
etc.

Your developers can use the scenario called developer in the example above and the
manufacturing people can use the scenario called manufacturer.

You can choose which scenario to execute on the tcc command-line. For example, to execute
all the tests in the list once:

tcc -ep test-suite-name developer

or, to execute all the tests in the list 100 times:

tcc -ep test-suite-name manufacturer

Notes:

1. If one of the scenarios in the file is called all, you don’t need to use the ‘‘test-suite-
name scenario-name’’ style of syntax on the tcc command-line.

2. You can use :timed_loop: instead of :repeat: if your manufacturing people
would find this more helpful. But don’t do this until you are satisfied that the test cases are
working reliably.
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Method 2
(When you want to specify the number of times to repeat the scenario on the tcc command-
line.)

In this method, you specify the basic scenario in a file and add a :repeat: directive on the
command-line.

The scenario file should contain the non-repeating list of tests as in Method 1; for example:

developer
/ts/tc1/tc1
/ts/tc2/tc2
. . .
etc.

To execute all the tests once, you invoke tcc in the same way as in Method 1; for example:

tcc -ep test-suite-name developer

You can specify both the −l and −s options to process a scenario defined in a file under the
control of a directive specified on the command-line. So, to repeat all the tests 50 times, you
would say:

tcc -ep -s tet_scen -l ":repeat,50:ˆdeveloper"

or, to repeat all the tests for (at least) 10 hours, you would say:

tcc -ep -s tet_scen -l ":timed_loop,36000:ˆdeveloper"

Notes:

1. When you specify scenario lines using one or more −l options, tcc processes the lines as
if they were in a scenario called all. So when you use −l and −s together, you can’t have
a scenario called all in the file specified by the −s option.

As can be seen from these examples, it is possible to invoke tcc with lots of different
combinations of command-line options. It is usual to supply a shell script which contains the
correct tcc invocation in cases where the command-line becomes too complicated to type in
directly.

See also

� ‘‘The scenario file’’ in the TETware Programmers Guide.

� The tcc manual page in the TETware Users Guide.
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11. Error message: can’t log on to TCCD on
system n

Question
When I try to run the distributed demo, tcc prints the message:

tcc (dtcc.c, 337): server connection closed (sysid = 0, pid = -1: STCC)
tcc (dtcc.c, 229): can’t log on to TCCD on system 0

I am running Distributed TETware on a UNIX system and using the inetd version of tccd.

Answer
The first message indicates that the connection from tcc was accepted by inetd and then
closed for some reason.

Possibilities are:

1. If inetd could not execute in.tccd for some reason when tcc connected to the well-
known tccd port, you should see an error message from inetd in the syslog file.

2. If in.tccd started up but then exited with an error, you should see a startup message
followed by an error message in the tccd log file (usually /tmp/tccdlog).

Additional information
The ‘‘can’t log on to TCCD’’ message may be preceded by other messages. One example is the
‘‘tcc/tcp: unknown service’’ message that is described in another Knowledge Base article.

Another example is as follows:

tcc (logon.c, 133): server error (sysid = -1, pid = 12961: STCC)
tcc (dtcc.c, 229): can’t log on to TCCD on system 1

In this case it is necessary to check the /tmp/tccdlog file on system 1 for further information
about the error. It contained the lines:

tccd (12961) 28 May 14:09:25: connection received from texel
tccd (12961) 28 May 14:09:25 (tccd_in.c, 418): can’t open \

/home/tet/systems.equiv: No such file or directory
tccd (12961) 28 May 14:09:25 (tccd.c, 398): client connection closed \

(sysid = 0, pid = 2234: MTCC)

This shows that the reason for the failure is because the systems.equiv file has not been set
up correctly on system 1.

See also

� ‘‘Starting tccd’’ in the TETware Installation Guide for UNIX Operating Systems.

� ‘‘The Distributed C API demonstration’’ in the TETware User Guide.

� The tccd manual page in the TETware User Guide.
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12. How to run test cases in a known environment
You can use an exec tool to do this. For example, suppose you want to make sure that a test case
always executes in the C locale. The exec tool might look like this:

#!/bin/sh

# set and export the variables
LANG=C
LC_CTYPE=C
LC_MESSAGES=C
LC_NUMERIC=C
LC_TIME=C
export LANG LC_CTYPE LC_MESSAGES LC_NUMERIC LC_TIME

# then execute the test case
exec "$@"

Then, put the following assignment in the execute mode configuration file:

TET_EXEC_TOOL=exec-tool

where exec-tool is the name of the shell script that you have just created.

When you specify the name of an exec tool, it should be either:

— relative to the test case execution directory; or:

— an absolute path name; or:

— in one of the directories listed in the PATH environment variable.

Points to note:

a. A name relative to the test case execution directory won’t work unless you have
TET_EXEC_IN_PLACE=true in the execute mode configuration.

b. On a Win32 system the name of a shell script should have a .ksh suffix. Or you can say:

TET_EXEC_TOOL=sh
TET_EXEC_FILE=exec-tool

in the execute mode configuration.

c. On a Win32 system a shell script should not start with a #! line.

There follows an example of a more sophisticated exec tool:

Question
We have a problem where different installations by different users often have a different
environment which can affect the test results obtained. We would like to be able to specify a set
of environment variables in a file and have tcc put them in the environment when test cases are
executed.
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Answer
You can use an exec tool to do this. In the following example, the exec tool gets the name of the
environment file to use from a variable called TS_ENV_FILE in the execute mode configuration.

#!/bin/sh
#
# exec tool which executes a test case with environment taken from
# the file defined by the TS_ENV_FILE configuration variable
#
# extract the value of TS_ENV_FILE from the configuration for the
# current mode of operation -
# ignore blank lines and comments in the config file
#
# (the value of TET_CONFIG is set by tcc before invoking the build tool)
TS_ENV_FILE=
eval ‘sed -n ’s/#.*//

/ˆ[ ]*\$/d
/ˆTS_ENV_FILE=/s/\([ˆ=]*\)=\(.*\)/\1="\2"/p’ ${TET_CONFIG:?}‘

# if a TS_ENV_FILE has been defined, read it in
if test ! -z "$TS_ENV_FILE"
then

if test -r $TS_ENV_FILE
then

set -a
. $TS_ENV_FILE

else
echo "$0: can’t read environment file $TS_ENV_FILE" 1>&2
exit 1

fi
fi

# finally, execute the test case
exec "$@"

Then put the following lines in the execute mode configuration file:

TET_EXEC_TOOL=exec-tool
TS_ENV_FILE=env-file

When you do this, environment variables defined in env-file will be put in the environment when
test cases are executed.

See also

� ‘‘Execute mode processing’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.

� Users of Win32 systems should check out the section entitled ‘‘Executable files’’ in
Appendix H of the TETware User Guide.
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13. Problems when running the perl demo
Question
I am running Distributed TETware on a UNIX system.

When I run the perl demo, no test case output appears in the journal file.

For example:

70||"starting scenario"
110|0 /ts/tc1 10:59:49|Build Start, scenario ref 2-0
130|0 0 10:59:50|Build End, scenario ref 2-0
10|1 /ts/tc1 10:59:50|TC Start, scenario ref 2-0
80|1 255 10:59:54|TC End, scenario ref 2-0
300|2 /ts/tc1 10:59:54|Clean Start, scenario ref 2-0
320|2 0 10:59:56|Clean End, scenario ref 2-0
110|3 /ts/tc2 10:59:56|Build Start, scenario ref 3-0
130|3 0 10:59:57|Build End, scenario ref 3-0
10|4 /ts/tc2 10:59:57|TC Start, scenario ref 3-0
80|4 255 11:00:00|TC End, scenario ref 3-0
300|5 /ts/tc2 11:00:01|Clean Start, scenario ref 3-0
320|5 0 11:00:02|Clean End, scenario ref 3-0
70||"next is the last test case"
110|6 /ts/tc3 11:00:02|Build Start, scenario ref 5-0
130|6 0 11:00:03|Build End, scenario ref 5-0
10|7 /ts/tc3 11:00:03|TC Start, scenario ref 5-0
80|7 255 11:00:07|TC End, scenario ref 5-0
300|8 /ts/tc3 11:00:07|Clean Start, scenario ref 5-0
320|8 0 11:00:08|Clean End, scenario ref 5-0
70||"done"
900|11:00:08|TCC End

The following errors appear in the /tmp/tccdlog file:

tccd (25135) 29 Sep 10:59:51 (tcfexec.c, 205): \
can’t exec /export/home0/tet/perldemo/tet_tmp_dir/25131a/tc1: \
No such file or directory

tccd (25143) 29 Sep 10:59:57 (tcfexec.c, 205): \
can’t exec /export/home0/tet/perldemo/tet_tmp_dir/25131a/tc2: \
No such file or directory

tccd (25154) 29 Sep 11:00:04 (tcfexec.c, 205): \
can’t exec /export/home0/tet/perldemo/tet_tmp_dir/25131a/tc3: \
No such file or directory

There is nothing in tet_tmp_dir. Is there something that I need to add in the setup?

Answer
The perl demo does not have a setting for TET_EXEC_IN_PLACE in the execute mode
configuration file tetexec.cfg. When TET_EXEC_IN_PLACE is undefined, its default
value is False.

When TET_EXEC_IN_PLACE is false, tcc copies the contents of the test case directory to a
temporary directory below tet_tmp_dir and executes the test case from there. The temporary
directory is removed when execution finishes. This is why you won’t see anything below
tet_tmp_dir after tcc exits.
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You will notice that, in the journal, the exit status in each Test Case End line is 255. This shows
that the test case could not be executed and corresponds to the ‘‘can’t exec’’ messages in the
/tmp/tccdlog file. Here are some possible reasons why the test cases could not be executed:

1. Problem
The test cases are missing from the test case source directory, so don’t get copied to the
temporary directory before execution. Thus the exec fails.

Solution
Check that the test cases tc1, tc2 and tc3 exist in $TET_ROOT/contrib/demo/ts.
If they are missing, install them from the contrib distribution.

2. Problem
Each test case in the perl demo must be interpreted by perl. In the demo this is achieved
by the line #!/usr/bin/perl at the top of each test case file. If perl is not installed
in /usr/bin on your system, the symptoms will be the same as if the test cases are
missing.

Solution
Check that the file /usr/bin/perl exists on your system (and is executable). If it
doesn’t, you can do one of the following (the most recommended is first).
Either:

a. Install a symlink named /usr/bin/perl which points to the location of the perl
executable on your system; or:

b. Set TET_EXEC_TOOL in tetexec.cfg to the location of perl on your system.
For example, if perl lives in /usr/local/bin on your system, you would say:

TET_EXEC_TOOL=/usr/local/bin/perl

or:

c. Change the #! line in every test case to refer to the location of perl on your
system.

Needless to say, you must have perl installed somewhere on your system in order to have any
chance of running the perl demo!

Win32 systems
A Win32 system does not interpret #! in a script file. Instead, the o/s uses the file name suffix
indicate how a file should be executed. On a Win32 system the TETware execution subsystem
understands that a file with a .pl suffix should be interpreted by perl. In order for this to work
it is necessary for the directory containing perl.exe to be included in the value of the PATH
environment variable.

See also

� ‘‘Execute mode processing’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.

� Users of Win32 systems should check out the section entitled ‘‘Executable files’’ in
Appendix H of the TETware User Guide.
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14. Executing a set-UID test case
This information is not applicable to Win32 systems.

Question
When I set the set-UID bit on a test case, it doesn’t change the effective user ID when the test
case is executed by tcc.

Answer
If you specify TET_EXEC_IN_PLACE=false in the execute mode configuration, tcc copies
the test case to a temporary directory and executes it from there. The act of copying the test case
changes its owner and clears the set-UID bit as well.

If you don’t specify TET_EXEC_IN_PLACE its value defaults to false, so the effect is the same.

So, if you want tcc to execute a set-UID test case, you must specify
TET_EXEC_IN_PLACE=true in the execute mode configuration file.

If there is some reason why you don’t want to execute test cases from the source directory, you
can specify an alternate execution directory and have tcc execute them from there.

See also

� ‘‘Directory structure’’, ‘‘Execute mode processing’’ and ‘‘Configuration variables which
modify TETware’s operation’’ in the TETware Programmers Guide.

� ‘‘Environment variables’’ in the TETware User Guide.
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15. How to get the standard error from an API-
conforming test case to appear in the journal

Question
I have a number of tests where the test program writes to stderr. I would like this information
to appear in the journal file. I have been unable to achieve this using the
TET_OUTPUT_CAPTURE settings. So I have resorted to redirecting stderr to a file and
running a small program which reads in each line of the file and calls the function
tet_infoline().

Is there a better way to achieve this?

Answer
It is possible to instruct tcc to capture stdout and stderr from a test case and copy it to the
journal. When using this functionality, it is helpful to understand the interaction between the
TET_OUTPUT_CAPTURE and TET_API_COMPLIANT configuration variables.

You can run your test case with TET_OUTPUT_CAPTURE=true in the execute mode
configuration. When you do this, tcc will execute test cases with output capture mode enabled.
However, setting TET_OUTPUT_CAPTURE=true also has the effect of providing a default
value of TET_API_COMPLIANT=false. So if your test case uses the API, you will need to
set TET_API_COMPLIANT=true explicitly, otherwise you won’t get any information lines or
result lines in the journal.

See also

� ‘‘Execute mode processing’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.
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16. How to run a distributed test case which reboots
one of the systems

The information in this article is not presented as a complete solution but might be helpful to
someone who is attempting to solve a similar type of problem.

Question
We are using TETware 3.2 for running distributed tests on UNIX systems using the :remote:
directive. For example: :remote,000,001,002: where 000 is the master and 001, 002 are
two other systems participating in the distributed test.

We have a requirement where we need to shutdown one of the systems that is running the test.

1. Will tcc on the master system hang or report ER_TIMEDOUT or any such messages
because one of the systems is shutdown?

Can the other systems and master continue to run the test?

2. Is it possible for the system to re-join the test if it is rebooted again?

3. Assuming I don’t include the sysid in a call to tet_remsync() after the system is
shutdown, will there be problems with the automatic sync calls that are performed by the
API?

Answer
First some background . . .
tcc maintains a connection with tccd on each system for the lifetime of the scenario. The test
case on each system has a connection to tetsyncd and tetxresd on the master system.

The precise behaviour that you will observe depends on what TCP/IP does when the machine at
the other end shuts down. If the machine that is shutting down closes the connections in an
orderly way (as would happen in a normal shutdown), then the connected peers will get
notification of the close in the normal way (EOF on read, SIGPIPE on write). Each process
(tcc, tetsyncd, tetxresd) that sees a connection close will regard this as an error condition
and will take appropriate action. In the case of tetsyncd, subsequent attempts by the other test
case parts to perform sync operations (automatic or user-defined) will fail because when the
connection closes, tetsyncd marks the system’s sync state as DEAD.

By contrast, if the connections are not closed in an orderly way (as can sometimes happen when a
machine crashes), the connection will simply hang for some period of time. Synchronisation
requests will time out, but other connections will wait indefinitely for something to happen to the
connection.

Now, to answer your questions . . .

1. The other systems will not be able to continue to run the test. Test cases on the other
systems will fail with an error condition at the next automatic sync point.

2. It is not possible for the system to re-join the test after it has rebooted. Since TCP is used
for the inter-process connections (which is stateful), there is no way to restore the
connection after a reboot.

3. The automatic sync calls will fail after one of the systems is rebooted. There is no
mechanism for deleting a participating system from an autosync event part-way through a
test case’s execution.
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So, if you want to reboot (say) system 2, you should not include system 2 in the system list that
you pass to the :remote: directive.

Perhaps you could try the following:

a. Instead, you can call tet_remexec() from a child process on system 1. When you do
this, the API in the child process will set up its own connection to system 2. This will
prevent the API in your test case from retaining state information about system 2. Be sure
to do nothing in the parent process which would cause the API to connect to system 2
before you call tet_remexec() from the child. (Basically this means not calling
tet_remexec() or tet_remtime() with a sysid argument of 2 from the parent.

b. To create a child process, simply call tet_fork() with a NULL parentproc
argument and then call tet_remexec(2, . . .) from the childproc function. (You
should specify a zero validresults argument and a suitably short timeout — say 30
seconds.)

c. By the time that tet_remexec() returns, the remote process will have started. So you
can then immediately call tet_exit() from the child process on system 1. (The child
process should exit with zero status if tet_remexec() succeeded and non-zero if
tet_remexec() failed.) This will log off all the connected servers (in particular: the
tccd on system 2) and exit. At this point the call to tet_fork() will return in the
parent on system 1. The return value of tet_fork() will indicate whether or not the call
to tet_remexec() was successful in the child.

d. Now you must make sure that the remote process on system 2 waits for the child process on
system 1 to exit. Note that when the child process on system 1 exits, it will log off tccd
on system 2 first. When tccd sees the logoff it will send a SIGHUP signal to the un-
waited-for process that was started by tet_remexec(). So you should be sure to ignore
SIGHUP in this process. You will need to wait until the child process on system 1 exits
(thus closing the connection to tccd). Then call tet_logoff() to close the
connections back to the tetsyncd and tetxresd servers on the master system. Finally
you can call reboot() to reboot system 2.

You will need call tet_remsync() at various times so as to ensure that all this happens in the
correct order.

Page 34 19th November 1999
The Open Group



TET3-KB-1.1 Test Environment Toolkit
TETware Knowledge Base

The order of events will look something like this. Events that are synchronised are connected by
←→.

System 1 System 2������������������������������������� �������������������������������������
Create a child process using tet_fork()
with a NULL parentproc and zero
validresults
(parent blocks in tet_fork() call,
waiting for child to exit)

In child process������������������������������������

←→Call tet_remexec() to launch a remote
process on system 2 that will reboot the
system

tccd forks and execs the remote process

←→tet_remexec() returns
(if tet_remexec() returns −1, don’t
sync but print a diagnostic and call
tet_exit(1))

Remote process controller calls
tet_main()

In remote process������������������������������������

Call signal(SIGHUP, SIG_IGN)

Sync with system 2 to syncpoint N ←→ Sync with system 1 to syncpoint N+1
(sync call returns) (sync call blocks)

←→Call tet_exit(0)
(child logs off tccd on system 2 and exits)

(tccd sends SIGHUP to remote process
which is ignored — process stays blocked in
sync call)

(call to tet_fork() returns in parent —
if child exit status is non-zero this means
that tet_remexec() has failed so give
up; the API has already reported
UNRESOLVED in this case)

Parent process continues������������������������������������

Sync with system 2 to syncpoint N+1 ←→ (sync call returns)

Sleep a bit — wait for system 2 to call
reboot()

Call tet_logoff()
(no more API calls are allowed after this
point!)

Call reboot()
(remote process and tccd get killed as
system 2 goes down)������������������������������������������������������������������������

Enter the ping/sleep loop — wait for
remote system to come back up again
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System 1 System 2������������������������������������� �������������������������������������
←→ping loop ends System restarts — a new instance of tccd

becomes available once the system comes
up multi-user

Sleep a bit — wait for system 2 to come up
multi-user

etc . . .Call tet_remexec() to launch a
different remote process on system 2; this
time, call tet_remwait() to wait for the
remote process to terminate

Footnote
This suggestion was offered speculatively and had not been tried out at the time of writing. But a
subsequent message from the recipient indicated that a strategy based on this suggestion had in
fact been successful.

See also

� The descriptions of tet_fork(), tet_remsync(), tet_remexec(),
tet_exit() and tet_logoff() in Chapter 8 of the TETware Programmers Guide.

� ‘‘Distributed TETware architecture’’ and ‘‘TETware programs’’ in the TETware User
Guide.
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17. How to link the tet_main() function when using
the C++ API

Question
When I build a child process that contains a tet_main() function, I get the following error
messages when from the link stage. I am using MSVC++ version 5.0 on Windows NT.

Linking...
libapi.lib(child.obj) : error LNK2001: unresolved external
symbol _tet_main
Debug/x.exe : fatal error LNK1120: 1 unresolved externals
Error executing link.exe.

x.exe - 2 error(s), 18 warning(s)

My program heading looks like this:

int tet_main(int argc, char **argv)
{

.....
}

Answer
When you use the C++ API, your tet_main() function should have C linkage in order to
enable the linker to resolve the symbol correctly. In a C++ program you give a function
C linkage by putting it inside an extern "C" code block.

For example:

extern "C" {

int tet_main(int argc, char ** argv)
{

// whatever you want here
}

}

See also

� ‘‘The C++ API’’ in the TETware Programmers Guide.
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18. Problems with SIGCHLD in the Perl API
This information is not applicable to Win32 systems.

Question
When executing a perl API test, I’m running into problems with the TCM and SIGCHLD when I
invoke other processes via the perl system() call. After the system() function completes,
the test aborts due to receipt of the SIGCHLD signal.

I tried adding @tet’sig_ignore(18) to my code, but apparently SIGCHLD is considered an
uncatchable signal by tcm.pl.

Answer
This is correct — if a TCM catches SIGCHLD it can’t reap child processes correctly (as you have
observed).

The setting up of the signal lists in the perl API is performed by a configuration script when the
API is installed. By default, the TCM catches all the signals not in the special signal list. One
reason for the behaviour that you have observed might be that some problem during installation
has prevented the list from being set up correctly. Or you might be using a copy of the perl API
that has been configured for use on another machine where SIGCHLD has a different numerical
value.

You should try reinstalling the perl API from the source and configuring it on your machine.

See also

� ‘‘Building TETware’’ in the TETware Installation Guide for UNIX Operating Systems.
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19. How to handle POSIX signals in a C language test
case

This information is not applicable to Win32 systems.

Question
I’m using the C API to port some legacy test code to TET. The code issues a signal 14
(SIGALRM) during normal execution and this is trapped by the TCM, terminating the test
prematurely.

I’ve tried setting TET_SIG_IGN=14 and TET_SIG_LEAVE=14 in the execute mode
configuration but the TCM tells me this is an illegal entry. Are there any workarounds?

Answer
SIGALRM is a standard signal; that is: a signal whose behaviour is defined by POSIX. The
TCM does not permit the handling of standard signals to be altered by the configuration variables
that you mention because the way that such signals are to be handled is considered to be a matter
for the test suite author rather than for the user.

If you want to change the TCM’s default signal handling in a particular test purpose function, you
can add code to change the signal’s disposition in the function itself. This is the preferred
solution — it enables each test purpose function to be self-contained and not rely on the
execution (or non-execution) of a previous test purpose function.

Alternatively you can change the signal’s disposition in the test case startup function, then set the
API’s global variable tet_nosigreset to a non-zero value in the startup function. When you
do this, the TCM does not reset the dispositions of signals before it calls each test purpose
function and so these dispositions remain unchanged (by the TCM, at least) throughout the life of
the test case.

See also

� The descriptions of tet_nosigreset, TET_SIG_IGNORE and TET_SIG_LEAVE in
Chapter 8 of the TETware Programmers Guide.

� ‘‘The Test Case Manager’’ in the TETware Programmers Guide.
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20. How to create multiple processes using
tet_fork()

This information is not applicable to Win32 systems.

Question
I have a need to fork multiple process. After forking multiple processes, the parent should wait
for all these processes.

Typically my code should like this:

for (i = 0; i < 10; i++) {
if ((pid = fork()) == 0)

child_func();
}

for (i = 0; i < 10; i++) {
waitpid(.......);

/* check for the child’s return status... */
}

. . .

If I use fork() I am not able to use API functions in the child processes. If I use
tet_fork() I cannot create more than one child process at once. Is there any way to do this?

Answer
You can do this using recursive calls to a (*parentproc)() function.

For example:

#include <stdlib.h>
#include <tet_api.h>

void (*tet_startup)() = TET_NULLFP, (*tet_cleanup)() = TET_NULLFP;
static void tp1(), tp1_child(), tp1_parent();

struct tet_testlist tet_testlist[] = {
{ tp1, 1 },
{ TET_NULLFP, 0 }

};

static int tp1_fcount;
static int testfail;

static void tp1()
{

testfail = 0;

tp1_fcount = 0;
tp1_parent();

if (!testfail)
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tet_result(TET_PASS);
}

static void tp1_parent()
{

int level;
void (*parentproc)();

if ((level = ++tp1_fcount) < 10)
parentproc = tp1_parent;

else
parentproc = TET_NULLFP;

(void) tet_printf("about to call tet_fork(): level = %d", level);
if (tet_fork(tp1_child, parentproc, 30, 0) < 0) {

/* API prints an infoline and generates a result */
testfail++;

}
else

(void) tet_printf("tet_fork() succeeded, level = %d", level);
}

static void tp1_child()
{

(void) tet_printf("in child process, PID = %d", getpid());
tet_exit(0);

}

Question
How to I extend this example to an arbitrary number of child processes without creating an
infinite number of stack frames?

Answer
This is a rather different situation.

You can call tet_fork() with a waittime of −1. In this case, the API does not wait for the
child process and the validresults argument is ignored.

When this feature is used, the parentproc function is supposed to wait for the child. If the
child is still running when the parentproc function returns, the API kills the child process. So
you have to fool the API by providing a dummy child for it to kill; that way your child process is
still running when tet_fork() returns. The dummy child process must not call any API
functions.

Then it is your responsibility to make sure that you have waited for all the child processes to exit
before the test purpose returns control to the TCM.
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For example:

#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <tet_api.h>

void (*tet_startup)() = TET_NULLFP, (*tet_cleanup)() = TET_NULLFP;
static void tp1(), tp1_child(), tp1_parent();

struct tet_testlist tet_testlist[] = {
{ tp1, 1 },
{ TET_NULLFP, 0 }

};

static int testfail;
static pid_t child_pid;

void tp1()
{

testfail = 0;

for (;;) {
/*
** you will need some code here to wait for some event
** and/or break out of the loop
*/
tet_infoline("parent: about to call tet_fork()");
if (tet_fork(tp1_child, tp1_parent, -1, 0) < 0) {

/* API prints a diagnostic */
testfail++;
break;

}
(void) tet_printf("parent: child PID = %d", child_pid);

}

/*
** you must ensure that all the child processes have exited
** at this point
*/

if (!testfail)
tet_result(TET_PASS);

}

static void tp1_parent()
{

int pid;

/* create a dummy child for the API to kill */
switch (pid = fork()) {
case 0:

/* child must not call any API functions */
(void) signal(SIGTERM, SIG_DFL);
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pause();
_exit(0);
break;

case -1:
/* real trouble here - the only safe thing to do is to

exit from the test case */
(void) tet_printf("fork() failed, errno = %d", errno);
tet_exit(1);

}

/* arrange for the API to kill the dummy child instead of the
childproc function */

child_pid = tet_child;
tet_child = pid;
return;

}

static void tp1_child()
{

(void) tet_printf("in child process, PID = %d", getpid());

/* whatever you want here */

tet_exit(0);
}

Not that this example does not contain any code to wait for the child processes, or to cause the
main loop to end. So if you compile and run the code as it stands, you will run out of processes at
some point.

See also

� ‘‘Generating and executing processes’’ in Chapter 8 of the TETware Programmers Guide.
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21. Porting Korn Shell arithmetic expressions from
UNIX to Win32 systems

Question
I have ported a Korn Shell test case from a UNIX system to a Win32 system. When I run the test
case it prints the following message:

i+=4: tp4: d:/TET/tet32/lib/ksh/tcm.ksh 678: .: create.ksh 83: not found

The file is indeed present:

-rwxrwxrwa 1 Administrators ENG-NT\staff \
18341 Jul 30 1997 d:/TET/tet32/lib/ksh/tcm.ksh

Answer
I don’t think that the problem is to do with the shell not being able to find tcm.ksh.

I think that you have to read the diagnostic backwards like this:

create.ksh line 83 calls tcm.ksh
tcm.ksh line 678 calls function tp4
tp4 calls i+=4
shell reports command not found

This suggests that the shell is interpreting the line i+=4 as a command whereas I expect that you
intended it to be an arithmetic expression. This is because the MKS Shell is a POSIX shell and
doesn’t support the Korn Shell extensions by default. In the Korn Shell, you can say:

(( i+=4 ))

which is the same as saying:

let "i+=4"

But in the POSIX shell, (( i+=4 )) simply runs the command i+=4 in a subshell.

One way to write an arithmetic expression that is portable between the Korn Shell on UNIX
systems and the MKS Shell on Win32 systems is:

: $(( i += 4 ))

Or you can say:

case ‘uname -s‘ in
Windows_NT|Windows_95)

set -K
;;

esac

to get Korn Shell behaviour from the MKS Shell on Win32 systems.
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22. Running tccd from the command line
This information is not applicable to Win32 systems.

Most modern UNIX systems support inetd so most people will build the inetd version of tccd
(the Test Case Controller daemon). However, there are some situations where it is required to
run tccd from the command line. If you need to do this for some reason it is best to build the rc
version of tccd. Some hints about how best to do this are presented in this article.

When you run tccd from the command-line, it inherits all your environment variables. This can
result in test cases being influenced by your environment in a way that can’t be repeated on
someone else’s system. This can cause a lot of trouble if you develop a test suite that works OK
for you, but fails in various ways when you ship it to a customer. In order to ensure that you
don’t fall in to this trap when developing a test suite, it is necessary to start tccd with a known
clean environment.

You can use the env command to do this, and put the correct invocation in a shell script.

For example:

#!/bin/sh
exec env - PATH=$PATH TZ=$TZ . . . tccd [options . . .]

The − argument to the env command cleans out the environment for the command to be
executed. Then you should specify just the list of environment variables that you actually need to
run test cases.

This issue is less of a problem when starting tccd on the local system (system 0) because tcc
sends all of its environment to tccd on system 0 when it logs on. But it is important to run
tccd in a known environment on remote systems, because in this case the environment is not
sent. In the past a number of people have been caught out by not taking care of this issue when
starting tccd from the command-line.

If you run tccd as yourself, it will be unable to change its user ID to tet. This results in an
error message in the /tmp/tccdlog file. However, tccd will still run (using your user ID)
provided your user ID and group ID are each >= 100.

You can use the command:

tccd -u your-login-name

if you want to avoid the error message being printed.

See also

� ‘‘Starting tccd’’ in the TETware Installation Guide for UNIX Operating Systems.

� The tccd manual page in the TETware User Guide.
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23. How to determine the value of an XTI address
string

This information is not applicable to Win32 systems.

Most modern UNIX systems provide support for the socket network interface. Most people will
build Distributed TETware to use the socket network interface and so don’t need to be concerned
about XTI addresses. The information presented in this article might be useful if you have to set
up Distributed TETware to use the XTI network interface for some reason.

Where does TETware use an XTI address string?
When Distributed TETware is built to use the XTI network interface you have to specify an XTI
address string in the following places:

1. tccd must be invoked with a −p option which tells it on which network end point to
listen.

2. For each entry in the systems file you must provide a third field that specifies the XTI
address that can be used to connect to tccd on that system.

XTI address strings
An XTI address string consists of a sequence of 2-digit hexadecimal values. When TCP is the
transport provider, these values often represent a dump of a sockaddr_in structure which
describes the network address.

For example, consider the following definitions taken from <netinet/in.h> on a
hypothetical machine:

struct in_addr {
unsigned long s_addr;

};

struct sockaddr_in {
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Suppose that on this machine:

— a short is 16 bits wide

— a long is 32 bits wide

— structure members are aligned on 2-byte boundaries (so there will be no padding between
members in the sockaddr_in structure)

It can be seen that the format of an XTI address string on this machine will be:
FFFFPPPPAAAAAAAA0000000000000000

where FFFF is the address family (in host byte order) PPPP is the port number (in network byte
order) and AAAAAAAA is the IP address (also in network byte order).
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tccd -p option
In most cases you want tccd to accept connections on all network interfaces, so you need to
specify the IP address as INADDR_ANY (value zero on many systems).

Suppose that:

— the byte order of the machine is high byte first (big-endian)

— you decide to use port 7500 as the well-known port

— the name of the transport provider is /dev/tcp

You would invoke tccd as follows:

tccd -p 00021d4c000000000000000000000000 -M TCP -P /dev/tcp [other-options . . .]

This XTI address string can be read as follows:

0002 The address family (AF_INET — value 2 on many systems)

1d4c The port number to listen on (7500 decimal is 0x1d4c hex)

00000000

The IP address to use (INADDR_ANY — value zero on many systems)

0000000000000000

Zero-filled padding (char sin_zero[8])

Note that the IP address and port number are in network byte order. So on a little-endian
machine the only thing that changes is the address family. For example:

tccd -p 02001d4c000000000000000000000000 -M TCP -P /dev/tcp [other-options . . .]

systems file
The XTI address in a systems file entry is constructed in the same way as for tccd except it is
necessary to specify a real IP address instead of INADDR_ANY. Foe example, suppose you
decide to use a machine called fred as system 1. The IP address of fred is 89.0.173.24 and
tccd is listening on port 7500. The systems file entry would look like this:

001 fred 00021d4c5900ad180000000000000000

This XTI address string can be read as follows:

0002 The address family (AF_INET — value 2 on many systems)

1d4c The port number to listen on (7500 decimal is 0x1d4c hex)

5900ad18

The IP address to use (89.0.173.24 is 0x5900ad18 hex)

0000000000000000

Zero-filled padding (char sin_zero[8])
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See also

� ‘‘Systems definitions’’ in the TETware Programmers Guide.

� The systems and tccd manual pages in the TETware User Guide.
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24. Variable types used in TETware
TETware uses the following types of variables:

1. Environment variables.
These are variables that are read from the environment when tcc is invoked.

2. Configuration variables.
These are variables read from configuration files that you must provide.

3. Communication variables.
These are variables that tcc puts in the environment when it executes a test case or tool.

These types of variable are logically distinct. In particular, it should be understood that
configuration variables and environment variables are not the same.

Configuration variables
These variables are used by tcc and may also be accessed by API-conforming test cases and
tools. When the C API is used, configuration variables may be accessed by calling the
tet_getvar() API function. When the Shell or Korn Shell API is used, the TCM makes
configuration variables available as readonly shell variables but does not export them.

In Distributed TETware it is possible to define configuration variables with different values on
different systems.

Distributed configuration variables
As with configuration variables, the Distributed tcc reads distributed configuration variables
from a file that you must provide. However, the APIs do not make distributed configuration
variables available to test cases and tools.

Communication variables
These are environment variables that tcc uses to pass information to TCMs. They can be
accessed by test cases and tools but should not be modified since the operation of the APIs
depend on them.

See also

� ‘‘Communication variables’’ and ‘‘Configuration files’’ in the TETware Programmers
Guide.

� ‘‘Environment variables’’ in the TETware User Guide.

� The tcc manual page in the TETware User Guide.
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25. Displaying scenario trees with tetscpp
There is a useful program that you can build which shows you how the tcc scenario parser
interprets a scenario file. It is not part of the official TETware release (and therefore is not
supported) but it enables you to look at the scenario tree without having to go to the trouble of
getting tcc to execute the scenario and then digging around in journal and debug output.

The program is called tetscpp and can be built in the tcc source directory.

To build this program:

cd $TET_ROOT/src/tet3/tcc
make tetscpp

The syntax of tetscpp is as follows:

tetscpp [−P] [−c compat-mode] [−o output-file] [−r] [−s scenario]
[−t tabwidth ] [−y string] [−n string] [files . . .]

tetscpp reads scenarios from the named files . If no files are specified, tetscpp reads
scenarios from the standard input.

The following options are understood:

−P Do not emit cpp-style line control directives.

−c compat-mode Select compatibility mode.
compat-mode should be one of d (for dTET2 mode) or e (for ETET mode).

−o output-file Leave the output in the specified output-file instead of printing it on the
standard output.

−r Include scenario reference numbers in the output.

−s scenario Parse the specified scenario instead of the one named all.

−t tabwidth Specifies the width of a tab when indenting output.
Defaults to 4 spaces.

−y string
−n string Meanings are the same as for tcc.

In addition, trace options may be specified using −T in the usual way. When the tet_Tscen
flag (flag indicator p) is non-zero, the output includes the address of the scentab element from
which each output line is derived. (Trace options are described in the appendix entitled ‘‘Trace
and debugging facilities’’ in the TETware User Guide.)

tetscpp does not have a concept of a test suite root directory, so its handling of scenario
include files is rather primitive. If a scenario contains an include file name, tetscpp simply
interprets the name relative to its current working directory.
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Example 1
Here is the scenario from the distributed demonstration test suite that is described in the TETware
Programmers Guide:

all
"starting scenario"
:remote,000,001:
/ts/tc1
/ts/tc2
"next is the last test case"
/ts/tc3
:endremote:
"done"

The following output is generated when this scenario is processed by tetscpp -P:

scenario("all")
{

sceninfo("starting scenario");
remote(0, 1)
{

testcase("/ts/tc1", "all");
testcase("/ts/tc2", "all");
sceninfo("next is the last test case");
testcase("/ts/tc3", "all");

}
sceninfo("done");

}
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Example 2
Consider the following two scenarios. At first inspection they appear to be different but analysis
with tetscpp shows that tcc would process them in exactly the same way.

Scenario 1:

all
:timed_loop,18000:

:parallel:
:repeat,10:

/tset/test1/tc1
/tset/test2/tc2
/tset/test3/tc3

:endrepeat:
:repeat,30:

:random:
/tset/test4/tc4
/tset/test5/tc5
/tset/test6/tc6
/tset/test7/tc7

:endrandom:
:endrepeat:

:endparallel:
:endtimed_loop:

Scenario 2:

all
:timed_loop,18000:ˆloop1

loop1
:parallel:ˆlist1

loop2
:repeat,10:ˆlist2

loop3
:repeat,30;random:ˆlist3

list1
ˆloop2
ˆloop3

list2
/tset/test1/tc1
/tset/test2/tc2
/tset/test3/tc3

list3
/tset/test4/tc4
/tset/test5/tc5
/tset/test6/tc6
/tset/test7/tc7
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The way that tcc would process either of these scenarios can be shown by executing the
following command:

tetscpp -Pce scenario-file

The output from tetscpp is as follows:

scenario("all")
{

timed_loop(18000)
{

parallel(1)
{

sequential()
{

repeat(10)
{

testcase("/tset/test1/tc1", "all");
testcase("/tset/test2/tc2", "all");
testcase("/tset/test3/tc3", "all");

}
}
sequential()
{

repeat(30)
{

random()
{

testcase("/tset/test4/tc4", "all");
testcase("/tset/test5/tc5", "all");
testcase("/tset/test6/tc6", "all");
testcase("/tset/test7/tc7", "all");

}
}

}
}

}
}

See also

� ‘‘The scenario file’’ in the TETware Programmers Guide.
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26. Writing a new API
Question
One of the requirements that I have is to create an API for an internal language we have
developed. Can you suggest what are the requirements for creating such an API? The API will
allow for remote execution, but distributed execution is not required. Do you have any pointers?
What is the magnitude of such an effort?

Answer
When you create a new API for TETware, the first thing to consider is: Can the new API
language be linked to C?

If the answer is Yes, then the task is a relatively simple one. You can provide a glue layer
between the new language and the existing C TCM and API library. When you define the way in
which test cases are to be called by the TCM, you will probably need to use the dynamic test case
interface that is described in Chapter 8 of the TETware Programmers Guide. (If you go down
this route, be sure not to use unpublished interfaces in the C TCM or API since these can and do
change between TETware releases!)

However, if the answer is No, there is a little more work to do. You have to implement your own
TCM and API library. If your language is an interpreted one it is probably best to use the
(Bourne) Shell API as a starting point. You can find the source code for this below the directory
src/xpg3sh/api in the TETware distribution.

If you want to see an example of how the Shell API is used, check out the Shell API
demonstration test suite which is below the contrib/SHELL-API directory in the contrib
distribution.

Now some hints as to how to approach the task . . .

1. Interface between tcc and the test case.

a. Command-line arguments.
tcc passes a list of Invocable Components on the command line. Your TCM should
use this list to decide which test purpose functions to call. You should be prepared to
accept zero or more arguments. Each argument might be:

— an invocable component number;
— a range of invocable component numbers (that is: two numbers separated by a

hyphen);
— the word all (meaning all invocable components in the test case);
— a comma-separated list of any of these.

If no arguments are passed on the command line, your TCM should behave as if all
had been specified. If the word all follows a number or a number range, it means
‘‘all the ICs in the test case beyond the last one specified’’.

Your TCM should allow for the possibility that an IC might be specified more than
once on the command line.

b. Environment variables.
tcc passes certain information to the test case in the environment. Check out the
section entitled ‘‘Communication variables’’ in the TETware Programmers Guide.
In particular, you will need to make use of TET_ACTIVITY, TET_CODE and
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TET_CONFIG. You may also need to use TET_ROOT, depending on how your
language works.

However, it is also possible for your test case to be invoked directly by a user, so you
should allow for the possibility that these environment variables are not set. Look at
the Shell API to see how it handles this situation.

c. Current working directory.
When tcc executes a test case, it does so in the test case execution directory. The
precise location of this directory depends on the settings of certain configuration and
environment variables. So you should not make any assumptions about the current
working directory when the test case is executed.

d. Execution results file.
The TCM should create a results file called tet_xres in the directory in which it is
invoked. tcc reads journal lines from this file when the test case exits.

e. TCM exit status.
Your TCM should exit with a zero status value if no errors occur. If a fatal error
occurs you should print a Test Case Manager message describing the problem to the
execution results file and exit with a +ve status value.

2. API functions.
As far as possible, your API should (at least) provide functionality of each type that is
described in Chapter 11 of the TETware Programmers Guide. Depending on the
capabilities of your language, you may need to provide explicit functions to implement the
things that the Shell does of itself — these things are described in the last few subsections
of Chapter 11. You can refer to the corresponding sections in Chapter 8 for more
information if necessary.

One point to note — the description of the Shell version of tet_reason says that the
function ‘‘prints a string on the standard output’’. This is because that is the way for a
shell function to return a string; the string is picked up in the calling function by using
backquotes. When you implement this function in your language, you will probably just
want to return the string to the caller.

3. Journal lines.
These are described in Chapter 13 of the TETware User Guide and in Appendix C of the
TETware User Guide.

a. Format.
Your API should format and print these lines to the tet_xres file. Be sure to
format each line correctly; before printing the line you need to:

— translate embedded newlines to tabs;

— strip trailing white space;

— ensure that the line does not exceed 512 characters.

b. Line types generated by an API.
Your TCM and/or API should generate the following lines at the appropriate times:

� Test Case Manager Start
� Test Purpose Start
� Test Purpose Result
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� Invocable Component Start
� Invocable Component End
� Test Case Manager Message
� Test Case Information

All the other line types are generated by tcc — they should not be generated by
your API.

c. Test purpose results.
You should ensure that each test purpose only generates one Test Purpose Result
line, no matter how many times your tet_result function is called from each test
purpose. See how the Shell API handles this.

See also

� ‘‘Testing structure’’ in the TETware Programmers Guide.

� ‘‘The Test Case Manager’’ in the TETware Programmers Guide.

� ‘‘The C API’’ and ‘‘The Shell and Korn Shell APIs’’ in the TETware Programmers Guide.

� ‘‘Writing a Shell language API-conforming test suite’’ and ‘‘Example Shell API test suite
source files’’ in the TETware Programmers Guide.

� ‘‘Running the TETware demonstrations’’ in the TETware User Guide.

� ‘‘Test reporting and journaling’’ in the TETware Programmers Guide.

� ‘‘TETware journal lines’’ in the TETware User Guide.
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27. Error message: tetsyncd: client
connection closed

Question
I am running Distributed TETware. I have a test case that causes the following message to
appear on tcc’s standard error stream:

tetsyncd (syncd.c, 225): client connection closed \
(sysid = 0, pid = 5749: MTCM)

Why does this occur?

Answer
This is a warning message. It means that a process has exited without first logging off from
tetsyncd (the Synchronisation daemon). I expect that you will see a similar message
generated by tetxresd as well. (tetxresd is the Execution Results daemon.)

The messages show that the process concerned (pid = 5749) is a Test Case or Child Process
(MTCM) running on the local system (sysid = 0).

There are two cases to consider:

1. Test case:
Usually these messages mean that the test case has terminated abnormally.

2. Child process:

— The process has called one of the exec() calls.
— The process has exited by calling exit().
— The process has terminated abnormally.

You will need to check the process ID to see whether the process in question is a test case or a
child process. If each process prints something to the journal, you can read the process ID from
the last five digits of the journal context number.1 (This is the 3rd subfield in the 2nd field of a
line type 520.)

If you determine that the messages are generated as a result of the behaviour of a child process,
you will need to see if it is calling one of the exec() or exit() system calls directly.

Any process that uses the API is supposed to log off the servers before exiting. It doesn’t really
matter if they don’t do this — the servers still behave correctly when the connection goes down
unexpectedly — but the warning messages are generated so as to inform you that something
unexpected has occurred.

In the case of a child process, the API logs off the servers if the process terminates by returning
from tet_main(). But if you want to terminate the process by calling exit(), you should
call tet_exit() instead. Finally, if the child process overlays itself by a call to one of the

����������������
1. This is not entirely true on a Win32 system. Sometimes more than five digits of context information can appear and

the context number in a child process is not usually the same as the process ID. For information about context
numbers on Win32 systems, refer to the section which describes context numbers in the appendix entitled
‘‘Implementation notes for TETware on Win32 systems’’ in the TETware User Guide.
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exec() family of system calls, it should call tet_logoff() first.

See also

� The descriptions of tet_exit() and tet_logoff() in ‘‘The C API’’ in the TETware
Programmers Guide.
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28. tccd can’t execute make on a remote system
The information in this article is applicable to Distributed TETware.

Question
When I try to build test cases on a remote system, the following error message appears in the
journal:

110|1 /ts/tc2 15:48:07|Build Start, scenario ref 4-1
50||(exec.c, 136): can’t exec make on system 001, \

server reply code = ER_NOENT
130|1 -1 15:48:08|Build End, scenario ref 4-1

It seems that make can’t be executed on the remote system.

Answer
tccd uses the PATH environment variable to locate commands in the usual way. On a remote
system (that is: a system with a non-zero system ID), the value of PATH is inherited from
inetd. Typically this is set to something like /bin:/usr/bin. If make doesn’t live in one
of those places, tccd can’t find it and prints an error message to this effect.

For example, on Solaris systems, make usually lives in /usr/ccs/bin and the compiler lives
in a directory such as /opt/SUNWspro/bin. Clearly these locations are not included in the
value of PATH that tccd inherits from inetd.

You can use the −e command-line option to pass a different value of PATH to tccd. For
example, on a Solaris system you might modify the tccd entry in /etc/inetd.conf to look
something line this:

tcc stream tcp nowait tet tet-root/bin/in.tccd \
in.tccd -e PATH=/usr/bin:/usr/ccs/bin:/opt/SUNWspro/bin

See also

� The tccd manual page in the TETware User Guide.

� ‘‘Starting tccd’’ in the TETware Installation Guide for UNIX Operating Systems.
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29. Does in.tccd source .profile on a remote
system?

The information in this article is not applicable to Win32 systems.

Question
It doesn’t look like in.tccd sources the .profile of the tccd user. Is this the case?

Answer
Yes. Since in.tccd is not the child of a login shell, environment variables set in a .profile
or .login file are not passed to in.tccd.

You can invoke in.tccd from within a shell script wrapper if you need this kind of processing.
However, if you invoke in.tccd from a wrapper, you must ensure that nothing in the shell
script touches the standard input. This is because inetd passes the client connection to
in.tccd on the standard input.

See also

� ‘‘tccd versions and modes of operation’’ in the TETware User Guide.

� ‘‘Starting tccd’’ in the TETware Installation Guide for UNIX Operating Systems.

� The tccd manual page in the TETware User Guide.
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30. ER_ERR — the general error code
The architecture used by both TETware-Lite and Distributed TETware consists of several layers.
Since Distributed TETware uses a client-server architecture, some of these layers are
implemented in client processes whereas other layers are implemented in server processes.

When an error condition occurs, diagnostic messages can be generated by more than one of these
layers. Many of these messages are accompanied by a ‘‘server reply code’’ which contains
additional information about the cause of the error. Whenever the server reply code is ER_ERR,
a more detailed error message will have been generated by a lower-level function. In Distributed
TETware this more detailed error message can often be found in the tccd log file, which is the
place where tccd logs its diagnostic information. The default location for this file is
/tmp/tccdlog on a UNIX system or c:/tmp/tccdlog on a Win32 system.

Therefore, when Distributed TETware is used, whenever a Test Case Controller or Test Case
Manager message appears in the journal which includes an ER_ERR mnemonic, it is often
necessary to look at the tccdlog file in order to determine the cause of the error.

See also

� ‘‘Server reply codes’’, ‘‘tccd log file’’ and the tccd manual page in the TETware User
Guide.
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31. How to use the dynamic test case interface in the
C API

Suppose you have a test case that contains 100 Test Purpose functions.

You must first decide how your Test Purpose functions are to be distributed between the
Invocable Components in your test case. (Recall that a test case contains one or more ICs and
that each IC can contain one or more TPs; thus an IC is a logical grouping of TP functions.) The
simplest way is probably to allocate one TP to each IC. In this case, your test case will contain
100 ICs, numbered 1 to 100. Each IC will contain a single TP.

The TCM uses the interface functions to find out how your test case is organised. First, the TCM
calls tet_getminic() and tet_getmaxic() to determine the IC numbers of the lowest
and highest IC, respectively. If your test case contains ICs 1 to 100, you would define these
functions as follows:

int tet_getminic(void)
{

return(1);
}

int tet_getmaxic(void)
{

return(100);
}

Then, for each IC number in this range, the TCM calls tet_isdefic() to determine whether
you have defined a particular IC. Since your test case contains all the ICs in the range 1 to 100,
you might define this function as follows:

int tet_isdefic(int icnum)
{

if (icnum >= tet_getminic() && icnum <= tet_getmaxic())
return(1);

else
return(0);

}

When the TCM is about to execute the TP function(s) in each IC, it calls tet_gettpcount()
to determine the number of TPs in each IC. Since your test case is to be organised with just one
TP in each IC, you might define this function as follows:

int tet_gettpcount(int icnum)
{

if (tet_isdefic(icnum))
return(1);

else
return(0);

}

Before the TCM executes each TP, it needs to set the global API variable tet_thistest to
the absolute test number within the test case. The TCM calls tet_gettestnum() to do this.
Since your test case is to be organised with just one TP in each IC and since the IC numbers start
at one, the absolute test number is the same as the IC number. So you might define this function
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as follows:

int tet_gettestnum(int icnum, int tpnum)
{

if (tet_isdefic(icnum) && tpnum == 1)
return(icnum);

else
return(0);

}

Finally, the TCM calls tet_invoketp() to invoke each test purpose function. Since your test
case is to be organised with just one TP in each IC, the function number to execute is the same as
the IC number. So you might define this function as follows:

int tet_invoketp(int icnum, int tpnum)
{

if (tpnum != 1) {
tet_printf("TP %d within IC %d not allowed for \

in tet_invoketp()", tpnum, icnum);
return(0);

}

switch (icnum) {
case 1:

t001();
break;

case 2:
t002();
break;

. . .

case 99:
t099();
break;

case 100:
t100();
break;

default:
tet_printf("IC %d not allowed for in tet_invoketp()",

icnum);
break;

}

return(0);
}

The diagnostic messages are not mandatory but might be useful to detect an inconsistency
between the code in tet_invoketp() and the test case layout information that is returned by
the other interface functions.
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See also

� ‘‘Test case structure and management’’ and ‘‘The Test Case Manager’’ in the TETware
Programmers Guide.

� ‘‘Test suite structure’’ in the TETware User Guide.
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32. How to run test cases in a clean environment
Question
We want to be able to run test cases without being influenced by the environment that is in effect
when tcc is invoked.

Answer
You can use a shellscript exec tool to execute the test case in a pristine environment. The tool
must take care not to remove TETware communication variables from the environment,
otherwise the TCM/API will be unable to function correctly.

For example:

#!/bin/sh
#
# exec tool which executes a test case in a known, pristine environment
#

tcname=${1:?}
shift

exec env - \
${PATH+PATH="$PATH"} \
${TZ+TZ="$TZ"} \
${TET_ACTIVITY+TET_ACTIVITY="$TET_ACTIVITY"} \
${TET_CODE+TET_CODE="$TET_CODE"} \
${TET_CONFIG+TET_CONFIG="$TET_CONFIG"} \
${TET_EXECUTE+TET_EXECUTE="$TET_EXECUTE"} \
${TET_ROOT+TET_ROOT="$TET_ROOT"} \
${TET_RUN+TET_RUN="$TET_RUN"} \
${TET_SUITE_ROOT+TET_SUITE_ROOT="$TET_SUITE_ROOT"} \
${TET_TMP_DIR+TET_TMP_DIR="$TET_TMP_DIR"} \
${TET_TIARGS+TET_TIARGS="$TET_TIARGS"} \
${TET_TSARGS+TET_TSARGS="$TET_TSARGS"} \
./$tcname $*

When a process is executed by the env(1) command with the − option, it is necessary to pass
all the required environment variables explicitly on the command line. Other variables which are
inherited by the exec tool from tcc and/or tccd are not made available to the test case.

The ${variable+word} syntax is used to avoid passing an empty variable to the test case if the
corresponding variable was not defined in the parent environment.

On some systems you may need to add other variables to the list. For example: HOME and
LOGNAME; variables that might be needed by a dynamic linking scheme such as
LD_LIBRARY_PATH, LIBPATH or SHLIB_PATH; anything to do with locales; and so forth.
Be sure to include SystemRoot on a Win32 system, otherwise the Windows Socket library
won’t work.
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See also

� ‘‘Communication variables’’ in the TETware Programmers Guide.
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33. How to copy executed commands output to the
journal

Question
I have some test cases that use the C API. As part of my test program, I need to execute a shell
script using system(). I would like the output of shell script to go into the journal file.

I tried setting TET_OUTPUT_CAPTURE=True in my tetexec.cfg file and ran the test. It
just hangs. Is there anything else that I need to do to solve this problem?

Is there any other way other than by setting TET_OUTPUT_CAPTURE?

Answer
There are a couple of ways that you can do this — a simple way where tcc does the output
capture for you, and a more complicated way where you do the output capture within the test
case.

Method 1 — have tcc do the work for you
Recall that the value of TET_OUTPUT_CAPTURE provides a default value for
TET_API_COMPLIANT. The value of TET_API_COMPLIANT must be True if your test case
uses a TETware API, otherwise tcc processes your test case as a non API-conforming test case.

So if you want to run an API-conforming test case with output capture mode enabled, you must
set both of these variables explicitly, thus:

TET_OUTPUT_CAPTURE=true
TET_API_COMPLIANT=true

When you do this, tcc captures all the output from each test case and inserts it in the journal
before any of the API-generated output from the test case. The API doesn’t indicate which
section of the output comes from each test purpose function.

Method 2 — do the output capture within the test case
If you want output from your shell script to appear in the journal between the appropriate
TP Start and TP Result lines, you will need to redirect your shell script’s stdout and stderr
to a file, then collect the contents of this file in your test code and use tet_infoline() to
print it to the journal. When you do this, you don’t need to set
TET_OUTPUT_CAPTURE=true.
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For example, the following function will do this on a UNIX system:

int system_with_capture(cmd)
char *cmd;
{

static char template[] = "/tmp/capXXXXXX";
char capfile[sizeof template];
char buf[BUFSIZ];
FILE *fp;
char *p;
int rc;

(void) strcpy(capfile, template);
(void) mktemp(capfile);

(void) sprintf(buf, "%s > %s 2>&1", cmd, capfile);
(void) unlink(capfile);
if ((rc = system(buf)) == 127 || rc == -1)

return(rc);

if ((fp = fopen(capfile, "r")) == (FILE *) 0)
tet_printf("can’t open output capture file %s, \

errno = %d", capfile, errno);
else {

tet_printf("output from \"%s\":", cmd);
tet_infoline("------------------------------------");
while (fgets(buf, sizeof buf, fp) != (char *) 0) {

for (p = buf; *p; p++)
if (*p == ’\n’)

*p = ’\0’;
tet_infoline(buf);

}
tet_infoline("------------------------------------");
(void) fclose(fp);
(void) unlink(capfile);

}

return(rc);
}

Which method you choose depends on how important it is for the captured output to be identified
with a particular test purpose function.

See also

� ‘‘Execute mode processing’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.

� ‘‘Making journal entries’’ in each chapter that describes API functions in the TETware
Programmers Guide.
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34. How to run individual Invocable Components from
the tcc command line

Question
Is it possible to instruct tcc to run individual ICs from the command line without having to
make a /tc/test1{1} type of entry in the tet_scen file? This would be really handy for
debugging parts of a test.

Answer
You can do this using tcc’s −l command-line option. When you specify a scenario line using
−l, the tet_scen file is not read (unless it is specified explicitly with the −s option).

For example:

tcc -e -l /tc/test1{1} . . .

See also

� The tcc manual page in the TETware User Guide.
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35. How to identify test case timeouts in the journal file
Question
When tcc is invoked with the −t option, the journal reports the test purpose result for a timeout
condition as NORESULT (auto-generated by TCC). How can I determine that the cause
of this failure was a test case timeout?

Answer
The fact that tcc has timed out a test case or tool is indicated by the exit status in the Build End,
Test Case End or Clean End line in the journal. The exit status appears in the 2nd subfield of the
2nd field on lines of type 130, 80 and 320. A timeout is indicated by a value of -2 in this field.

A zero or +ve exit status in the End line comes from the test case or tool, while -ve exit status
indicates some condition that is reported by tcc. Your report writer should examine this field
and generate a suitable message when the exit status value in the End line is non-zero. For the
convenience of C language report writers, symbolic constants which relate to journal values are
provided in the file tet-root/inc/tet3/tet_jrnl.h.

Users of Win32 systems are advised not to use tcc −t to time out test cases and tools.

See also

� ‘‘Journal line parameters" in the TETware Programmers Guide.

� ‘‘Test case termination’’ in the ‘‘Implementation notes for TETware on Win32 systems’’
in the TETware User Guide.

� ‘‘TETware journal lines’’ in the TETware User Guide.

� The tcc manual page in the TETware User Guide.
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36. Running different randomly selected test cases in
parallel on several systems

Question
The scenario we would like to setup takes a set of test cases, selects a random element within an
outer repeat loop. This works fine locally. But when we wrap this scenario in a :remote:
directive, what we get is the same test case being processed on all remote machines, rather than
the whole scenario being executed on all remote machines.

I want to be able to have a different (randomly selected) test case executed on each remote node.
The goal is to setup a stress test environment to simulate a lot of concurrent operations, not a lot
of simultaneous identical operations.

Answer
The behaviour that you observe is correct. Each test case within the scope of a :remote:
directive (which doesn’t include system 0) is processed on each of the specified systems at the
same time — effectively ‘‘in parallel’’.

If the :remote: directive encloses a :random: directive, the :random: directive selects a
test case, then the :remote: directive processes the test case on each of the named systems.

The trick is to push the system attribute further up the scenario tree. For example, a scenario that
looks something like this will do it:

all
:parallel:ˆsystems

systems
ˆsys1
ˆsys2
ˆsys3
ˆsys4
ˆsys5

sys1
:remote,1:ˆloop

sys2
:remote,2:ˆloop

sys3
:remote,3:ˆloop

sys4
:remote,4:ˆloop

sys5
:remote,5:ˆloop

loop
:repeat,10;random:ˆtclist

tclist
/ts/tc1/tc1
/ts/tc2/tc2
/ts/tc3/tc3
/ts/tc4/tc4
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/ts/tc5/tc5
. . .

This scenario must be run in ETET compatibility mode. (that is: set TET_COMPAT=etet in the
per-mode configuration(s)) The scenario relies on the way that tcc inserts implied sequential
directives into the tree when processing a scenario in ETET mode.

See also

� The description of the :parallel: directive in the TETware Programmers Guide.
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37. How do environment variables get passed to test
cases?

Question
When we run using TET-Lite, we pick up environment information by sourcing files specify
environment variables such as TET_ROOT, TET_SUITE_ROOT and PATH. At what point does
this information get put into the environment on the remote machine when Distributed TETware
is used?

Answer
When tcc processes a test case, it puts certain variables in the test case’s environment. These
variables are called communication variables and are used by tcc to communicate information
to the TCM and API. tcc always puts all of these variables in the test case’s environment,
supplying default values if necessary. This operation is performed by both the Lite and the
Distributed versions of tcc.

The values of some of these variables on the local system are derived from environment variables
that you provide to tcc (namely: TET_ROOT, TET_EXECUTE, TET_SUITE_ROOT and
TET_RUN). By contrast, when tcc puts communication variables in the environment of a test
case or tool on a remote system, it derives values for these variables from the values that you
specify in tetdist.cfg.

The values of other communication variables (such as TET_CONFIG and TET_ACTIVITY) are
generated internally by tcc.

In TETware-Lite, test cases and tools are children of tcc so they inherit environment variables
from tcc.

By contrast, in Distributed TETware, test cases and tools are children of tccd, so they inherit
environment variables from tccd. tcc sends a copy of its environment to tccd on system 0
(the local system) soon after logging on. This ensures that test cases and tools running on the
local system receive (almost) the same environment as they would if run by the Lite version of
tcc. (In practice, the environment inherited by test cases and tools running on the local system
is the union of tcc’s and tccd’s environment, with the values of variables supplied by tcc
having precedence over any corresponding values in tccd’s environment.)

However, tcc does not send a copy of its environment to tccd on other systems; it only sends
the communication variables as described previously. This means that the values of other
variables (such as PATH) are the ones that are in force at the time that tccd starts up (although
additional variables may be specified using the −e command-line option). In particular, the inetd
version of tccd inherits its environment from inetd, which is usually fairly minimal.

See also

� ‘‘Initial processing’’ and ‘‘Communication variables’’, both in the chapter entitled ‘‘The
Test Case Controller’’ in the TETware Programmers Guide.

� The tccd manual page in the TETware User Guide.
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38. How to process a scenario that contains test cases
that use different APIs

Question
Is it possible to define a scenario that contains test cases that use different APIs? In particular,
Java test cases must be executed by a Java-specific exec tool which cannot execute test cases that
use other APIs.

Answer
tcc is able to process scenarios that contain a mixture of test cases. The issue to be resolved is
how to arrange for the build, exec and clean tools to recognise the different types of test case and
process them accordingly.

In build and clean mode it is probably best to provide a makefile to build each test case. The Java
build tool could be invoked from the makefiles that build the Java test cases.

In exec mode, one way to handle this is to have a top-level exec tool which switches on the name
of the test case being executed and invokes an appropriate language-specific exec tool. Of
course, only the Java exec tool is mandatory — the others are optional.

If you do this you need to organise the test suite in a way that the exec tool understands. For
example, you might define a directory hierarchy which looks like this:

tset/
c-tests/

. . .
shell-tests/

. . .
perl-tests/

. . .
java-tests/

. . .

Then you could use a top-level exec tool that looked something like this:

#!/bin/sh
# top level exec tool which may invoke a language-specific exec tool
# depending on test case name

# extract the name(s) of the language-specific exec tool(s) and their
# optional argument(s) from the config file
C_EXEC_TOOL=
C_EXEC_FILE=
SHELL_EXEC_TOOL=
SHELL_EXEC_FILE=
PERL_EXEC_TOOL=
PERL_EXEC_FILE=
JAVA_EXEC_TOOL=
JAVA_EXEC_FILE=
eval "‘sed -n ’s/#.*//

/ˆ[ ]*\$/d
/ˆ[A-Z]*_EXEC_[A-Z]*=/s/\([ˆ=]*\)=\(.*\)/\1="\2"/p’ ${TET_CONFIG:?}‘"
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# determine the name of the test case to execute
tcname=${1:?}
shift

# work out if we can execute the test case directly
# or should invoke a language-specific exec tool and optional
# tool argument
cmd=
case $tcname in
*/c-tests/*)

if test -z "$C_EXEC_TOOL"
then

cmd=./$tcname
else

cmd="$C_EXEC_TOOL $C_EXEC_FILE $tcname"
fi
;;

*/shell-tests/*)
if test -z "$SHELL_EXEC_TOOL"
then

cmd=./$tcname
else

cmd="$SHELL_EXEC_TOOL $SHELL_EXEC_FILE $tcname"
fi
;;

*/perl-tests/*)
if test -z "$PERL_EXEC_TOOL"
then

cmd=./$tcname
else

cmd="$PERL_EXEC_TOOL $PERL_EXEC_FILE $tcname"
fi
;;

*/java-tests/*)
if test -z "$JAVA_EXEC_TOOL"
then

echo "$0: JAVA_EXEC_TOOL is null or not set" 1>&2
exit 1

else
cmd="$JAVA_EXEC_TOOL $JAVA_EXEC_FILE $tcname"

fi
;;

*)
echo "$0: can’t determine test case type: $tcname" 1>&2
exit 1
;;

esac

# finally, execute the test case or tool
exec $cmd ${1:+"$@"}
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In the execute mode configuration you would define TET_EXEC_TOOL to be the name of this
file. Then if required you could define one or more of C_EXEC_TOOL, C_EXEC_FILE,
SHELL_EXEC_TOOL, SHELL_EXEC_FILE, PERL_EXEC_TOOL, PERL_EXEC_FILE,
JAVA_EXEC_TOOL, and JAVA_EXEC_FILE in the execute mode configuration. Only the
JAVA_EXEC_TOOL is mandatory; the others are optional.

See also

� ‘‘The Test Case Controller’’ and ‘‘Configuration variables which modify TETware’s
operation’’ in the TETware Programmers Guide.
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39. How to create a new thread in a Java API-
conforming test case

Question
I have a test program looks like this:

public class test {
public static void main(String args[]) {
new testThread().start();
}

}

class testThread extends Thread {
public void run()
{
// the test program is here.
}

}

How can I convert it to use the TETware Java API?

Answer
When you create a new thread in a program that uses the TETware Java API, instead of saying

class testThread extends Thread

you need to say

class testThread extends TetThread

Here is an example of a simple test case that creates a new thread:

import java.lang.*;
import TET.*;

/*
* Test case for threads.
*/
public class ThrTest extends SimpleTestCase
{

public static final int SLEEP_TIME = 5;

public static void main(String[] args)
{

main("ThrTest", args, new ThrTest());
}

public void i1t1(TestSession ts)
{

TestThread thread;

thread = new TestThread(ts, 1, SLEEP_TIME);
thread.start();
ts.tet_infoline("This is the parent thread: "

+ Thread.currentThread());
ts.tet_infoline("Parent printing child thread: "
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+ thread);

try
{

thread.join(2 * SLEEP_TIME);
}
catch (InterruptedException e)
{

ts.tet_infoline("Caught exception \
while joining child thread:");

ts.tet_infoline(e.toString());
ts.tet_result(ts.TET_UNRESOLVED);

}

ts.tet_infoline("parent thread returns");
ts.tet_result(ts.TET_PASS);

}

}

class TestThread extends TetThread
{

private TestSession ts;
private int sleepTime;

TestThread(TestSession ts, int id, int sleepTime)
{

super(ts, "TestThread() #" + id, sleepTime * 1000L);
this.ts = ts;
this.sleepTime = sleepTime;

}

public void run()
{

ts.tet_infoline("Child thread ("
+ Thread.currentThread()
+ "): starting to run");

try
{

sleep(sleepTime * 1000L);
}
catch (InterruptedException e)
{

ts.tet_infoline("Child thread ("
+ Thread.currentThread()
+ ") caught exception while sleeping: ");

ts.tet_infoline(" " + e);
ts.tet_result(ts.TET_UNRESOLVED);

}

ts.tet_infoline("Child thread ("
+ Thread.currentThread()
+ ") exits");

}
}
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Here is the journal output when this test case is run:

0|3.4ea 12:38:06 19990928|User: tet (106) TCC Start, \
Command line: tcc -epl /ts/tc1/ThrTest

5|Linux fir 2.0.35 #6 Sat Mar 13 09:21:49 GMT 1999 i686| \
Local System Information

20|/home/tet/jtests/tetexec.cfg 1|Config Start
30||TET_EXPAND_CONF_VARS=true
30||TET_OUTPUT_CAPTURE=true
30||TET_API_COMPLIANT=true
30||TET_EXEC_IN_PLACE=true
30||TET_EXEC_TOOL=ksh
30||TET_EXEC_FILE=/home/tet/jtests/exectool.ksh
30||TET_JAVA_PATH=/usr/local/java/bin/java
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.4ea
40||Config End
10|0 /ts/tc1/ThrTest 12:38:06|TC Start, scenario ref 1-0
15|0 3.4ea 1|TCM Start
400|0 1 1 12:38:06|IC Start
200|0 1 12:38:06|TP Start
520|0 1 00030029 1 1|This is the parent thread: \

Thread[main,5,main]
520|0 1 00030029 1 2|Parent printing child thread: \

Thread[TestThread() #1,5,TET:ThrTest:IC1TP1]
520|0 1 00030029 1 3|parent thread returns
520|0 1 00030029 2 1|Child thread \

(Thread[TestThread() #1,5,TET:ThrTest:IC1TP1]): \
starting to run

520|0 1 00030029 2 2|Child thread \
(Thread[TestThread() #1,5,TET:ThrTest:IC1TP1]) exits

220|0 1 0 12:38:11|PASS
410|0 1 1 12:38:11|IC End
80|0 0 12:38:12|TC End, scenario ref 1-0
900|12:38:12|TCC End

See also

� ‘‘Using Threads’’ in the chapter that describes the Java API in the TETware Programmers
Guide.
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40. How to run TETware from an NFS server
The information in this article is not applicable to Win32 systems.

You can run TETware from a server over NFS.

Here are some instructions which describe how to set up one of the configurations that we support
when we run the TETware training course:

1. Create a user called tet in group tet on the server.

2. Install TETware on the server in a directory owned by the user tet; for example, in
/home/tet.

In the instructions that follow, assume that the server is called tetserver.

3. Have each workstation mount tetserver:/home/tet.
For example:

mkdir -p /nfs/tetserver/home/tet
mount -r tetserver:/home/tet /nfs/tetserver/home/tet

4. Create a tet root directory on each workstation in some private area.
For example, for user fred:

mkdir /home/fred/tet3
chgrp tet /home/fred/tet3
chmod g+ws /home/fred/tet3
TET_ROOT=/home/fred/tet3
export TET_ROOT

It is best to put these last two lines in each user’s .profile.

5. Create symbolic links in each private tet root directory to the server’s tet root directory.
For example:

cd /home/fred/tet3
ln -s /nfs/tetserver/home/tet/bin .
ln -s /nfs/tetserver/home/tet/inc .
ln -s /nfs/tetserver/home/tet/lib .

6. Add the group tet to each user’s supplementary group list.

7. Have each user work with a umask of 2.

8. In Distributed TETware, run in.tccd with the −m2 option.

See also

� The tccd manual page in the TETware User Guide.
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41. Configuration variable exchange errors in
Distributed TETware

Question
When I try to execute the test case as specified in tet_scen I get the following error in the
journal file:

0|3.2 15:02:52 19980805|User: tet TCC Start, Command line: tcc -e
5|Windows_NT phobos 4 0 586|Local System Information
50||(tcconf.c, 258): unexpected STCC reply code ER_ERR
50||(tcxconf.c, 218): tet_tcsndconfv failed, rc = ER_ERR
50||(config.c, 988): tet_tcxconfig() failed when performing \

exec mode configuration variable exchange with system 1: \
rc = ER_ERR

900|15:02:52|TCC End

Answer
Whenever you see a server reply code of ER_ERR which relates to an operation performed by
tccd, a more detailed error message which describes the cause of the problem is printed in the
tccdlog file on the remote system.

The most common cause of a ‘‘configuration variable exchange’’ error is that tccd on the
remote machine could not find the configuration file. You need to provide configuration files for
each of the selected modes of operation on the remote systems as well as on the local system.

When you run tcc in execute mode: if the test suite root directory on system 1 is called
/home/tet/tests (as defined in the tetdist.cfg file on the local system), tccd on
system 1 looks for a file called /home/tet/tests/tetexec.cfg when tcc performs the
configuration variable exchange with system 1. This file must exist, even if it is empty.

See also

� ‘‘The Test Case Controller’’ and ‘‘Configuration variable processing in Distributed
TETware’’ in the TETware Programmers Guide.

� ‘‘tccd log file’’ in the TETware User Guide.
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42. Error message: tccd: refused login
request from hostname

Question
When I run the Distributed tcc, it is unable to connect to tccd. The following message appears
in the tccdlog file on the system in question:

tccd (102) 8 Jul 15:26:25: connection received from phobos
tccd (102) 8 Jul 15:26:25 (tccd_in.c, 435): refused login request \

from phobos
tccd (102) 8 Jul 15:26:25 (tccd.c, 398): client connection closed \

(sysid = 0, pid = 140: MTCC)

Answer
This means that tcc on the system called phobos tried to log on to tccd. tccd looked up
this name in the systems.equiv file but didn’t find it. So the logon request was refused.

You should check that the systems.equiv file contains an entry for each system from which
you want tccd to accept connections.

Each entry in this file should be whatever host name is returned when gethostbyaddr() is
called with the system’s IP address as argument. If your system is running a name server, this
will usually be a fully-qualified domain name. If a call to gethostbyaddr() can’t resolve the
IP address, you can specify the IP address in the systems.equiv file instead.

See also

� The systems.equiv manual page in the TETware User Guide.

� ‘‘The systems equivalence file’’ in the TETware Installation Guide.
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