

Realtime and Embedded Systems Extension

Guide
for TETware RT

Released: June 2003

The information contained within this document is subject to change without notice.

Copyright 2003 The Open Group

All rights reserved. No part of this documentation may be reproduced, stored in retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user license agreement, without the prior permission of the
copyright owners. The text of the end-user license agreement appears in Appendix A of this
document. A copy of the end-user license agreement is contained in the file License, which
accompanies the TETware distribution.

Motif, OSF/1, UNIX and the ‘X’ device are registered trademarks and TETware, IT Dial Tone and
The Open Group are trademarks of The Open Group in the US and other countries.

X/Open is a trademark of The Open Group Company Limited in the UK and other countries.

Win 32TM, Windows NTTM and Windows 95TM, 98TM and 2000TM are registered trademarks of
Microsoft Corporation.

This document is produced by

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire
RG1 1AX
England.

- i -

CONTENTS
1 Introduction... 1

1.1 Preface ... 1
1.2 Audience .. 1
1.3 Conventions Used in this Guide .. 1
1.4 Related Documents .. 2
1.5 Problem Reporting ... 2

2 TETware Realtime Overview .. 3
2.1 Introduction.. 3
2.2 System Architecture... 3

2.2.1 TETware Testing Model.. 3
2.2.2 TETware RT Testing Model ... 4

2.3 The TETware RT Test Manager .. 5
2.4 The TETware RT TCM and API ... 6

3 Installation Guide ... 7
3.1 Basic Installation.. 7

4 User Guide ... 11
4.1 Introduction.. 11
4.2 Configuration Variables... 11

5 Running the Embedded Demonstration ... 15
5.1 Introduction.. 15
5.2 Selection the Test Run File .. 15
5.3 Using a Different Location .. 15
5.4 Selecting the IP Address .. 16
5.5 Running the Test Run .. 16

6 Programmers Guide ... 17
6.1 Overview.. 17

6.1.1 The Test Manifest.. 17
6.1.2 Manufacturer-specific Subsystems.. 17
6.1.3 Support For Tests That Modify The Process Environment 18
6.1.4 Conditional Test Purpose Processing .. 18
6.1.5 Test Reporting and Journaling... 19

6.1.5.1 Test Case Information Lines... 19

- ii -

6.1.5.2 Context, Block And Sequence Numbers .. 20
6.1.6 Timeout Processing ... 20
6.1.7 Realtime System Resets .. 21
6.1.8 User Abort Processing... 21

6.2 Test Manifest File .. 22
6.2.1 Introduction ... 22
6.2.2 File Name and Location .. 22
6.2.3 File Format .. 23
6.2.4 Test Manifest Keywords.. 23

6.2.4.1 Introduction .. 23
6.2.4.2 The test-purpose Keyword .. 24
6.2.4.3 The test-case-instance Keyword .. 24
6.2.4.4 The tc-instance Keyword... 25
6.2.4.5 The config-var Keyword.. 25
6.2.4.6 The infoline Keyword... 27
6.2.4.7 The result Keyword ... 28
6.2.4.8 The timeout Keyword... 28
6.2.4.9 The timeslices Keyword ... 29
6.2.4.10 The timeout-factor Keyword.. 30

6.2.5 Examples ... 30
6.3 Using the Test Manager ... 33

6.3.1 Introduction ... 33
6.3.2 Test Manager Name and Location .. 34
6.3.3 Configuring TETware to use the Test Manager .. 34

6.4 The TETware RT C API .. 34
6.4.1 Introduction ... 34
6.4.2 C Language Binding.. 35
6.4.3 Supported API functions ... 36

6.4.3.1 Introduction .. 36
6.4.3.2 Test Case Structure and Management .. 36
6.4.3.3 Insulating from the Test Environment.. 36
6.4.3.4 Error Handling and Reporting .. 36
6.4.3.5 Making Journal Entries... 36
6.4.3.6 Canceling Test Purposes... 36
6.4.3.7 Accessing Configuration Variables .. 36
6.4.3.8 Generating and Executing Processes .. 37
6.4.3.9 Executed Process Functions ... 37
6.4.3.10 Test Case Synchronization ... 37
6.4.3.11 Remote System Information ... 37
6.4.3.12 Remote Process Control ... 37

- iii -

6.4.3.13 Thread Functions .. 37
Appendix A - TETware License... 39
Appendix B - Manufacturer-specific Subsystems .. 43

B.1 Introduction.. 43
B.2 Subsystem Descriptions ... 43

B.2.1 Communication Subsystem... 43
B.2.2 Exec Subsystem... 44
B.2.3 Reset Subsystem.. 44

B.3 Source File Directories .. 44
B.4 API Functions .. 45
B.5 The tet3rt.h file... 45
B.6 Return Values .. 45
B.7 Implementation Notes.. 46

B.7.1 Introduction ... 46
B.7.2 Conditional Compilation ... 46
B.7.3 Error Reporting.. 47
B.7.4 Use of Configuration Variables... 47
B.7.5 Signal Handling... 48
B.7.6 Trace Debugging ... 49

B.8 Communication Subsystem API .. 49
B.8.1 Introduction ... 49
B.8.2 tet3rt_msgtm_open() ... 49
B.8.3 tet3rt_msgtm_close()... 51
B.8.4 tet3rt_msgtm_recv() .. 51
B.8.5 tet3rt_msgtm_send().. 53
B.8.6 tet3rt_msgrt_open() ... 54
B.8.7 tet3rt_msgrt_close()... 55
B.8.8 tet3rt_msgrt_send() ... 55
B.8.9 tet3rt_msgrt_recv() .. 56

B.9 Exec Subsystem API.. 58
B.9.1 Introduction ... 58
B.9.2 tet3rt_rt_exec() .. 58
B.9.3 tet3rt_rt_exit() ... 59

B.10 Reset Subsystem API... 60
B.10.1 Introduction ... 60
B.10.2 tet3rt_rt_reset() .. 60

- iv -

B.11 TETware RT Functions.. 61
B.11.1 Introduction ... 61
B.11.2 Defined Constants ... 61
B.11.3 Error Reporting.. 62

B.11.3.1 tet3rt_mss_printf() .. 62
B.11.3.2 tet3rt_mss_generror() ... 63

B.11.4 Trace Debugging ... 64
B.11.4.1 tet3rt_mss_trace() ... 64
B.11.4.2 tet3rt_mss_traceflag.. 65
B.11.4.3 tet3rt_mss_tdump()... 65
B.11.4.4 tet3rt_prmsser() .. 66

B.11.5 Signal Handling... 66
B.11.5.1 tet3rt_block_signals() ... 66

B.12 Example MSS Implementations .. 67
B.13 Example Socket-based Implementation... 67

B.13.1 Introduction ... 67
B.13.2 Communication Subsystem... 68

B.13.2.1 Subsystem Description ... 68
B.13.2.2 Subsystem-specific Configuration Variables ... 68

B.13.3 Exec Subsystem... 69
B.13.3.1 Test Manager Side .. 69
B.13.3.2 Realtime System Side... 69

B.13.4 Reset Subsystem.. 69
B.14 Example Serial Line Implementation .. 70

B.14.1 Introduction ... 70
B.14.2 Communication Subsystem... 70
B.14.3 Exec Subsystem... 70

B.14.3.1 Test Manager Side .. 70
B.14.3.2 Realtime System Side... 70

B.14.4 Reset Subsystem.. 71

- v -

LIST OF FIGURES

Figure 1: Simple TETware Testing Model.. 4
Figure 2: Simple TETware RT Testing Model.. 5
Figure 3: TETware GUI Embedded Tab ... 12

LIST OF TABLES

Table 1: Test Case Information Line Prefix Strings.. 20

- vi -

TETware Real Time Guide

June 2003 Page 1
The Open Group

1 Introduction

1.1 Preface

This document is the Realtime and Embedded Systems Extension to the TETware User Guide.

TETware is a Test Execution Management System that takes care of the administration, reporting,
and sequencing of the tests providing a single common user interface for all of the tests that you
develop.

TETware has been tested and used on UNIX, Linux and Windows host operating systems.

Throughout this document, the Windows NT, 2000 and 9x operating systems are referred to
collectively as Win32 systems. The individual names are only used when it is necessary to
distinguish between them.

1.2 Audience

This document is intended to be read by systems administrators who will install TETware on their
computer systems, and by software testing engineers who will use TETware to run test suites.

1.3 Conventions Used in this Guide

The following typographic conventions are used throughout this guide:

• Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

• The names of variables are presented in italic font. You should substitute the variable’s

value when typing a command that contains a word in this font.

TETware Real Time Guide

Page 2 June 2003
The Open Group

• Bold font is used for headings and for emphasis.

1.4 Related Documents

Refer to the following documents for additional information about TETware:

• TETware Installation Guide

• TETware Programmers Guide

• TETware Release Notes

• TETware User Guide

• TETware GUI User Guide

• TETware Report Writer User Guide

The TETware Installation Guide contains important information about how to install and use
TETware. You should read the Installation Guide thoroughly before attempting to install and use
each new release of TETware.

1.5 Problem Reporting

If you have subscribed to TETware support and you encounter a problem while installing and using
TETware, you can send a support request by electronic mail using the dedicated email address that
is provided. Evaluators should email to tetware_manager@opengroup.org

All Problem Reports are welcome and actively encouraged. The more problems that are found and
fixed the better the product will be. Please submit all bugs and queries found. Also, please submit
requests for features and upgrades.

TETware Real Time Guide

June 2003 Page 3
The Open Group

2 TETware Realtime Overview
2.1 Introduction
TETware is a test execution management system that is designed to operate on systems that support
at least the functionality described in POSIX 1003.1 (1990). The POSIX standard for Embedded
Realtime Systems (POSIX 1003.13) defines four profiles for realtime systems, three of which do
not include all the functionality described in P1003.1. Therefore, TETware cannot be used to
execute test cases directly on these systems.

TETware Realtime (TETware RT) is an extension to TETware, which enables TETware to control
the execution of tests on Embedded POSIX Realtime Systems that cannot support TETware
directly.

Test cases that execute on the realtime system are linked with the TETware RT version of the C
Test Case Manager (TCM) module and API library. The TETware RT C API supports a substantial
subset of the functions available in the Lite version of the TETware C API.

2.2 System Architecture
2.2.1 TETware Testing Model
In a ‘‘normal’’ non-distributed testing setup, both TETware, and the test cases that it processes, run
on the same system. The whole process is driven by a list of test cases contained in the scenario file.
A Test Case Manager module is linked into each test case executable. The TCM calls each Test
Purpose (TP) function in turn. Each TP completes whatever processing is necessary to perform the
test, and then calls an API function to record a result. When all the TP functions have been called,
the Test Case Manager exits. Finally, TETware gathers the results of each TP, writes them to the
journal and moves on to the next test case.

Figure 1 provides a simple illustration of the relationship between the main TETware components
in the ‘‘normal’’ non-distributed testing model.

TETware Real Time Guide

Page 4 June 2003
The Open Group

Figure 1: Simple TETware Testing Model

2.2.2 TETware RT Testing Model
When testing embedded realtime systems, this model needs to be modified. This is mainly for the
following reasons:

• TETware cannot run on the realtime system. All the control operations must be performed
on a host system.

• Operating system facilities on the realtime system may be limited. If a test case
malfunctions on the realtime system, it may be necessary to reset the system in order to
regain control.

The required modification is accomplished by using TETware’s exec tool facility to run the
TETware RT Test Manager on the host system (that is: the system on which TETware runs). The
Test Manager acts as an agent for the test case that is running on the realtime system.

Figure 2 provides a simple illustration of the relationship between the main components in the
TETware RT testing model.

TETware
TCM

TP functions
API library

scenario
file

journal

TETware Real Time Guide

June 2003 Page 5
The Open Group

Figure 2: Simple TETware RT Testing Model

2.3 The TETware RT Test Manager

TETware executes a new instance of the Test Manager each time it executes a test case. The Test
Manager performs the following operations:

1. Read information from the test manifest, including information about the arrangement of
Invocable Components (IC) and Test Purpose (TP) functions in the test case.

2. Use the dynamic test case interface to adapt itself to the IC/TP arrangement described in the
test manifest.

3. Load the test case onto to realtime system and execute it.

4. Open a communication channel to the test case on the realtime system.

5. Instruct the TCM on the realtime system to invoke the test case’s startup function, TP
functions and cleanup function.

6. For each of these functions, enter a service loop, responding to requests from the TCM/API
on the realtime system. The loop is terminated when the function returns to the realtime
system’s TCM, or when a timeout expires.

TETware
TCM

RT Test Manager
API library

scenario
file

journal

RT TCM
TP functions

RT API library

host system realtime system

TETware Real Time Guide

Page 6 June 2003
The Open Group

7. Deliver a TP function’s result to the journal.

8. If the TP timed out: Reset the realtime system.

Thus the Test Manager provides the interface between TETware running on the host system, and
the test case running on the realtime system. From TETware’s point of view the Test Manager looks
like an API-conforming test case.

2.4 The TETware RT TCM and API

Each test case that is to run on the realtime system is linked with the TETware RT versions of the C
TCM and API library. As in TETware, both single-threaded and thread-safe versions of these
components are supplied. A substantial subset of the API functions implemented in TETware-Lite
is available in the TETware RT version of the API library. Further details are presented in Section
6.4 ‘‘The TETware RT C API’’.

Although the supported API functions are the same, in many cases the implementations are quite
different. For example, functions that write information to the execution results file in TETware
instead send the information to the Test Manager in TETware RT. When the Test Manager receives
this information, it writes the information to the execution results file on the host system.

TETware Real Time Guide

June 2003 Page 7
The Open Group

3 Installation Guide

3.1 Basic Installation

This chapter describes how to build and install the Embedded Module on TETware.

The Embedded Module is designed to be built and installed on top of an existing TETware Lite
application.

See the TETware Installation Guide for instructions on how to extract and install a copy of
TETware.

The Embedded Module should be loaded into the same directory that you have extracted TETware.

tar xvf embedded.tar

Change the directory to the source directory

cd src

Create a native “defines.mk” file in this directory. Examples of different defines.mk files
from a variety of different operating systems are available in the directory “src/defines”. Choose
the one most like your operating system from the defines directory, copy it into the src
directory and rename it “defines.mk”. For example

 cp defines/solaris7.mk defines.mk

If an example does not exist for your operating system, instructions for creating a new defines.mk
are contained in the TETware Installation Guide.

Change the directory to the embedded system source directory.

cd tet3rt

Run the script to prepare the installation

TETware Real Time Guide

Page 8 June 2003
The Open Group

sh install.sh

Create a remote system “defines_rtsys.mk” file in this directory. Examples of this file are
given in this directory.

This file is similar to the defines.mk file mentioned above but relates to the compilation
instructions of the realtime embedded system. Copy the example you wish to use to
“defines_rtsys.mk”. For example:

 cp defines_rtsys_solaris7.mk defines_rtsys.mk

If none of the examples are suitable then edit the template version
“defines_rtsys_template.mk” with the suitable information, again using the TETware
Installation Guide for instructions as to how to do this.

Change directory to the source directory for the embedded system interface code

cd msslib_rtsys

This directory msslib_rtsys contains Manufacture-specific functions for use by TETware RT
on the embedded system.

The distribution contains two example implementations of these functions in the subdirectories
sockets_example and serial_example. You should copy the source files from one of
these examples into the msslib_rtsys directory. If necessary these examples can be modified.

If they are not suitable you will need to implement versions of these functions for each Realtime
System that is to be used in conjunction with the TETware RT Test Manager.

The following functions must be provided on the RT-system:

 tet3rt_msgrt_open()
 tet3rt_msgrt_close()
 tet3rt_msgrt_send()
 tet3rt_msgrt_recv()
 tet3rt_rt_exit()

Details of how to write other interfaces are contained in Appendix B “Manufacturer-specific
subsystems”.

TETware Real Time Guide

June 2003 Page 9
The Open Group

Change directory to the source directory for the native system interface code

cd ../msslib_native

The directory msslib_native contains Manufacture-specific functions for use by the native
system.

The distribution contains two example implementations of these functions in the subdirectories
sockets_example and serial_example. You should copy the source files from one of
these examples into the msslib_native directory. If necessary who may edit this source code
for your implementation.

You may need to implement your own versions of these functions for each Realtime System that is
to be used in conjunction with the Embedded Module.

The following functions must be provided on the host system (that is: the system on which the Test
Manager runs):

 tet3rt_msgtm_open()
 tet3rt_msgtm_close()
 tet3rt_msgtm_send()
 tet3rt_msgtm_recv()
 tet3rt_rt_exec()
 tet3rt_rt_reset()

Details of how to write other interfaces are contained in Appendix B “Manufacturer-specific
subsystems”.

Return to the Embedded Source directory

cd ..

TETware Real Time Guide

Page 10 June 2003
The Open Group

Compile the Source

make install

Embedded TETware is now ready to use.

TETware Real Time Guide

June 2003 Page 11
The Open Group

4 User Guide

4.1 Introduction

The Embedded tab in the TETware GUI (see Figure 3) is displayed when the RT extension is
installed. It allows users to specify variables that TETware uses in execute mode to determine how
to process a test case on an Embedded Realtime System.

4.2 Configuration Variables

The configuration variables are used by TETware RT are:

TET3RT_RTSYS_ID Specifies the string that the Test Manager passes to Manufacturer-specific
functions that take an rtsys_id argument. Whether or not the MSS actually uses it depends on
the implementation. This variable must be specified.

TET3RT_TRACE_MSS Control the generation of trace messages by MSS functions in the Test
Manager. Whether or not trace messages are actually generated depends on the MSS
implementation. Typically this variable is set to a value between 0 and 10. The use of this variable
is optional; if it is not specified, its value defaults to zero (no trace messages generated).

TET3RT_MSS_RTSYS_TRACE Controls the generation of trace messages by Manufacturer-
specific subsystems (MSS) functions on the realtime system. Whether or not trace messages are
actually generated depends on the MSS implementation. Typically this variable is set to a value
between 0 and 10. The use of this variable is optional; if it is not specified, its value defaults to zero
(no trace messages generated).

TET3RT_MSS_TRACE2JNL Specifies whether or not MSS trace message generated by the Test
Manager should be printed in the journal as well as appearing on the standard error stream.
Whether or not trace message are actually generated depends on the MSS implementation. The
possible values are True and False. The use of this variable is optional; if not specified; its value
defaults to False.

TETware Real Time Guide

Page 12 June 2003
The Open Group

Figure 3: TETware GUI Embedded Tab

TET3RT_TP_TIMEOUT Specifies the number of seconds to be used as the default test purpose
timeout. The actual timeout that the Test Manager applies to a test purpose depends on information
in the test manifest as well as on the value of this variable; see Section 6.1.6 "Timeout Processing"
for further details. This variable must be specified.

TETware Real Time Guide

June 2003 Page 13
The Open Group

TET3RT_MSG_TIMEOUT Specifies the number of seconds that TETware should wait for the
TCM to respond to a request when in server mode (that is: when the TCM is waiting for the next
instruction from the Test Manager). If specified, the value of this variable should be greater than 1
and less than or equal to the value of TET3RT_TP_TIMEOUT. The use of this variable is optional;
if it is not specified, its value defaults to that specified by TET3RT_TP_TIMEOUT.

TET3RT_TP_TIMESLICE Specifies the number of seconds in a timeslice that is used by the Test
Manager when calculating the timeout to be applied to a test purpose. The number of timeslice to
be applied to a test purpose may be specified in the test manifest. See Section 6.1.6 "Timeout
Processing" for further details. This variable must be specified.

TETware Real Time Guide

Page 14 June 2003
The Open Group

TETware Real Time Guide

June 2003 Page 15
The Open Group

5 Running the Embedded Demonstration

5.1 Introduction

This chapter describes how to run the Embedded Demonstration that is supplied with TETware RT.

The demonstration is designed to be used on the sockets implementation of TETware RT.

First follow the instructions contained in Section 3 “Installation Guide”.

It is recommended that you install TETware and the Embedded Module into /usr/local for this
demonstration, but if this is not possible, instructions are given on how to change the Embedded
Demonstration to use a different location.

5.2 Selection the Test Run File

Once the installation of the Embedded Module is complete, click on the Open Test Run icon
and select embedded_demo.trf.

5.3 Using a Different Location

This Test Run File presumes that TETware has been installed into /usr/local. If this is not the
case various options will need to be changed.

In Configuration: Local System: Local Environment:

• TET_ROOT should point to top hierarchy in which TETware is installed.
• TET_SUITE_ROOT should point to the location of the embedded_demo directory

In Configuration: Local System: Local Execute:

• TET_EXEC_TOOL should point to the location of the binary “tet3rttm”.

TETware Real Time Guide

Page 16 June 2003
The Open Group

The scenario file will also need to be opened. This can be done by using the menu Config: Add
Scenario File. The scenario file can be found in the embedded_demo directory and is
called tet_scen.

5.4 Selecting the IP Address

The IP address of the embedded system also needs to be set. This is held in the Configuration:
Local System: Local Embedded: TET3RT_RTSYS_ID. Currently this is set to the loop back
address in 127.0.0.1.

5.5 Running the Test Run

Once the Test Run has been set up, it can be run by any of the following methods:

• Clicking on the Execute Test Run icon on the tool bar

• Using the Keyboard Shortcut Alt-E

• Selecting the menu option: Run: Execute Test Run

TETware Real Time Guide

June 2003 Page 17
The Open Group

6 Programmers Guide
6.1 Overview
6.1.1 The Test Manifest

It will be apparent from the description presented in the Section 2 that the functions that would be
performed by the TCM module in TETware are shared in TETware RT between the RT Test
Manager on the host system and the RT TCM on the realtime system. Thus, some of the
information about the test case that is available to the TETware TCM cannot be accessed by the
TETware RT Test Manager. In particular, the Test Manager cannot easily access information about
the arrangement of Invocable Components (ICs) and Test Purpose functions (TPs) that is defined in
the test case’s tet_testlist[] array.

Instead, the TETware RT Test Manager reads this (and other) information from a test manifest file
soon after it starts up. This is an additional data file used by TETware RT, which must be provided
by the test suite author. Each test case must have a test manifest file associated with it.

6.1.2 Manufacturer-specific Subsystems

In order to enable the Test Manager to work with the TCM/API running on any particular realtime
system, it is necessary to customize both these components. This is achieved by the use of
Manufacturer-specific subsystems (MSS). Each subsystem is responsible for performing specific
tasks in connection with the realtime system to which it applies. These subsystems must be
implemented by, or on behalf of, the manufacturer of the realtime system that is to be tested.

The following subsystems are defined:

• Communication subsystem (implemented on host system and on realtime system).
Communicate between the host system and the realtime system.

• Execution subsystem (implemented on host system and on realtime system).
Transfer a test case from the host system to the realtime system and execute it.
Exit from (or terminate) a process running on the realtime system.

• Reset subsystem (implemented on host system).
Reset the realtime system.

The interface to each of these subsystems is provided by one or more functions (the MSS API
functions). These functions are described in Appendix B ‘‘Manufacturer-specific subsystems’’.

TETware Real Time Guide

Page 18 June 2003
The Open Group

When the Test Manager or TETware RT TCM/API needs to make use of the services provided by
one of the subsystems, it calls the appropriate MSS API function.

6.1.3 Support For Tests That Modify The Process Environment

In a verification test suite, many test methods need particular environmental conditions to be set up,
or may modify their process environment in some way, that might have an adverse effect on the
behavior of subsequent tests in the test case. When writing such tests, a common strategy employed
by test authors to overcome this problem is to put one or more test purpose functions in a child
process or subprogram started by a call to tet_fork().

Systems that conform to POSIX realtime profiles 51 and 52 are only required to support a single
process so, on those systems, tet_fork() cannot be implemented; thus test strategies of this
kind cannot be used.

In order to overcome this problem, the Test Manager supports the concept of multiple test case
execution instances. A keyword in the test manifest indicates when a new test case instance should
be started.

Normally, when the Test Manager executes a test case on the realtime system, it instructs the test
case to invoke the startup, test purpose and cleanup functions in the same way as would TETware.
However, when the test suite author indicates in the test manifest that a new test case instance
should be started part way through the list of TP functions, the Test Manager performs the
following operations:

1. Instruct the test case to invoke the cleanup function;

2. Instruct the test case to exit;

3. Load and execute a new instance of the test case on the realtime system;

4. Instruct the test case to invoke the startup function;

5. Instruct the test case to invoke the next TP function.

6.1.4 Conditional Test Purpose Processing

In a typical test suite there may be many test purpose functions that use the value of a configuration
variable to determine whether or not a test should be performed. If the variable’s value indicates
that the test should not be performed, the test purpose function simply emits a test case information
line, which says why the test cannot be performed, and registers a result such as UNSUPPORTED or
UNTESTED.

TETware Real Time Guide

June 2003 Page 19
The Open Group

When testing realtime systems, it would be inefficient to go to the trouble of executing one or more
test case instances on a realtime system just to check the value of configuration variables. In order
to make test suite execution more efficient, it is possible to instruct the Test Manager whether or not
to invoke a test purpose function depending on the value(s) of one or more variables in the execute
mode configuration. This is done by using keywords in the test manifest. These keywords are
described in Section 6.2.4 ‘‘Test Manifest Keywords’’.

In the test manifest, each test purpose may have one or more configuration variable expressions
associated with it. Each of these expressions has zero or more test case information lines, and
exactly one result code, associated with it. Before the Test Manager instructs the realtime system to
invoke a test purpose function, it evaluates each expression in turn. If an expression is TRUE, the
Test Manager prints the test case information line(s) to the journal, generates the result and steps on
to the next test purpose. Otherwise, if the expression is FALSE, the Test Manager steps on to the
next expression. If none of the expressions are TRUE, the default action is to instruct the realtime
system to invoke the test purpose function in the normal way.

6.1.5 Test Reporting and Journaling

6.1.5.1 Test Case Information Lines

When a test case running on the realtime system makes a call to one of the functions that writes to
the journal1, the API on the realtime system sends the data specified in the call to the Test Manager
on the host system. Thus it is the Test Manager that makes the entry in the execution results file. In
addition, the TCM/API on the realtime system may send Test Case Manager Messages to the Test
Manager, and the Test Manager itself may write Test Case Information lines to the execution results
file.

In order to enable users and report writers to distinguish between Test Case Information lines that
originate from different sources, the Test Manager prepends strings to the different types of line, as
shown in the following table:

1 These functions are: tet_infoline(), tet_minfoline(), tet_printf(), tet_vprintf() and

tet_result().

TETware Real Time Guide

Page 20 June 2003
The Open Group

Source of information line Prefix string

Test Manager TM:
Manufacturer-specific subsystem MSS:
Trace message from MSS MSS_TRACE:
RT-system TCM message RTSYS_TCM
Test case (none)

Table 1: Test Case Information Line Prefix Strings

6.1.5.2 Context, Block And Sequence Numbers

It will be seen from the information presented in the previous section that Test Case Information
lines that appear in the journal may originate from a number of sources, and not just from the
TCM/API that runs on the realtime system. Therefore it is not really possible for journal context
and block numbers to have the same meaning in TETware RT as they do in TETware. Instead, in
TETware RT, these values are determined as follows:

Context
All Test Case Information lines are written to the execution results file with the same context value.
This value is derived from the Test Manager’s process ID in the usual way. A call to
tet_context() on the realtime system has no effect on context value that is maintained by the
Test Manager’s TCM/API.

Block
A call to tet_block() on the realtime system causes the API to instruct the Test Manager to
call tet_block(). Thus the block number in the execution results file will change at certain
times but each change will affect all lines written after a call to tet_block() in any process or
thread that is running on the realtime system.

Sequence
This is calculated by the Test Manager’s TCM/API in the normal way. The value of the sequence
counter maintained by the TCM/API on the realtime system is not visible in the execution results
file.

6.1.6 Timeout Processing
The Test Manager invokes each test purpose function under the control of a timeout. If a test
purpose is still running when the timeout expires, the Test Manager resets the realtime system, thus
terminating the test purpose. Then, if there are more test purpose functions to invoke, the Test
Manager starts another test case instance on the realtime system in which to invoke subsequent test
purpose functions.

TETware Real Time Guide

June 2003 Page 21
The Open Group

The Test Manager uses information contained in the execute mode configuration and in the test
manifest in order to determine the timeout to be applied to each test purpose function. This
information is used as follows:

• A default test purpose timeout is defined in the execute mode configuration.

• The default timeout may be overridden by a longer test purpose timeout defined in the test
manifest. This timeout may be defined at the test purpose or the test case level; in the latter case
the timeout applies to all the test purposes in the test case unless a longer timeout is defined for
a particular test purpose.

It should be noticed that a more specific timeout is only used if it is longer than the less specific
one. Thus, a per-test-purpose value of 5 seconds does not override a default value of 10 seconds.

In addition to the absolute timeout value just described, it is possible for a relative timeout to be
specified in the test manifest in terms of a number of time slices, where the length of one time slice
is defined in the execute mode configuration. Once again, the number of time slices may be
specified at the test purpose or test case level. If the length of a time slice as defined in the
execution mode configuration is related to the speed of the realtime system in some way, it is
possible for a test suite author to use this mechanism to relate a timeout to that speed.

The Test Manager calculates both the absolute timeout and, when the test manifest contains a
number of time slices, the relative timeout as well. The actual timeout applied to a test purpose is
the greater of the two values thus calculated.

6.1.7 Realtime System Resets
The Test Manager may reset the realtime system under the following circumstances:

— when a test purpose times out; or

— when it receives a User Abort notification from TETware.

The Test Manager calls an MSS function to perform this task. There are two levels of reset: soft and
hard. The Test Manager requests a hard reset when the MSS function indicates that a previous soft
reset operation has failed.

6.1.8 User Abort Processing
It is possible for TETware to deliver a SIGTERM signal to the Test Manager. Usually this occurs
when TETware wants to interrupt test case processing after it receives a keyboard signal.

TETware Real Time Guide

Page 22 June 2003
The Open Group

When the Test Manager receives a SIGTERM, it instructs the test case to terminate, then waits for a
short time to receive an exit notification from the test case. If this notification is not received within
that time, the Test Manager resets the realtime system.

6.2 Test Manifest File

6.2.1 Introduction
When the Test Manager executes a test case on the realtime system, it needs to know certain
information about the test case. The test suite author makes this information available to the Test
Manager by providing a test manifest file with each test case. The test manifest file contains the
following information:

• Arrangement of invocable components and test purpose functions.
• Assignment of test purpose functions to test case execution instances.
• Timeout parameters.
• Configuration variable expressions, test case information lines and result codes.

6.2.2 File Name and Location
The name of the test manifest file is derived from the test case name, as follows:

• if the last component of the name of the test case starts with T., the name of the test
manifest file is constructed by replacing the T. prefix with an M. prefix2;

• otherwise: the name of the test manifest file is constructed by prepending an M. prefix to
the last part of the test case name.

For example: if the name of a test case is T.open, the name of the corresponding test manifest file
is M.open. Alternatively, if the name of a test case is tc1, the name of the corresponding test
manifest file is M.tc1.

The Test Manager looks for the test manifest file in the test case execution directory. Therefore, if
an alternate execution directory is being used, the build process must copy the test manifest file to
its place in the alternate execution directory hierarchy at the same time that it copies the test case
executable and any other required files.

2 This arrangement works well with the test case naming convention that is used in many of The Open Group’s test

suites.

TETware Real Time Guide

June 2003 Page 23
The Open Group

6.2.3 File Format
The test manifest file is a plain text file. Each non-blank, non-comment line starts with a keyword
and a colon. When a keyword takes arguments, the colon is followed by one or more spaces and/or
tabs, then the arguments themselves. Blank lines and comment lines starting with # are ignored.

6.2.4 Test Manifest Keywords

6.2.4.1 Introduction

The keywords that may appear in a test manifest file are:

config-var

infoline

result

tc-instance

test-case-instance

test-purpose

timeout-factor

timeout

timeslices

Ordering of keywords is significant. For example, if the timeout keyword appears before the
first test-purpose keyword, it supplies a timeout value to be used by every test purpose in the
test case. By contrast, if a timeout keyword appears after a test-purpose keyword, it
supplies a timeout value to be used only by the current test purpose.

These keywords are described in more detail in the subsections that follow.

TETware Real Time Guide

Page 24 June 2003
The Open Group

6.2.4.2 The test-purpose Keyword

Synopsis

test-purpose: icnum

Description

This keyword describes a test purpose function. icnum defines the Invocable Component to which
this test purpose belongs.

The number of test-purpose keywords and their associated IC numbers in the test manifest
file must exactly match the number of test purpose functions and their associated IC numbers that
are defined in the test case’s tet_testlist[] array.

6.2.4.3 The test-case-instance Keyword

Synopsis

test-case-instance:

Description

When this keyword appears it causes the Test Manager to end the currently running test case
instance and start a new test case instance before issuing the next instruction to invoke a test
purpose function. The reason for providing this functionality is described in Section 6.1.3 ‘‘Support
For Tests That Modify The Process Environment’’.

The test-case-instance keyword may appear in the test manifest immediately before a
second or subsequent test-purpose keyword. Use of this keyword is optional; when no
test-case-instance keywords appear in a test manifest, all the test purposes that are to be
invoked are invoked in a single instance of the test case.

TETware Real Time Guide

June 2003 Page 25
The Open Group

6.2.4.4 The tc-instance Keyword

Synopsis

 tc-instance:

Description

This keyword is a synonym for test-case-instance.

6.2.4.5 The config-var Keyword

Synopsis

config-var: configuration-variable-expression
[
infoline: test-case-information-line
[...]
]
result: result-name

Description

This keyword defines a configuration variable expression. When it appears, it is followed by zero or
more infoline keywords and exactly one result keyword. One or more of these keyword
groups may appear after a test-purpose keyword. Use of these keyword groups is optional;
when no such groups appear, the Test Manager simply invokes the current test purpose function.

When the Test Manager is about to process a test purpose function that has one or more of these
keyword groups associated with it, the Test Manager first evaluates the specified configuration-
variable-expression. If the expression is TRUE, the Test Manager prints each test-case-information-
line to the execution results file, reports the result associated with result-name and steps on to the
next test purpose. If the expression is FALSE, the Test Manager steps on to the next config-var
keyword group, if there is one. Finally, if none of the configuration variable expressions are TRUE,
the Test Manager instructs the test case to invoke the test purpose function.

TETware Real Time Guide

Page 26 June 2003
The Open Group

Each configuration-variable-expression is written using syntax reminiscent of that used in awk.
The following simple expressions are understood:

defined(variable) If the named variable is defined in the execute mode

configuration, the expression is TRUE; otherwise the
expression is FALSE.

variable == "string" The value of the named variable is looked up in the execute

mode configuration. If variable is defined, its value is
compared to the specified string. The expression is TRUE if
variable is defined and the comparison succeeds; otherwise
the expression is FALSE.

variable != "string" The value of the named variable is looked up in the execute

mode configuration. If variable is defined, its value is
compared to the specified string. The expression is TRUE if
variable is not defined or if the comparison fails; otherwise
the expression is FALSE.

variable == TRUE
variable != FALSE The value of the named variable is looked up in the execute

mode configuration. If variable is defined, the first letter of
its value is examined. The expression is TRUE if variable is
defined and the first letter of its value is either T or t;
otherwise the expression is FALSE.

variable != TRUE
variable == FALSE The value of the named variable is looked up in the execute

mode configuration. If variable is defined, the first letter of
its value is examined. The expression is TRUE if variable is
not defined, or if the first letter of its value is neither T nor
t; otherwise the expression is FALSE.

variable ˜ /regular-expression/

The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
matched against the specified extended regular-expression.
The expression is TRUE if variable is defined and the match
succeeds; otherwise the expression is FALSE.

TETware Real Time Guide

June 2003 Page 27
The Open Group

variable !˜ /regular-expression/
The value of the named variable is looked up in the execute
mode configuration. If variable is defined, its value is
matched against the specified extended regular-expression.
The expression is TRUE if variable is not defined or if the
match fails; otherwise the expression is FALSE.

These simple expressions may be combined in the usual way as follows:

!expr The expression is TRUE if expr is FALSE.

expr1 && expr2 The expression is TRUE if both expr1 and expr2 are TRUE.

expr1 || expr2 The expression is TRUE if either expr1 or expr2 is TRUE.

(expr) Parentheses for grouping.

6.2.4.6 The infoline Keyword

Synopsis

infoline: test-case-information-line

Description

This keyword defines a test case information line.

When this keyword appears after a test-purpose keyword and before a config-var
keyword, the Test Manager always prints the specified test-case-information-line to the execution
result file. When this keyword appears after a config-var keyword, the Test Manager only
prints the specified test-case-information-line when the corresponding configuration variable
expression is TRUE.

Sequences of infoline keywords may be used to print multiple test case information lines. Use
of this keyword is optional.

TETware Real Time Guide

Page 28 June 2003
The Open Group

6.2.4.7 The result Keyword

Synopsis

result: result-name

Description

This keyword instructs the Test Manager to generate a result on behalf of a test purpose. When this
keyword appears after a test-purpose keyword and before a config-var keyword, the
Test Manager always generates the result associated with result-name.

When this keyword appears after a config-var keyword, the Test Manager only generates the
result associated with result-name when the corresponding configuration variable expression is
TRUE.

When this keyword is used before a config-var keyword, only one instance may appear. Use
of this keyword before a config-var is optional. Exactly one instance of this keyword must
appear after each config-var keyword and any associated infoline keywords.

result-name may be any of the result names that are known to the TCM3, or it may be the special
name TEST-RESULT. In the latter case the Test Manager does not immediately record a result but
instead instructs the realtime system to invoke the test purpose function and records the result from
that.

6.2.4.8 The timeout Keyword

Synopsis

timeout: seconds

3 These are the names defined for the standard result codes as well as those specified with any user-defined result

codes. For further details, refer to Section 6.2 in the TETware Programmers Guide.

TETware Real Time Guide

June 2003 Page 29
The Open Group

Description

This keyword specifies a test purpose timeout in seconds to be used in place of the default value
specified in the execute mode configuration.

When this keyword appears before the first test-purpose keyword, it applies to all the test
purpose functions in the test case. When this keyword appears after the first test-purpose
keyword, it applies only to the current test purpose.

Use of this keyword is optional.

The way in which the Test Manager calculates the actual timeout to be applied to a test purpose
function depends on several factors and is described in Section 6.1.6 ‘‘Timeout Processing’’.

6.2.4.9 The timeslices Keyword

Synopsis

timeslices: number

Description

This keyword specifies a test purpose timeout in terms of a number of timeslices. The length of a
timeslice is defined in the execute mode configuration.

When this keyword appears before the first test-purpose keyword, it applies to all the test
purpose functions in the test case. When this keyword appears after the first test-purpose
keyword, it applies only to the current test purpose.

Use of this keyword is optional.

The way in which the Test Manager calculates the actual timeout to be applied to a test purpose
function depends on several factors and is described in Section 6.1.6 ‘‘Timeout Processing’’.

TETware Real Time Guide

Page 30 June 2003
The Open Group

6.2.4.10 The timeout-factor Keyword

Synopsis

timeout-factor: number

Description

This keyword is a synonym for the timeslices keyword.

6.2.5 Examples

Example 1

test-purpose: 1

test-purpose: 2

test-purpose: 3

test-purpose: 4

This manifest accompanies a test case that has four test purpose functions, each in its own IC.
It corresponds to the following definition in the test case source file:

static void tp1(), tp2(), tp3(), tp4();
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ tp4, 4 },
{ NULL, 0 }

};

Example 2
test-purpose: 1

test-purpose: 2

test-purpose: 2

TETware Real Time Guide

June 2003 Page 31
The Open Group

This manifest accompanies a test case that has three test purpose functions; one in IC 1 and two in
IC 2. It corresponds to the following definition in the test case source file:

static void tp1(), tp2(), tp3();
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 2 },
{ NULL, 0 }

};

Example 3

test-purpose: 1

test-case-instance:

test-purpose: 2

test-purpose: 3

In this example the first test purpose function is invoked in one test case instance and the remaining
test purpose functions are invoked in another test case instance. Presumably this is because the
strategy employed by the first test purpose would have some adverse effect on the behavior of
subsequent test purpose functions.

Example 4

test-purpose: 1

infoline: this test purpose in not in use

result: NOTINUSE

In this example the test purpose function is not invoked on the realtime system. Instead the Test
Manager prints the specified test case information line to the execution results file and records a
result of NOTINUSE.

TETware Real Time Guide

Page 32 June 2003
The Open Group

Example 5

test-purpose: 1

config-var: !defined(VSX_BLOCK_DEV) || VSX_BLOCK_DEV == ""

infoline: VSX_BLOCK_DEV is not specified

result: UNRESOLVED

config-var: VSX_BLOCK_DEV == "unsup"

infoline: block devices are not supported

result: UNSUPPORTED

This example shows how the value of a configuration variable may be used to control whether or
not a test purpose function is invoked. There are two configuration variable expressions; each
expression has a test case information line and a result associated with it.

When the Test Manager is about to invoke the test purpose function, it evaluates the first
configuration variable expression. This expression ensures that VSX_BLOCK_DEV is defined with
a non-empty value in the execute mode configuration. If the expression is TRUE, the Test Manager
prints the first test case information line and reports a result of UNRESOLVED, then moves on to the
next test purpose function. Otherwise, the Test Manager evaluates the second configuration variable
expression. This expression checks to see if VSX_BLOCK_DEV has been set to unsup. If this
expression is TRUE, the Test Manager prints the second test case information line and reports a
result of UNSUPPORTED, then moves on to the next test purpose function. Otherwise, the Test
Manager instructs the realtime system to invoke the test purpose function.

Example 6

timeout: 20

test-purpose: 1

test-purpose: 2

This example specifies a timeout of 20 seconds for each test purpose in the test case. (The actual
timeout value used by the Test Manager is the greater of this value and the default value specified in
the execute mode configuration.)

Example 7

test-purpose: 1

timeout: 20

test-purpose: 2

TETware Real Time Guide

June 2003 Page 33
The Open Group

This example specifies a timeout of 20 seconds for the first test purpose only. (The actual timeout
value used by the Test Manager is the greater of this value and the default value specified in the
execute mode configuration.)

Example 8

test-purpose: 1

timeslices: 10

test-purpose: 2

This example specifies a timeout of 10 timeslices for the first test purpose only. The length of a
timeslice is specified in the execute mode configuration. (The actual timeout value used by the Test
Manager is the greater of this value and the default value specified in the execute mode
configuration.)

6.3 Using the Test Manager

6.3.1 Introduction

This section describes how to use the TETware RT Test Manager to control the execution of test
cases on a realtime system.

Before you can use the Test Manager in conjunction with a particular realtime system, both it and
the TCM/API must have been built for use with that system.

The Test Manager must have been linked with the Manufacturer-specific subsystem library for the
realtime system that you want to use. Likewise, each test case must have been linked with a version
of the appropriate TCM/API that contains the Manufacturer-specific code for the realtime system
that you want to use. See Appendix B for details on how to implement Manufacturer-specific
subsystems for a realtime system.

TETware Real Time Guide

Page 34 June 2003
The Open Group

6.3.2 Test Manager Name and Location

The Test Manager is launched by a shell script called tet3rttm. This script sets some
environment variables, then executes the Test Manager program itself. The name of this program is
rttmprog. Both the script and the program reside in tet-root/bin.

Note that the Test Manager must always be invoked from the tet3rttm shell script and never
directly as rttmprog.

6.3.3 Configuring TETware to use the Test Manager

From TETware’s point of view, the Test Manager is an exec tool. Therefore, to instruct TETware to
run test cases under the control of the Test Manager, you must set TET_EXEC_TOOL variable in
the execute mode configuration to the path name of the Test Manager launcher. For reasons of
portability it is best to use tcc’s configuration variable expansion capability to do this4.

For example:

TET_EXPAND_CONF_VARS=true

TET_EXEC_TOOL=${TET_ROOT}/bin/tet3rttm

6.4 The TETware RT C API

6.4.1 Introduction
The TETware RT C API is derived from the Lite version of the TETware C API. This section lists
the functions that are implemented in the TETware RT version of the C API, together with any
differences between this version and the TETware version.

Functions in this API may be used by test cases that run on a realtime system. As in TETware, both
single-threaded and thread-safe versions of the API are provided. However, shared library versions
of the API files are not provided in TETware RT. The thread-safe version of the TETware RT API
supports POSIX threads.

4 Refer to Section 5.6 ‘‘Configuration variables which modify TETware’s operation’’ and Section 5.8 ‘‘Configuration

variable expansion’’ in the TETware Programmers Guide for further details.

TETware Real Time Guide

June 2003 Page 35
The Open Group

Support for API-conforming executed subprograms5 can only be provided in a portable manner on a
profile 54 system6. Since such a system is thus capable of supporting TETware in its own right,
support for executed subprograms is not provided in TETware RT.

For details of the API functions themselves, please refer to the Chapter 8 ‘‘The C API’’ and Chapter
10 ‘‘The Thread-safe C and C++ APIs’’, both in the TETware Programmers Guide.

6.4.2 C Language Binding

Test cases that use this API are compiled on the host system using a cross-compiler and other cross-
tools that are suitable for compiling programs for use on the runtime system. To the extent possible,
the way in which test cases are compiled is similar to that used in the standard (non-realtime)
version of TETware. In particular, the file names used by the API are the same.

Test cases written to use this API attach themselves to it through the following files:

• tet-root/lib/tet3/tcm.o is the single-threaded version of the TCM.
• tet-root/lib/tet3/libapi.a is the single-threaded version of the API library.
• tet-root/lib/tet3/thrtcm.o is the thread-safe version of the TCM.
• tet-root/lib/tet3/libthrapi.a is the thread-safe version of the API library.
• tet-root/inc/tet3/tet_api.h contains prototypes for the functions, declarations of

all the global variables, and definitions of all the structures and manifest constants that
constitute the C API.

Note that the suffixes of the names of object and library files shown above are those that are used
on a UNIX system. It is possible that different suffixes will be used by the cross-tools for a
particular realtime system.

Test cases that are to be linked with the thread-safe version of the TCM and API must be compiled
with TET_POSIX_THREADS defined, in order to make visible the threads-related contents of
tet_api.h.

5 That is: a program that is linked with a child process controller and launched by a call to tet_exec() or

tet_spawn().
6 That is: a system that supports both multiple processes and a file system.

TETware Real Time Guide

Page 36 June 2003
The Open Group

6.4.3 Supported API functions

6.4.3.1 Introduction

A substantial subset of the functions provided in the Lite version of the TETware C API are
implemented in TETware RT, as shown in the following subsections. The subsection headings
correspond to those used in the chapters in the TETware Programmers Guide that describe the C
API.

6.4.3.2 Test Case Structure and Management

The dynamic test case interface is not supported.
All the other interfaces are supported.

6.4.3.3 Insulating from the Test Environment

The configuration variables TET_SIG_IGN and TET_SIG_LEAVE apply to the Test Manager.
The TET3RT_SIG_IGN and TET3RT_SIG_LEAVE variables can be set in the execute mode
configuration to instruct the TCM/API to ignore signals and leave signals alone, respectively.

6.4.3.4 Error Handling and Reporting

All interfaces are supported.

6.4.3.5 Making Journal Entries

tet_setcontext() is supported but has no effect on the journal context number.
tet_setblock() causes the block number to be incremented in the Test Manager. All
subsequent Test Case Information lines generated both by the Test Manager and the test case have
the new block number.
All the other interfaces are supported.

6.4.3.6 Canceling Test Purposes

All interfaces are supported.

6.4.3.7 Accessing Configuration Variables

All interfaces are supported.

TETware Real Time Guide

June 2003 Page 37
The Open Group

6.4.3.8 Generating and Executing Processes

tet_fork() and tet_child are supported only on profile 53 and 54 systems. In the thread-
safe API, a call to tet_fork() creates a child process that contains only a copy of the calling
thread.
The other interfaces are not supported.

6.4.3.9 Executed Process Functions

Sub-programs and tet_main() are not supported.
A call to tet_exit() calls the manufacturer-specific subsystem function
tet3rt_rt_exit(). tet_exit() should only be called from a child process on profile 53
and 54 systems.
A call to tet_logoff() closes the communication channel to the Test Manager. This function
should only be called from a child process on profile 53 and 54 systems, when API services are no
longer required.

6.4.3.10 Test Case Synchronization

Not supported.

6.4.3.11 Remote System Information

Not supported.

6.4.3.12 Remote Process Control

Not supported.

6.4.3.13 Thread Functions

All the interfaces required to support POSIX threads are implemented in the thread-safe version of
the API. These are: tet_pthread_create(), tet_pthread_join() and
tet_pthread_detach().

tet_fork1() is not supported.

TETware Real Time Guide

Page 38 June 2003
The Open Group

TETware Real Time Guide

June 2003 Page 39
The Open Group

Appendix A - TETware License

+++++++++++++TET END USER LICENSE+++++++++++

BY DOWNLOADING THIS PRODUCT, YOU ARE CONSENTING TO BE BOUND BY THIS
AGREEMENT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT
INSTALL THE PRODUCT.

TETWARE RELEASE 3 END USER LICENSE
REDISTRIBUTION NOT PERMITTED

This Agreement has two parts, applicable to the distributions as follows:

(A) Free binary evaluation copies - valid for 45 days, full functionality - no warranty,

(B) Free binary restricted versions - no warranty, limited functionality

(C) Licensed versions - full functionality, warranty fitness as described in documentation, includes source,

binary & annual support.

PART I (A & B above) -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE)

GRANT.

X/Open grants you a non-exclusive license to use the Software free of charge if (a) you are a student, faculty
member or staff member of an educational institution (K-12, junior college, college or library) or an employee
of an organization which meets X/Open's criteria for a charitable non-profit organization; or (b) your use of
the Software is for the purpose of evaluating whether to purchase an ongoing license to the Software. The
evaluation period for use by or on behalf of a commercial entity is limited to 90 days; evaluation use by others
is not subject to this 90 day limit. Government agencies (other than public libraries) are not considered
educational or charitable non-profit organizations for purposes of this Agreement. If you are using the
Software free of charge, you are not entitled to hard-copy documentation, support or telephone assistance. If
you fit within the description above, you may use the Software for any purpose and without fee.

TETware Real Time Guide

Page 40 June 2003
The Open Group

DISCLAIMER OF WARRANTY.

Free of charge Software is provided on an "AS IS" basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL X/OPEN
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

PART II (C above) -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT. Subject to payment of applicable license fees, X/Open grants to you a non-exclusive license to use
the Software and accompanying documentation ("Documentation") as described below.

Copyright (c) 1996, 1997, 1998, 1999 X/Open Company Ltd.
Copyright (c) 2000, 2001 The Open Group.

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated as
directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted.
Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open. Distribution
of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is permitted subject to the distributor
meeting the following requirements :
 - this copyright notice is included unchanged with any binary distribution
 - the distributor notifies X/Open
 - an annual TET support agreement is in effect with X/Open for the period the product is being sold, or a one
off binary distribution fee equal to four years annual support is paid.

TETware Real Time Guide

June 2003 Page 41
The Open Group

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

Portions of this work contain code derived from other versions of the Test Environment Toolkit, which are
copyright

Copyright 1990,1992 Open Software Foundation
Copyright 1990,1992 Unix International
Copyright 1990,1992 X/Open Company Ltd.
Copyright 1991 Hewlett-Packard Co.
Copyright 1993 Information-Technology Promotion Agency, Japan
Copyright 1993 Sunsoft, Inc.
Copyright 1993 UNIX System Laboratories, Inc., a subsidiary of Novell Inc.
Copyright 1994,1995 UniSoft Ltd.

The unmodified source code of those works is freely available from ftp.xopen.org. The modified code
contained in TETware restricts the usage of that code as per this license.

++

TETware Real Time Guide

Page 42 June 2003
The Open Group

TETware Real Time Guide

June 2003 Page 43
The Open Group

Appendix B - Manufacturer-specific Subsystems

B.1 Introduction
An interface has been defined which enables TETware RT components to send requests to other
hardware and software subsystems. The implementation of the underlying functionality is specific
to the hardware and/or software involved, and is implemented by (or on behalf of) the suppliers of
these components. The following subsystems have been identified:

Communication subsystem Provides two-way communication between the Test Manager on the

host system and the TETware RT TCM/API on the realtime system.

Exec subsystem Loads a test case executable on to the realtime system and executes

it; and, provides a profile-independent mechanism for test case
termination on the realtime system.

Reset subsystem Resets the realtime system.

Sections in this Appendix describe each subsystem in more detail, together with the API functions
that must be provided by the user. In addition, some support functions provided by the Test
Manager are described.

Functions that are implemented on the host system are used by the Test Manager, and functions that
are implemented on the realtime system are used by the TETware RT version of the TCM and API
library.

B.2 Subsystem Descriptions

B.2.1 Communication Subsystem
This subsystem consists of two parts; one part on the host system and the other on the realtime
system. Each part is responsible for establishing a communication channel to the other part, and for
exchanging fixed length message packets over the channel. Typically this subsystem is
implemented using TCP/IP (if the realtime system supports it) or a connection between serial ports
on each system.

TETware Real Time Guide

Page 44 June 2003
The Open Group

B.2.2 Exec Subsystem

This subsystem consists of two parts; one part on the host system and the other on the realtime
system.

The part on the host system is responsible for copying a program image file onto the realtime
system and executing it. The part on the realtime system is used to terminate a running program, as
if exit() has been called by the program.

B.2.3 Reset Subsystem

This subsystem consists of a single part on the host system. It is responsible for initializing the
realtime system to a known state.

The following operations are defined:

• Soft reset;
• Hard reset.

Normally the Test Manager requests a soft reset if a test purpose times out, or if it is necessary to
interrupt the currently running test purpose for some reason. If the soft reset operation fails, the Test
Manager requests a hard reset. This process is analogous to sending a SIGTERM signal to a
process running on a UNIX system, followed up by a SIGKILL signal if the process has not
terminated within a reasonable time. If only one type of reset is possible for a particular realtime
system, then it should be performed in response to both types of reset request.

B.3 Source File Directories

Source files for the API functions described here reside in the following directories:

tet-root/src/tet3rt/msslib_native Directory containing source files for subsystems

that are implemented on the host system.

tet-root/src/tet3rt/msslib_rtsys Directory containing source files for subsystems

that are implemented on the realtime system.

TETware Real Time Guide

June 2003 Page 45
The Open Group

The TETware RT makefile scheme compiles the source files in these two directories using the
appropriate compiler.

B.4 API Functions

The sections that follow define the interface to the manufacturer-specific subsystems for a particular
combination of host system and realtime system.

An implementation of this API must be supplied for each realtime system that is to be used with
TETware RT. The API is used by the Test Manager to deliver tests to the realtime system, provide
services for the tests and receive results from the tests.

The API is designed to support different implementations of each facility. For example, the
Communication subsystem might be implemented using a connection either over sockets or over a
serial line.

The TETware RT distribution includes some example implementations of manufacturer-specific
subsystems, which might be used as a starting point for a practical implementation. These are
described in Sections B.12 to B.14 of this Appendix.

B.5 The tet3rt.h file

The file tet-root/inc/tet3/tet3rt.h contains declarations and definitions of all the
interfaces that constitute this API.

In addition to the interfaces described here, the tet3rt.h file also contains declarations and
definitions that are internal to TETware RT and are not part of this API. Users are reminded that
only interfaces described in this chapter should be used by manufacturer-specific subsystem
implementations.

B.6 Return Values

Each API call described here returns an integer whose value corresponds to one of the following
manifest constants:

TETware Real Time Guide

Page 46 June 2003
The Open Group

TET3RT_OK Function succeeded.
TET3RT_EOF A message operation encountered an End-of-File condition.
TET3RT_ER_ALREADY_OPEN The communication channel is already open.
TET3RT_ER_CONFIG Configuration variable error.
TET3RT_ER_EXEC The program image could not be loaded on to the realtime

system and/or executed.
TET3RT_ER_INVAL Invalid parameter to function call.
TET3RT_ER_IO An I/O error occurred.
TET3RT_ER_NOT_OPEN The communication channel is not currently open.
TET3RT_ER_RESET The realtime system could not be reset in the manner

specified.
TET3RT_ER_RTSYS_ID Bad rtsys_id argument to function call.
TET3RT_ER_SYSERROR Error in system call (e.g., out of memory, can’t fork, etc.)
TET3RT_ER_TIMEDOUT Request timed out.

In the sections that follow, the possible return values for each function are included in the function’s
description.

B.7 Implementation Notes

B.7.1 Introduction
These notes are for guidance of implementers of APIs for all of the subsystems described here.
Where appropriate, other implementation notes are included in the descriptions of the APIs for
individual subsystems that follow.

B.7.2 Conditional Compilation
Conditional compilation may be used when it is necessary to provide different implementations of
subsystems that run on the realtime system to support different POSIX realtime profiles. The
TETware RT makefile scheme provides a compiler definition called TET_POSIX13_PROFILE
whose value is set to the POSIX profile of the realtime system for which the TCM/API is being
built. The following example illustrates how this definition might be used to determine whether or
not multiple processes are supported on the realtime system:

TETware Real Time Guide

June 2003 Page 47
The Open Group

#if TET_POSIX13_PROFILE == 51 || TET_POSIX13_PROFILE == 52

/* single process profile */
#else

/* multiple process profile */
#endif

B.7.3 Error Reporting

Each API function returns a value to indicate the success or failure of the requested operation.
However, some of the error returns defined here can only convey fairly general information;
particularly those that describe hardware or operating system errors.

When an API function is able to provide more information relating to the reason for a failure, it
should do so by calling the TETware RT function tet3rt_mss_printf(). This function is
described in Section B.11 ‘‘TETware RT Functions’’ later in this Appendix.

For example, suppose that the API function tet3rt_msgtm_open() is implemented using
sockets. Such an implementation might typically make calls to socket(), bind() and
listen(). If any of these calls fails, tet3rt_msgtm_open() would return
TET3RT_ER_IO.

However, in order to provide more precise information in the event of failure of any of the
underlying system calls, the API function should first make a call to tet3rt_mss_printf()
to log a message stating the nature of the problem. Such a message would typically include a string
describing the operating system error return, such as the string returned by a call to strerror().

B.7.4 Use of Configuration Variables

A subsystem may choose to define configuration variables for its own use. In order to prevent name
clashes, the names of variables used by manufacturer-specific subsystems should start with the
prefix TET3RT_MSS_.

The value of a variable may be obtained by calling the TETware API function tet_getvar()
on the host system. This function is described in the section entitled ‘‘Accessing configuration
variables’’ in the TETware Programmers Guide.

TETware Real Time Guide

Page 48 June 2003
The Open Group

Sometimes a subsystem may need to override the value of a parameter that the Test Manager passes
to one of its functions. If necessary it can define a subsystem-specific configuration variable for this
purpose.

For example: suppose a particular implementation of the Reset subsystem needed to know the name
of a serial device to be used when performing a reset operation. In this case, the Reset subsystem
might define an additional configuration parameter named (say) TET3RT_MSS_RESET_TTY and
use the corresponding value when sending a reset request to the realtime system.

B.7.5 Signal Handling

Functions in this API should not ignore signals.

Functions in this API may block a signal for a short time in order to complete some atomic or time-
critical operation. A signal should not be blocked for the duration of some operation, which might
take some time to complete7. For example: a call to select() or accept(), calls to read()
or write() on a slow device, etc. If a function in this API changes the disposition of a signal, the
disposition should be restored. If a signal is received while a call to one of these API functions is in
progress, the caller’s signal handler may return to the caller via a call to siglongjmp(). This
will cause the calling process to perform some cleanup operations (if possible) and exit.

The only ‘‘expected’’ signal that might cause this action to occur is the SIGTERM signal that
might be delivered by TETware in response to a User Abort request. See Section 6.1.8 entitled
‘‘User Abort processing’’ earlier in this guide.

If a manufacturer-specific subsystem needs to perform additional cleanup operations on receipt of a
SIGTERM signal, it should check the current disposition of the signal and, if it is not being
ignored, save the current handler and install a new one. If subsequently receipt of a SIGTERM
signal results in the subsystem-specific handler being called, the handler should:

1. Perform any required cleanup processing.

2. Restore the previous signal disposition that was saved when the subsystem-specific handler
was installed.

7 Note that the message send and receive functions in the Communication subsystem do not need to concern

themselves with signals, except to call tet3rt_block_signals() in the message receive function
immediately before receiving a message packet. Further details are presented in the descriptions of
tet3rt_msgtm_recv() and tet3rt_msgtm_send() later in this Appendix.

TETware Real Time Guide

June 2003 Page 49
The Open Group

3. Unblock SIGTERM, then send a SIGTERM to the current process. If some error results in
the handler continuing execution after this point, the handler should print a suitable
diagnostic and exit with a status of 1.

If a subsystem needs to perform this kind of processing, it should take care not to install its own
signal handler more than once.

B.7.6 Trace Debugging

TETware RT includes a trace subsystem that can be used for debugging purposes. On the host
system, the Test Manager implements this subsystem. On the realtime system, the TETware RT
TCM/API implements this subsystem.

When an API function wishes to generate a trace message, it may do so by calling the TETware RT
function tet3rt_mss_trace(). In addition, there are some other functions that may be useful
when printing trace messages. All these functions are described in Section B.11 ‘‘TETware RT
Functions’’ later in this Appendix.

B.8 Communication Subsystem API

B.8.1 Introduction

The Communication subsystem is responsible for communications between the Test Manager on
the host system and the TETware RT TCM/API on the realtime system. After the Test Manager has
loaded and executed a test case on the realtime system, it opens a communication channel to the
realtime system. At the same time the TCM/API on the realtime system opens the channel to the
host system. Once the channel is open, the Test Manager and the TCM/API use it to exchange fixed
length message packets. Each packet includes a magic number and a checksum so that TETware RT
processes can readily detect communication errors. When the channel is no longer required, each
side closes the channel. Typical implementations of this subsystem might use TCP/IP or serial port
communications.

B.8.2 tet3rt_msgtm_open()

Synopsis

int tet3rt_msgtm_open(char *rtsys_id, int timeout);

TETware Real Time Guide

Page 50 June 2003
The Open Group

Description
This function should be implemented on the host system. A call to this function opens a
communication channel from the Test Manager to the realtime system. Since a Test Manager only
tests a single realtime system, only one communication channel can be open at one time. The Test
Manager calls this function after it has loaded and executed a test case on the realtime system.

Parameters

rtsys_id Identifier for the realtime system to which this call applies.

The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS_ID
variable in the execute mode configuration.

timeout Specifies the number of seconds to wait for the open to
complete.

Return Value

TET3RT_OK The communication channel was opened successfully.

TET3RT_ER_RTSYS_ID rtsys_id does not identify a known realtime system.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
rtsys_id is NULL or points to an empty string.

TET3RT_ER_IO An I/O error occurred while opening the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

TET3RT_ER_ALREADY_OPEN The communication channel is already open.

TET3RT_ER_CONFIG A required configuration variable is not defined or is set to an
invalid value.

TET3RT_ER_TIMEDOUT The communication channel could not be opened within the
specified time.

Implementation Notes
If a socket is to be used for the communication channel, this call typically allocates a socket, listens
for connections and accepts a connection when one arrives. If the subsystem uses a socket in
passive mode, this leaves the realtime system free to choose whether or not to actually make the
connection.

TETware Real Time Guide

June 2003 Page 51
The Open Group

Once a channel has been opened, the subsystem should cache details of this channel for use in
subsequent API calls to this subsystem.

B.8.3 tet3rt_msgtm_close()

Synopsis

int tet3rt_msgtm_close(void);

Description

This function should be implemented on the host system.

A call to this function closes the communication channel, which was opened by the last call to
tet3rt_msgtm_open().

Return Value

TET3RT_OK The communication channel was closed successfully.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_IO An I/O error occurred while closing the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

Implementation Notes

If there are requests waiting to be processed at the time of this call, they should be read and
discarded before the call returns.

The subsystem may delete any cached information about the communication channel after a call to
this function.

B.8.4 tet3rt_msgtm_recv()

Synopsis

int tet3rt_msgtm_recv(char *msgbuf, int timeout);

TETware Real Time Guide

Page 52 June 2003
The Open Group

Description

This function should be implemented on the host system.

A call to this function reads a message packet of length TET3RT_MSG_LEN bytes from the
realtime system, with timeout. This function returns when a packet has been received, or when the
timeout expires.

Parameters

msgbuf Pointer to a buffer of at least TET3RT_MSG_LEN bytes

long, into which the implementation should put the received
packet.

timeout defines the number of seconds to wait for a packet to arrive.
If no packet can be received within the specified number of
seconds, the call should return a value of
TET3RT_ER_TIMEDOUT. If timeout is zero, the call
should return a packet if one is pending, otherwise it should
return immediately.

Return Value

TET3RT_OK A packet was received successfully.

TET3RT_EOF EOF was encountered on the communication channel.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_TIMEDOUT The timeout expired before a packet was received.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
msgbuf is NULL; or, if timeout is negative.

TET3RT_ER_IO An I/O error occurred on the communication channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

TETware Real Time Guide

June 2003 Page 53
The Open Group

Implementation Notes
When the Test Manager is operating in server mode, it calls tet3rt_msgtm_recv() with
signals unblocked. The implementation should wait until a message packet is available for reading,
then call the TETware RT function tet3rt_block_signals() immediately before reading
the packet, so as to ensure that the read operation is not interrupted by a signal that is being caught
by the Test Manager.

B.8.5 tet3rt_msgtm_send()

Synopsis

int tet3rt_msgtm_send(char *msgbuf);

Description

This function should be implemented on the host system.

A call to this function sends a message packet of length TET3RT_MSG_LEN bytes to the realtime
system.

Parameters

msgbuf Pointer to a buffer containing the packet containing

TET3RT_MSG_LEN bytes to be sent to the realtime system.

Return Value

TET3RT_OK The packet was sent successfully.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
msgbuf is NULL.

TET3RT_ER_IO An I/O error occurred on the communication channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

TETware Real Time Guide

Page 54 June 2003
The Open Group

B.8.6 tet3rt_msgrt_open()

Synopsis

int tet3rt_msgrt_open(void);

Description

This function should be implemented on the realtime system.

A call to this function opens a communication channel from the TCM on the realtime system to the
Test Manager on the host system. Since a Test Manager only tests a single realtime system, only
one communication channel can be open at one time.

The TCM calls this function soon after it starts executing.

Return Value

TET3RT_OK The communication channel was opened successfully.

TET3RT_ER_IO An I/O error occurred while opening the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

TET3RT_ER_ALREADY_OPEN The communication channel is already open.

Implementation Notes

If a socket is to be used for the communication channel, this call typically allocates a socket and
connects to the Test Manager on the host system.

Once a channel has been opened, the subsystem should cache details of this channel for use in
subsequent API calls to this subsystem.

If calls to trace debugging functions are to be used in manufacturer-specific code on the realtime
system, this function should set the tet3rt_mss_traceflag variable before it returns. Refer
to the description of tet3rt_mss_traceflag later in this chapter for further details.

TETware Real Time Guide

June 2003 Page 55
The Open Group

B.8.7 tet3rt_msgrt_close()

Synopsis

int tet3rt_msgrt_close(void);

Description

This function should be implemented on the realtime system.

A call to this function closes the communication channel, which was opened by the last call to
tet3rt_msgrt_open().

Return Value

TET3RT_OK The communication channel was closed successfully.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_IO An I/O error occurred while closing the communication
channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

Implementation Notes

If there are requests waiting to be processed at the time of this call, they should be read and
discarded before the call returns. The subsystem may delete any cached information about the
communication channel after a call to this function.

B.8.8 tet3rt_msgrt_send()

Synopsis

int tet3rt_msgrt_send(char *msgbuf);

TETware Real Time Guide

Page 56 June 2003
The Open Group

Description

This function should be implemented on the realtime system.

A call to this function sends a message packet of length TET3RT_MSG_LEN bytes to the Test
Manager on the host system.

Parameters
msgbuf Pointer to a buffer containing the packet containing

TET3RT_MSG_LEN bytes to be sent to the Test Manager.

Return Value

TET3RT_OK The packet was sent successfully.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
msgbuf is NULL.

TET3RT_ER_IO An I/O error occurred on the communication channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

B.8.9 tet3rt_msgrt_recv()

Synopsis

int tet3rt_msgrt_recv(char *msgbuf, int timeout);

Description

This function should be implemented on the realtime system.

A call to this function reads a message packet of length TET3RT_MSG_LEN bytes from the Test
Manager on the host system, with timeout. This function returns when a packet has been received,
or when the timeout expires.

TETware Real Time Guide

June 2003 Page 57
The Open Group

Parameters
msgbuf Pointer to a buffer of at least TET3RT_MSG_LEN bytes

long, into which the implementation should put the received
packet.

timeout Defines the number of seconds to wait for a packet to arrive.
If no packet can be received within the specified number of
seconds, the call should return a value of
TET3RT_ER_TIMEDOUT. If timeout is zero, the call
should return a packet if one is pending, otherwise it should
return immediately.

Return Value

TET3RT_OK A packet was received successfully.

TET3RT_EOF EOF was encountered on the communication channel.

TET3RT_ER_NOT_OPEN There is no currently open communication channel.

TET3RT_ER_TIMEDOUT The timeout expired before a packet was received.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
msgbuf is NULL; or, if timeout is negative.

TET3RT_ER_IO An I/O error occurred on the communication channel.

TET3RT_ER_SYSERROR A system error occurred (other than an I/O error).

Implementation Notes

When the TCM is operating in server mode, it calls tet3rt_msgrt_recv() with signals
unblocked. The implementation should wait until a message packet is available for reading, then
call the TETware RT function tet3rt_block_signals() immediately before reading the
packet, so as to ensure that the read operation is not interrupted by a signal that is being caught by
the TCM.

TETware Real Time Guide

Page 58 June 2003
The Open Group

B.9 Exec Subsystem API

B.9.1 Introduction

The Exec subsystem provides support for executing processes on the realtime system.

B.9.2 tet3rt_rt_exec()

Synopsis

int tet3rt_rt_exec(char *rtsys_id, char *tcname);

Description

This function should be implemented on the host system. A call to this function copies a test case
executable to the realtime system and executes it.

Parameters

rtsys_id Identifier for the realtime system to which this call applies.

The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS_ID
variable in the execute mode configuration.

tcname Name of the file containing the test case to be copied to the
realtime system.

Return Value

TET3RT_OK The test case was copied and executed successfully.

TET3RT_ER_RTSYS_ID rtsys_id does not identify a known realtime system.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if one
of the arguments is NULL or points to an empty string.

TETware Real Time Guide

June 2003 Page 59
The Open Group

TET3RT_ER_CONFIG A required configuration variable is not defined or is set to an
invalid value.

TET3RT_ER_EXEC An error occurred while the test case was being copied to,
and/or executed on, the realtime system.

B.9.3 tet3rt_rt_exit()

Synopsis

int tet3rt_rt_exit(int status);

Description

This function should be implemented on the realtime system.

A call to this function terminates the calling process, as if by a call to exit(). This function is
defined in order to provide the TETware RT TCM/API with a consistent way of terminating,
irrespective of the POSIX profile supported by the realtime system. (This is because the exit()
function is not specified for some of the POSIX realtime profiles.)

It is not necessary for this function to communicate the process exit status back to the Test Manager
since, by the time the TCM/API calls this function, it has already done so.

Parameters

status The process exit status. Whether or not the function can do

anything useful with this value depends on the
implementation.

Return Value

This function must not return.

Implementation Notes

On profiles which only support a single process and where exit() or some equivalent function is
not implemented, this function might simply go into an infinite loop. In this case, a subsequent call
to tet3rt_rt_exec() should first perform an appropriate reset operation in order to gain
control of the realtime system before loading and executing the test case.

TETware Real Time Guide

Page 60 June 2003
The Open Group

B.10 Reset Subsystem API

B.10.1 Introduction

This subsystem provides the facility to reset the realtime system.

B.10.2 tet3rt_rt_reset()

Synopsis

int tet3rt_rt_reset(char *rtsys_id, int action);

Description

This function should be implemented on the host system.

Parameters

rtsys_id Identifier for the realtime system to which this call applies.

The format of this identifier is defined by the
implementation. The Test Manager obtains the value for this
parameter from the value of the TET3RT_RTSYS_ID
variable in the execute mode configuration.

action A value that indicates the type of reset operation to be
performed (see below).

The following values are defined for action:

TET3RT_SOFT_RESET Soft reset.
The Test Manager uses this form of reset when a test purpose
function times out or if execution must be interrupted for
some other reason (e.g., on receipt of a User Abort
instruction from tcc).

TETware Real Time Guide

June 2003 Page 61
The Open Group

TET3RT_HARD_RESET Hard reset.

The Test Manager uses this form of reset when a previous
soft reset operation failed.

Return Value

TET3RT_OK The request completed successfully.

Note: it may not always be possible to determine whether or
not the reset has been successful.

TET3RT_ER_RTSYS_ID rtsys_id does not identify a known realtime system.

TET3RT_ER_INVAL A parameter is invalid. This error should be returned if
rtsys_id is NULL or points to an empty string.

TET3RT_ER_CONFIG A required configuration variable is not defined or is set to an
invalid value.

TET3RT_ER_RESET The realtime system could not be reset in the manner
specified.

B.11 TETware RT Functions

B.11.1 Introduction

These functions may be called from manufacturer-specific API functions. Except where indicated,
they are provided both in the Test Manager on the host system, and in the TETware RT TCM/API
on the realtime system.

These functions are declared in the file tet3rt.h.

B.11.2 Defined Constants

The following constants may be used in manufacturer-specific API functions. They are defined in
the file tet3rt.h.

TETware Real Time Guide

Page 62 June 2003
The Open Group

TET3RT_LNUMSZ Maximum number of characters (including the sign and the
terminating NULL) in the string representation of a long
decimal value.

TET3RT_LONUMSZ Maximum number of characters (including the terminating
NULL) in the string representation of a long octal value.

TET3RT_LXNUMSZ Maximum number of characters (including the terminating
NULL) in the string representation of a long hexadecimal
value.

The file <limits.h> must be included before tet3rt.h in order to make these values visible.

B.11.3 Error Reporting

B.11.3.1 tet3rt_mss_printf()

Synopsis

void tet3rt_mss_printf(char *format, ...);

Description

This function may be called from a manufacturer-specific subsystem to report a detailed error
message. Where possible, a message reported using this function is printed in the journal. If
necessary, a long message may be divided into more than one line by including embedded new lines
at suitable points.

Parameters

The parameters to this function are the same as for printf().

Return Value
This function does not return a value.

TETware Real Time Guide

June 2003 Page 63
The Open Group

B.11.3.2 tet3rt_mss_generror()

Synopsis

void tet3rt_mss_generror(int err, char *file, int line,
char *s1, char *s2);

Description

This function is only provided in the Test Manager.
This function may be used to report a manufacturer-specific subsystem error message which
consists of:

• the source file name and the line number where the error was detected;
• one or two user-supplied error message strings;
• a system error string obtained from a call to strerror().

Typically it is invoked via a macro, which should be defined using the following code fragment:

/* error reporting */
static char srcFile[] = __FILE__;
#undef tet3rt_error /* remove the definition in tet3rt.h */
#define tet3rt_error(err, s1, s2) \

tet3rt_mss_generror((err), srcFile, __LINE__, (s1), (s2))

When this is done, an error message may be generated using code similar to the following:
if (fopen(file, "r") == (FILE *) 0) {

tet3rt_error(errno, "can’t open", file);
/* ... */
}

Parameters
err The value of errno to be used when generating the system

error message string to be appended to the message. If err
is zero, no system error message string is generated.

file The name of the source file to be used in the error message.
Normally this is derived from the __FILE__ macro that is
defined by the C preprocessor.

TETware Real Time Guide

Page 64 June 2003
The Open Group

line The line number to be used in the error message. Normally
this is derived from the __LINE__ macro that is defined by
the C preprocessor.

s1 The first part of the error message. This string must always
be supplied.

s2 The second part of the error message. If no second part is to
be printed, this parameter may be NULL.

Return Value

This function does not return a value.

B.11.4 Trace Debugging

B.11.4.1 tet3rt_mss_trace()

Synopsis

void tet3rt_mss_trace(int level, char *format, ...);

Description

This function enables a manufacture-specific subsystem to print a trace message using the trace
debugging system in the calling process.

Parameters

level Defines the trace level for this message, between 1 and 10.

Generally speaking, a higher value should be used to indicate
a greater level of verbosity.

format The format to be used for the message, after the style of
printf().

Return Value

This function does not return a value.

TETware Real Time Guide

June 2003 Page 65
The Open Group

B.11.4.2 tet3rt_mss_traceflag

Synopsis

extern int tet3rt_mss_traceflag;

Description

This variable is only implemented on the realtime system.

The trace system on the realtime system uses the value stored in this variable to decide whether or
not MSS trace messages should be printed.

The Communication subsystem on the host system should obtain the value of the
TET3RT_MSS_RTSYS_TRACE variable in the execute mode configuration and send it to the
Communication subsystem on the realtime system, which should then set
tet3rt_mss_traceflag to this value. When this is done, the value specified by the
configuration variable can be used to control the generation of manufacturer-specific subsystem
trace messages on the realtime system.

B.11.4.3 tet3rt_mss_tdump()

Synopsis

void tet3rt_mss_tdump(int level, char *buf, int len, char *title);

Description

This function enables a manufacturer-specific subsystem to request the trace debugging system in
the calling process to print a hex dump of an area of memory.

Parameters

level Defines the trace level for this memory dump, between 1 and

10. By convention, memory dumps are printed at trace level
10.

buf Pointer to the first byte to be dumped.

TETware Real Time Guide

Page 66 June 2003
The Open Group

len Number of bytes to be dumped.

title Text to be printed before the memory dump. If title is
NULL, a default title is printed.

Return Value

This function does not return a value.

B.11.4.4 tet3rt_prmsser()

Synopsis

char *tet3rt_prmsser(int err);

Description

This function returns a printable representation of an API function return code. It may be used when
constructing trace messages and other diagnostic strings.

Parameters

err The API function return value whose symbolic value is to be

printed.

Return Value

Pointer to a string containing the symbolic value corresponding to err.

B.11.5 Signal Handling

B.11.5.1 tet3rt_block_signals()

Synopsis

void tet3rt_block_signals(void);

TETware Real Time Guide

June 2003 Page 67
The Open Group

Description

A call to this function blocks signals that are being caught by the calling process.

The functions tet3rt_msgtm_recv() and tet3rt_msgrt_recv() should call this
function after they have determined that a message packet is available for reading, but before the
read operation starts. This should be done in order to ensure that the imminent read operation is not
interrupted by signals that are being caught by the calling process.

Return Value

This function does not return a value.

B.12 Example MSS Implementations

This Appendix describes the interfaces that must be implemented by the user for each realtime
system on which test cases are to be executed by TETware RT. The TETware RT distribution
contains some example MSS implementations that might be used as a starting point when
customizing TETware RT to work with a particular realtime system.

In each example the Communication subsystem is a complete implementation, whereas the other
subsystems are trivial implementations or only provide functionality sufficient for use during the
TETware RT development process. Each example is described in the sections that follow.

B.13 Example Socket-based Implementation
B.13.1 Introduction
This MSS implementation might be suitable for use with a realtime system that supports TCP/IP.
The source code for this example is in the following directories:

tet-root/src/tet3rt/msslib_native/socket_example
Test Manager components.

tet-root/src/tet3rt/msslib_rtsys/socket_example
Realtime system components.

TETware Real Time Guide

Page 68 June 2003
The Open Group

B.13.2 Communication Subsystem
B.13.2.1 Subsystem Description

This subsystem uses sockets to communicate between the Test Manager on the host system and test
cases running on a realtime system. The host name of the realtime system is specified by the
TET3RT_RTSYS_ID variable in the execute mode configuration.

When the Test Manager calls tet3rt_msgtm_open(), the implementation acquires a stream
socket and binds it to an ephemeral TCP port (the listen port). Then it forks a child process. This
child process acquires a datagram socket and uses it to send configuration packets to a pre-defined
UDP port (the configuration port) on the realtime system. The port number to use is hard-coded in
the source code. Each configuration packet contains the host system’s IP address and the port
number of the listen port. At the same time the parent process listens for incoming connections on
the listen port.

Meanwhile the test case on the realtime system acquires a datagram socket, binds it to the
configuration port and waits for configuration packets to arrive from the Test Manager. When one
arrives, the test case uses a stream socket to connect to the Test Manager using the IP address and
port number specified in the configuration packet.

When the connection request arrives, the Test Manager accepts it in the parent, closes the listen
socket and kills the child process. Then the connection is used to exchange message packets
between the Test Manager on the host system and the test case on the realtime system.

B.13.2.2 Subsystem-specific Configuration Variables

This implementation of the Communication subsystem uses the following configuration variables:

TET3RT_MSS_RTSYS_IP_ADDR

This variable can be used to specify the IP address of the
realtime system. When this variable is defined, the IP address
specified is used instead of the one that would otherwise be
derived from the value of TET3RT_RTSYS_ID.

Use of this variable is optional. It should only be defined
when the realtime system’s IP address cannot be derived
from the value of TET3RT_RTSYS_ID.

TET3RT_MSS_SERVER_IP_ADDR

This variable can be used to specify the IP address that is to
be used by test cases on the realtime system when connecting
to the Test Manager on the Host system. When this variable

TETware Real Time Guide

June 2003 Page 69
The Open Group

is defined, the IP address specified is used instead of the one
that would otherwise be derived from the value of the host
system’s hostname.

Use of this variable is optional. It should only be defined
when:

• the host system’s hostname cannot be resolved to a
single IP address, or

• the host system has more than one network interface
and the IP address associated with the hostname refers
to an interface other than the one to which the realtime
system is connected.

TET3RT_MSS_RTSYS_TRACE

This variable specifies the trace level to be used in the MSS
code on the realtime system. Use of this variable is optional;
if not defined, its value defaults to zero.

B.13.3 Exec Subsystem
B.13.3.1 Test Manager Side

This is a simple implementation that uses rcp to copy a test case to the realtime system, and rsh
to execute the test case on the realtime system. It is useful mainly when using a UNIX system to
emulate the role of a realtime system. It is not suitable for use with an actual realtime system or in a
production-testing environment.

B.13.3.2 Realtime System Side

This is a trivial implementation. On profile 51 and 52 systems, a call to tet3rt_rt_exit()
goes into an infinite loop round a call to pause(). On profile 53 and 54 systems, a call to
tet3rt_rt_exit() simply calls exit().

If this implementation is used as the basis of a practical one, the code executed on profile 51 and 52
systems should be replaced by a call to a (platform-specific) process exit function, if there is one.

B.13.4 Reset Subsystem
This is a simple implementation that works in conjunction with the simple exec subsystem based on
rcp and rsh. In this implementation, a call to tet3rt_rt_reset() simply sends a signal to
a currently running rsh process. As with the simple exec subsystem described previously, this

TETware Real Time Guide

Page 70 June 2003
The Open Group

implementation is useful mainly when using a UNIX system to emulate the role of a realtime
system. It is not suitable for use with an actual realtime system or in a production-testing
environment.

B.14 Example Serial Line Implementation
B.14.1 Introduction
This MSS implementation might be suitable for use with a realtime system which supports a serial
port but which does not support TCP/IP. The source code for this example is in the following
directories:

tet-root/src/tet3rt/msslib_native/serial_example

Test Manager components.
tet-root/src/tet3rt/msslib_rtsys/serial_example

Realtime system components.

B.14.2 Communication Subsystem
This subsystem uses a serial line to communicate between the Test Manager on the host system and
test cases running on a realtime system. The name of the serial line to use on the host system is
specified by the TET3RT_RTSYS_ID variable in the execute mode configuration. The name of
the serial line to use on the realtime system, and other serial line parameters to use on both systems,
are hard coded in the source files.

B.14.3 Exec Subsystem
B.14.3.1 Test Manager Side

This is a trivial implementation. A call to tet3rt_rt_exec() simply prompts the user to
perform the required operations by hand. This implementation would not really be suitable for use
in a production-testing environment.

B.14.3.2 Realtime System Side

The implementation of tet3rt_rt_exit() is the same as that provided in the example socket-
based implementation.

TETware Real Time Guide

June 2003 Page 71
The Open Group

B.14.4 Reset Subsystem
This is a trivial implementation. A call to tet3rt_rt_reset() simply prompts the user to
perform the required operations by hand. This implementation would not really be suitable for use
in a production-testing environment.

