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1. Introduction

1.1 Preface
This document is the TETware User Guide.

TETware is implemented on UNIX operating systems and also on the Windows NT and
Windows 95 operating systems. It includes all of the functionality of the Test Environment
Toolkit Release 1.10 (TET), the Distributed Test Environment Toolkit Version 2 Release 2.3
(dTET2) and the Extended Test Environment Toolkit Release 1.10.3 (ETET), together with a
number of new features.

Throughout this document, the Windows NT and Windows 95 operating systems are referred to
collectively as Win32 systems. The individual system names are only used when it is necessary
to distinguish between them.

1.2 Audience
This document is intended to be read by systems administrators who will install TETware on
their computer systems, and by software testing engineers who will use TETware to run
verification test suites.

Test suite authors should refer to the TETware Programmers Guide for information about how to
use the TETware Application Program Interface.

1.3 Conventions used in this guide
The following typographic conventions are used throughout this guide:

� Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

� The names of variables are presented in italic font . You should substitute the variable’s
value when typing a command that contains a word in this font.

� Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a \ character
for formatting purposes. If you type such an example, you should type it in all on one line and
omit the \ character.

1.4 Related documents
Refer to the following documents for additional information about TETware:

� Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
is implemented.

� Test Environment Toolkit: TETware Programmers Guide

� Test Environment Toolkit: TETware Knowledge Base

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use
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each new release of TETware.

1.5 Problem reporting
If you have subscribed to TETware support and you encounter a problem while installing and
using TETware, you can send a support request by electronic mail to the address given in the
TETware Release Notes. Please follow the instructions contained in the release notes about how
to submit such a request; in particular, please be sure to include all the information asked for by
these instructions when submitting the request.
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2. TETware overview

2.1 Introduction
The purpose of TETware is to provide a uniform framework, or test scaffold, into which both
non-distributed and distributed test suites can be incorporated. By providing such a scaffold, test
suites from different vendors can share a common interface allowing for, among other things,
ease of portability.

In this context, and throughout this guide, the term non-distributed test means a test which
executes on a single computer system. A non-distributed test can execute on the local system
(that is: the system on which the TETware Test Case Controller is executing) or on a remote
system (that is: a system other than the one on which the TETware Test Case Controller is
executing).

Likewise, the term distributed test means a test which consists of several parts; each test part
executes concurrently on a different computer system and contributes to the overall test result.
Typically, distributed tests are used to verify some kind of interaction between two or more
systems.

2.2 Test suite structure
A test suite is the largest grouping of tests that can be processed by the TETware Test Case
Controller.

A test suite is made up of one or more test cases. A test case is the smallest test program unit
that can be built or cleaned up by the Test Case Controller.

A test case consists of one or more invocable components. An invocable component is the
smallest test program unit that can be executed by the Test Case Controller.

An invocable component consists of one or more test purposes. A test purpose typically tests an
individual element of system operation for conformance to some statement of required behaviour,
and yields a result indicating whether or not the element passed the test. Often, an invocable
component contains a single test purpose.

A distributed test purpose is a test purpose which consists of several parts and each part
executes on a different computer system. Each part of a distributed test purpose submits a
partial result which indicates the success or failure of that part of the test purpose. These partial
results are gathered from the various parts of the test purpose and, after arbitration between the
partial results, a consolidated result is generated for the test purpose which appears in the test
case journal file. A description of the way in which this arbitration is performed is presented in
the section entitled ‘‘Making journal entries’’ in the TETware Programmers Guide.

A test scenario is a list of one or more invocable components from a test suite that are processed
by a particular Test Case Controller invocation. A test suite often has a scenario named all
associated with it; this scenario simply lists all the invocable components in the test suite.
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2.3 TETware versions
TETware is available in one of two versions. One version is called TETware-Lite and is able to
process non-distributed test cases on a single computer system (the local system). The other
version is called Distributed TETware and is able to process both distributed and non-
distributed test cases on the local system and on one or more remote systems.

2.4 Components
TETware-Lite includes the following components:

� A Test Case Controller providing support for the building, execution, and clean-up of test
scenarios. The name of this component is tcc1.

� Test Case Managers and Application Programming Interface libraries which can be used to
build test cases written in C, C++, Shell, Korn Shell, Perl and Java. These components are
not executable programs but are instead linked or otherwise included in each user-supplied
test case.

����������������
1. On Win32 systems, executable program files have the suffix .exe.
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The names of these components are as follows2:

tcm.o C Test Case Manager
tcmchild.o C API child process interface module
libapi.a C API function library
thrtcm.o Thread-safe C Test Case Manager3

thrtcmchild.o Thread-safe C API child process interface module
libthrapi.a Thread-safe C API function library
Ctcm.o C Test Case Manager
Ctcmchild.o C++ API child process interface module
Cthrtcm.o Thread-safe C++ Test Case Manager
Cthrtcmchild.o Thread-safe C++ API child process interface module
tcm.sh Shell Test Case Manager
tetapi.sh Shell API function library
tcm.ksh Korn Shell Test Case Manager
tetapi.ksh Korn Shell API function library
tcm.pl Perl Test Case Manager
api.pl Perl API function library
jet.jar Java Test Case Manager and API class library
libjapi.so Java API support function library for test cases4

libjapichild.so Java API support function library for subprograms5

� Support tools for use when processing Java test cases. The names of these components are:
jet-build, jet-exec, jet-clean and jet-spawn.

In addition to the components described for TETware-Lite, Distributed TETware includes the
following components:

� A Test Case Controller daemon which performs test case processing actions on behalf of
the Test Case Controller (tccd).

� A Test Case Controller daemon bootstrap program for use on Windows NT systems
(tccdstart).

� A Synchronisation daemon which handles synchronisation requests from different parts of
a distributed test case (tetsyncd).

� An Execution Results daemon which handles journal entries made by test cases
(tetxresd).

����������������
2. The .o and .a suffixes shown here are the ones that are used on UNIX operating systems. On Win32 systems the

.o files instead have the suffix .obj and the .a files instead have the suffix .lib. All the other suffixes are the
same on each operating system.

3. On UNIX systems the thread-safe components can be built to support either POSIX threads or UI threads (but not
both at the same time).
On Win32 systems the thread-safe components are built for use with the multi-threaded DLL version of the
C runtime support library.

4. On Win32 systems the name of this component is japi.dll.

5. On Win32 systems the name of this component is japichild.dll.
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� The C API includes a remote executed process interface module (tcmrem.o).

� An exec tool called tet_start which enables user interaction with parts of a distributed
test case.

In Distributed TETware, the C, C++ and Java APIs may be used to build both distributed and
non-distributed test cases. The other APIs may be used to build non-distributed test cases which
may, nevertheless, be processed on both the local system and on remote systems.

The distributed Test Case Controller can process test cases written to use either the Distributed or
Lite versions of all the APIs. However, the TETware-Lite Test Case Controller cannot process
test cases written to use the Distributed versions of the C, C++ and Java APIs.

Although Distributed TETware is a superset of TETware-Lite, the way in which the Test Case
Controller operates is rather different in the two TETware versions, as follows:

� In TETware-Lite, the Test Case Controller itself performs all the actions that are required
to process test cases.

� By contrast, Distributed TETware uses a client-server architecture. The distributed version
of the Test Case Controller does not itself perform the actions required to process test
cases. Instead, it issues requests to servers running on each participating system which
perform the required actions in its behalf. Thus the distributed version of the Test Case
Controller can process test cases on the local system, on one or more remote systems, or on
some combination of the two.

Reference manual pages for TETware programs and file formats are presented in an appendix to
this guide. Test suite authors should refer to the TETware Programmers Guide for information
about the TETware APIs.

2.5 Features and facilities
TETware provides facilities to execute test cases in several ways as follows. All these facilities
are available in Distributed TETware. Facilities marked with a † are not available in TETware-
Lite.

� Execution of non-distributed test cases on the local system (i.e., local test cases).

� Execution of non-distributed test cases on a single remote system (i.e., remote test cases).†

� Concurrent execution of non-distributed test cases on several remote systems.†

� Execution of distributed test cases with the parts of each test case executing simultaneously
on either the local system and one or more remote systems, or entirely on two or more
remote systems.†

� Execution of a single test case selected at random from a list of test cases.

� Combinations of the above elements executing in parallel.

� Sequences of the above elements executing a specified number of times or until some time
period has expired.
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2.6 Simple TETware architecture diagrams

2.6.1 Introduction
The diagrams presented in this section provide a simplified view of how the different TETware
components relate to each other. More complete diagrams are presented in the appendix entitled
‘‘Conceptual models used by TETware’’ in the TETware Programmers Guide.

2.6.2 TETware-Lite architecture
The following diagram provides a simplified view of how the different components relate to each
other in TETware-Lite:

scenario
file

tcc
��
�
�
��������������

��
�
���������������

TCM
��
�
�
��������������

��
�
���������������

results
file

tcc – TETware-Lite Test Case Controller
TCM – Test Case Manager + test case parts

It will be seen that all the processing takes place on a single system (the local system) and that a
client/server architecture is not used. Thus, remote and distributed test cases cannot be processed
by TETware-Lite.
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2.6.3 Distributed TETware architecture
The following diagram provides a simplified view of how the different components relate to each
other when a distributed test case is executed by Distributed TETware:

Local System

tccd
��
�
�
��������������

��
�
���������������

TCM
��
�
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��������������

��
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���������������
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file

tcc
��
�
�
��������������

��
�
���������������

tetsyncd
��
�
�
��������������

��
�
���������������

tetxresd
��
�
�
��������������

��
�
���������������

results
file

Remote System(s)

tccd
��
�
�
��������������

��
�
���������������

TCM
��
�
�
��������������

��
�
���������������

tcc – Distributed TETware Test Case Controller
tccd – Test Case Controller daemon
tetsyncd – Synchronisation daemon
tetxresd – Execution results daemon
TCM – Test Case Manager + test case parts

Processing is similar when Distributed TETware executes a non-distributed test case; the main
difference is that the Synchronisation daemon tetsyncd does not participate in this type of
processing.

It will be seen from this diagram that, unlike dTET2, the architecture used by Distributed
TETware is fully symmetrical. That is, there is no longer a distinction between master and slave
systems when test cases are executed. tcc does not itself perform test case management
functions but instead requests tccd to do so on its behalf. Consequently it does not matter
whether a (non-distributed) test case or a (distributed) test case part is processed on the local
system6 or on a remote system; the processing logic is the same in each case.

����������������
6. That is: the system on which tcc runs.
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2.7 Distributed TETware systems and network options
When the Distributed TETware version of tcc processes test cases, it may do so on a local
system and/or one or more remote systems. This is illustrated by the diagram presented in the
previous section which shows that several server processes take part in this processing.

Although it is usual for each TETware system to reside on a different physical machine, the way
that systems are defined makes it possible for more than one logical TETware system to map to a
physical machine. Indeed, it would be possible for all the logical systems participating in a
distributed test case to coexist on a single physical machine if such a configuration were to be
required. The way that the mapping of logical systems to physical machines is performed is
described in the chapter entitled ‘‘Using TETware’’ elsewhere in this guide.

TETware server processes communicate with each other using some kind of network interface.
Support is provided for several different network interfaces and the decision as to which one to
use must be made before TETware is built. This is described further in the chapter entitled
‘‘Building TETware’’ in each of the platform-specific versions of the TETware Installation
Guide.

2.8 Supported operating system types
TETware-Lite has been implemented for use on computers which run UNIX operating systems
and also on computers which run the Windows NT and Windows 95 operating systems.
Distributed TETware has been implemented for use on computers which run UNIX operating
systems and also on computers which run the Windows NT operating system.

The design of TETware and its predecessors has been influenced to a large extent by the facilities
that are available on UNIX systems. While care has been taken to ensure that the UNIX and
Win32 implementations operate in as similar a way as possible, it is inevitable that certain
differences exist between them. These differences are discussed further in the appendix entitled
‘‘Implementation notes for TETware on Win32 systems’’ at the end of this guide.
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3. Installing TETware
There is one version of the TETware Installation Guide for each family of operating systems on
which TETware is implemented. For details of how to build and install TETware, please refer to
the version of the TETware Installation Guide that is appropriate for your computer system.
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4. Running the TETware demonstrations

4.1 Introduction
This chapter describes how to run the TETware demonstration test suites. Before you can run the
demonstrations, you should install TETware on all the systems that you want to use to run local,
remote or distributed tests.

There are several demonstration test suites for use with TETware as follows:
������������������������������������������������������������������������������

TETware demonstration test suites������������������������������������������������������������������������������
Name Path Description������������������������������������������������������������������������������������������������������������������������������������������������������������
demo110 tet-root/contrib/ Simple demonstration test suite for the C API.

This test suite is documented in the TET
Programmers Guide.������������������������������������������������������������������������������

cplusdemo tet-root/contrib/ Simple demonstration test suite for the C++ API.
This is the C API demonstration suite (demo110)
modified to use the C++ API.������������������������������������������������������������������������������

demo tet-root/contrib/ Another simple demonstration test suite for the
C API. This includes a further illustration of the
capabilities of TETware. The instructions in the
README file should be followed. A version of
this test suite ported to Win32 systems is provided
in the file tet-root/contrib/win32.zip.������������������������������������������������������������������������������

perldemo tet-root/contrib/ Demonstration test suite for the Perl API. This is
a Perl API demonstration suite similar to the
simple C API demonstration. A version of this
test suite ported to Win32 systems is provided in
the directory tet-root/contrib/NTperldemo.������������������������������������������������������������������������������

SHELL-API tet-root/contrib/ Demonstration test suite for the Shell API.������������������������������������������������������������������������������
tcldemo tet-root/contrib/ Demonstration test suite for the TCL API. The

TCL API is also included in the contrib
distribution.������������������������������������������������������������������������������

capi tet-root/contrib/ An extended C API demo suite that is described in
the TETware Programmers Guide. This test suite
includes additional build tools and a sample report
writer. It tests the chmod(), uname(),
fileno() and stat() system interfaces. See
the README file included with this test suite for
more information.������������������������������������������������������������������������������

jdemo tet-root/ A simple demonstration test suite for the Java API.
This test suite is described in the TETware
Programmers Guide.������������������������������������������������������������������������������

demo tet-root/src/tet3/ Distributed demonstration test suite for the C API.
This is the official demonstration test suite for
Distributed TETware, and is described in the
TETware Programmers Guide.��������������������������������������������������������������������������������
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Note that the contributed demonstrations below tet-root/contrib have been designed by their
contributors to work on UNIX systems unless otherwise noted above, and it is likely that a small
amount of porting effort will be required in order to cause these demonstrations to install and/or
function correctly on a Win32 system. In most cases this effort includes (at least) the
modification of the build, clean and installation mechanisms in order to cater for the different file
names and suffixes which must be used on Win32 systems.

4.2 System requirements
The distributed demonstration must be run using Distributed TETware. The other demonstrations
can be run using either Distributed TETware or TETware-Lite.

You should follow the instructions in one of the following subsections at this level, depending on
which version of TETware you have installed.

4.2.1 Using TETware-Lite
There is no system configuration required when you run the demonstrations using TETware-Lite.
Note that since TETware-Lite is not able to process distributed test cases, it cannot be used to run
the distributed demonstration.

4.2.2 Using Distributed TETware

4.2.2.1 Configuration

If you have installed Distributed TETware, you will need to make use of two machines connected
to the same local area network in order to run the distributed demonstration program. When the
distributed demonstration is run, one of these machines will act as the local (or master) system
and the other will act as the remote (or slave) system. The master system is defined as the one on
which you will run tcc.

Although the simple C, Perl and C++ demonstrations can be run on a single machine, they still
require the following setup when run with Distributed TETware.

You must perform the following actions:

1. Ensure that Distributed TETware is installed on each system that will participate in the
demonstrations.

2. Verify that the tccd daemon is running on the system(s) and that it has permission to
access and modify both the tet root directory and the test suite root directory hierarchy.

3. Ensure that you know the name of the tet-root directory on each system.

4. If you have installed the version of Distributed TETware which uses the socket network
interface, you should ensure that an entry for each participating system exists in the
systems.equiv file on each system. On a UNIX system this file is located in the tet
user’s home directory. On a Windows NT system this file is located in the directory
specified by the value of the HOME environment variable which is in effect when tccd is
started, or in tccd’s current working directory if no HOME variable is present.
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4.2.2.2 The systems file

Before you can run the demonstration programs, you must customise the systems file.

In order to do this, you should log in to the master system and change directory to tet-root. The
file tet-root/systems contains the mappings that assign system identifiers to host names. An
example systems file is supplied for use with the demonstration in
tet-root/src/tet3/demo/systems. It contains lines similar to the following:

# Example system file for demonstration
000 master
001 slave

You should copy this file to tet-root/systems on the master system. Then, edit the copy,
replacing master with the host name of the master system and slave with the host name of
the slave system. You should ensure that these host names are in the host database on both the
master and the slave system (often in the file /etc/hosts on UNIX systems).

Once you have customised the systems file on the master system, you should copy it to the tet
root directory on the slave machine.

4.3 The C API demonstrations

4.3.1 Part 1 — the contrib/demo110 test suite
This section describes how to run the simple demonstration TET test suite in
tet-root/contrib/demo. This is the standard TET 1.10 demonstration. This test suite
executes only on a single system and does not require remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/contrib/demo110

2. Make sure that tet-root/bin is in your PATH.

3. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

4. Review the contents of ts/makefile and ensure that it is correct for your system.

5. Type the following command to run the demonstration:

tcc -bec contrib/demo110

As the demonstration executes, it displays the following message:

Journal file is: tet-root/contrib/demo110/results/0001bec/journal

You can then look in tet-root/contrib/demo110/results/0001bec/journal to see
the results of the demonstration. Note that, when using Distributed TETware, standard output
from test cases is redirected to the tccd log file (defaults to /tmp/tccdlog).

A sample filter to generate a results summary is contained in
tet-root/contrib/usltools/vres. This filter is an awk script. Type the following
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commands in order to install and run this script:

cp $TET_ROOT/contrib/usltools/vres $TET_ROOT/bin/vres
chmod a+x $TET_ROOT/bin/vres
vres results/0001bec/journal

When run, vres produces the following output:

Results: results/0001bec/journal
Total tests: 3 PASS = 3 FAIL = 0

Pass Breakdown:
Number of successes: 3 Number of warnings: 0
Number unsupported: 0 Number not in use: 0
Number of untested: 0 Number of FIP: 0

Failure Breakdown:
Number of failures: 0 Number unresolved: 0
Number uninitiated: 0 Number unreported: 0

Other sample report writer tools are included in the tet-root/contrib/crpt,
tet-root/contrib/tetreport and tet-root/contrib/scripts directories.

An alternative execution scenario file is provided to demonstrate some of the ETET-derived
features of TETware. The name of this file is tet-root/contrib/demo110/etet_scen and
its contents are as follows:

# Demonstration test suite.
# A default execution scenario to demo the ETET features
tests

"starting scenario"
/ts/tc1
/ts/tc2
"next is the last test case"
/ts/tc3
"done"

all
"pick a random test"
:random:ˆtests
"repeat four times /ts/tc1"
:repeat,4:@/ts/tc1
"run all the tests in parallel"
:parallel:ˆtests
"pick random tests for 35 seconds"
:timed_loop,35;random:ˆtests

The following commands will build and execute the test suite using the ETET-derived features:

tcc -b contrib/demo
tcc -e -p -v TET_COMPAT=etet -s etet_scen contrib/demo
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4.3.2 Part 2 — the contrib/demo test suite
This section describes how to run the C demonstration TET test suite in
tet-root/contrib/demo. This test suite executes only on a single system and does not require
remote systems to be set up.

This is a modified version of the demo110 test suite and is intended to give familiarity with the
outline structure for a test suite and its associated files, the test scenario file and the tcc
command.

The file tet_scen is the default scenario or ‘‘test list’’ to be executed. The example given has
a simple scenario named all which is used by default, and several other example test scenarios
that can be called by name.

The following instructions should be followed:

1. Check your environment for running tcc. Make sure that tet-root/bin is in your PATH
and that the TET_ROOT environment variable refers to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

2. If you are not already there, change to the directory in which the demonstration test suite
resides, thus:

cd tet-root/contrib/demo

3. Build the test suite as follows:

tcc -p -b contrib/demo

4. Execute the tests:

tcc -p -e contrib/demo

tcc -p -e contrib/demo all # the same as above

5. Clean the tests:

tcc -p -c contrib/demo

6. Rebuild the tests:

tcc -p -b contrib/demo

7. Review the extended examples within the tet_scen scenario file, and then execute the
different test scenarios:

tcc -ep contrib/demo parallel

tcc -ep contrib/demo random

tcc -ep contrib/demo enhanced
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4.4 The C++ API demonstration
This section describes how to run the simple C++ demonstration TET test suite in
tet-root/contrib/cplusdemo. This test suite executes only on a single system and does not
require remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/contrib/cplusdemo

2. There is a makefile in each test case directory below the ts directory. Review the contents
of each makefile and ensure that it is correct for your system.

3. Make sure that tet-root/bin is in your PATH.

4. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Type the following command to run the demonstration:

tcc -bec contrib/cplusdemo

As the demonstration executes, it displays the following message:

journal file name is: tet-root/contrib/cplusdemo/results/0001bec/journal

You can then look in tet-root/contrib/cplusdemo/results/0001bec/journal to
see the results of the demonstration.

4.5 The Perl API demonstration
This section describes how to run the simple Perl demonstration TET test suite in
tet-root/contrib/perldemo. This test suite executes only on a single system and does not
require remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/contrib/perldemo

2. Review the contents of ts/makefile and ensure that it is correct for your system.

3. Make sure that tet-root/bin is in your PATH.

4. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Type the following command to run the demonstration:

tcc -bec contrib/perldemo
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As the demonstration executes, it displays the following message:

journal file name is: tet-root/contrib/perldemo/results/0001bec/journal

You can then look in tet-root/contrib/perldemo/results/0001bec/journal to see
the results of the demonstration.

4.6 The Shell API demonstration
This section describes how to run the SHELL API demonstration TET test suite in
tet-root/contrib/SHELL-API. This test suite is deliberately simple and tests the user-level
commands uname and chmod. Sample tests include checking a returned error code and error
message against and expected error code and error message, and printing out system specific
information for verification by the tester.

This test suite executes only on a single system and does not require remote systems to be set up.

The following instructions will cause the test suite to be built and executed:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/contrib/SHELL-API

2. Review the contents of the README file.

3. Make sure that tet-root/bin and tet-root/contrib/SHELL-API/bin are in your
PATH.

4. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Make sure that the commands in tet-root/contrib/SHELL-API/bin are executable,
thus:

chmod a+x bin/buildtool bin/cleantool bin/install

6. Type the following command to install the suite:

./bin/install

7. Type the following command to build the suite:

tcc -p -b -a ‘pwd‘/ts_exec contrib/SHELL-API

8. Type the following command to execute the suite:

tcc -p -e -a ‘pwd‘/ts_exec contrib/SHELL-API

As the demonstration executes, it displays messages similar to the following:

tcc: journal file is tet-root/contrib/SHELL-API/results/0002e/journal
10:21:27 Execute /ts/chmod/chmod-tc on system 000
10:21:31 Execute /ts/uname/uname-tc on system 000

You can then look in tet-root/contrib/SHELL-API/results/0002e/journal to see
the results of the demonstration.
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4.7 The TCL API demonstration
This section describes how to run the TCL API demonstration TET test suite in
tet-root/contrib/tcldemo.

To use this demonstration suite you will need to have installed the TCL API, which is included in
the contrib distribution in tet-root/contrib/tclapi.

This test suite executes only on a single system and does not require remote systems to be set up.

This is a simple demonstration of how to use the TCL API. This version assumes that the tcl
command is in /usr/local/bin/tcl. You can edit the source files in the
tet-root/contrib/tcldemo/ts directory to change this if required.

Test 1 illustrates startup/cleanup with some simple PASS and FAIL results.

Test 2 is a very simple test case.

Test 3 generates in addition an INSPECT result.

The following instructions will cause the test suite to be built and executed:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/contrib/tcldemo

2. Review the contents of the README file.

3. Make sure that tet-root/bin is in your PATH.

4. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Type the following command to run the demonstration:

tcc -p -bec contrib/tcldemo

6. By building and executing test 3 again as follows it is possible to change the behaviour:

tcc -p -be -v message="mymessage" -y test3 contrib/tcldemo

4.8 The Java API demonstration
This section describes how to run the Java API demonstration test suite in tet-root/jdemo. This
test suite is only present in TETware distributions that include the Java API. The Java API is
only supported on certain platforms; details of these platforms are presented in the TETware
Release Notes. To use this demonstration suite you will need to have built the Java API, and
have the Java Development Kit (JDK) installed on your machine.

The structure of this test suite is described in the chapter entitled ‘‘Writing a Java API-
conforming test suite’’ in the TETware Programmers Guide.

This test suite executes only on a single system and does not require remote systems to be set up.
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The following instructions will cause the test suite to be built, executed and cleaned:

1. To start, if you are not already there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/jdemo

2. Review the contents of the README file.

3. Make sure that tet-root/bin is in your PATH.

4. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Check to see if the java and javac commands can be found in one of the locations in
your PATH. For example:

type java javac

If the shell responds with a ‘‘command not found’’ message, you should perform one of the
following actions:

— either append the name of the directory containing the java and javac commands
to your PATH environment variable;

— or make the following configuration variable assignments:

TET_JAVAC_PATH=full-path-name-of-javac-command

in the tetbuild.cfg file, and

TET_JAVA_PATH=full-path-name-of-java-command

in the tetexec.cfg file.

6. Type the following command to run the demonstration:

tcc -becp

As the demonstration executes, it displays messages similar to the following:

tcc: journal file is tet-root/jdemo/results/0001bec/journal
15:57:40 Build /ts/IntegerTC/IntegerTC on system 000
15:57:43 Execute /ts/IntegerTC/IntegerTC on system 000
15:57:44 Clean /ts/IntegerTC/IntegerTC on system 000
15:57:45 Build /ts/StackTC/StackTC on system 000
15:57:48 Execute /ts/StackTC/StackTC on system 000
15:57:49 Clean /ts/StackTC/StackTC on system 000
15:57:50 Build /ts/SystemTC/SystemTC on system 000
15:57:53 Execute /ts/SystemTC/SystemTC on system 000
15:57:55 Clean /ts/SystemTC/SystemTC on system 000

You can then look in tet-root/jdemo/results/0001bec/journal to see the results of the
demonstration.
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4.9 The Distributed C API demonstration

4.9.1 Introduction
The TETware distributed demonstration program is a simple test suite consisting of three
distributed test cases that are built, executed and cleaned on each system participating in the test.
You may run the demonstration program to verify that Distributed TETware has installed
correctly.

This demonstration test suite has been designed to run on a pair of UNIX systems, a pair of
Windows NT systems, or on one UNIX and one Windows NT system. When the demonstration
is configured to run between a UNIX and a Windows NT system, you may configure either type
of system to act as either master or slave.

The instructions presented here for building and installing the demonstration on a Windows NT
system assume that you are using the same defined build environment that is used when TETware
is built on such a system; that is: Microsoft Visual C++ and the MKS Toolkit. Since the
demonstration has been designed for use in this environment on a Windows NT system, it is
likely that you will have to make changes to the source code and/or the installation method in
order to use a different environment. For further details of the defined build environment, refer to
the section entitled ‘‘System requirements’’ in the TETware Installation Guide for the
Windows NT and Windows 95 Operating Systems.

It will be seen that all the parameters whose values depend on the type of host operating system
are specified either in the makefiles or in the configuration files which reside on each system.
This demonstration provides an example of one way in which TETware features may be used in
order to maintain maximum test case portability between the two types of operating system.

4.9.2 Installation
You must perform the following actions to install the demonstration program on each system:

1. Log on to the system that you want to use as the master system.

2. Copy the master part of the demonstration to tet-root/demo on the master system, thus:

cd tet-root/src/tet3/demo/master
find . -print | cpio -pdv tet-root/demo

3. Log on to the system that you want to use as the slave system.

4. Copy the slave part of the demonstration to the test suite root directory on the slave
system, thus:

cd tet-root/src/tet3/demo/slave
find . -print | cpio -pdv tet-root/demo
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4.9.3 Configuration

4.9.3.1 Introduction

Before you can run the demonstration programs, you must customise the systems file, as
described earlier in this document, and also the distributed configuration file tetdist.cfg. In
addition, if either part of the demonstration is running on a Windows NT system, you will need to
customise the tetbuild.cfg and tetclean.cfg files on the master system and
(optionally) the slave system.

In order to do this, you should log in to the master system and change directory to tet-root. Then,
you should work through the instructions presented in the following subsections.

4.9.3.2 The systems file

The file tet-root/systems contains the mappings that assign system identifiers to host names.
An example systems file is supplied with the demonstration in
tet-root/src/tet3/demo/systems which contains lines similar to the following:

# Example system file for demonstration
000 master
001 slave

You should copy this file to tet-root/systems on the master system. Then, edit the copy,
replacing master with the host name of the master system and slave with the host name of
the slave system. You should ensure that these host names are in the host database on both the
master and the slave system (often in the file /etc/hosts).

If you have built TETware on the master system to use the XTI network interface, you must add a
third field to the entry for each system. This field should contain the XTI address string of the
Test Case Controller daemon tccd that is running on that system. The format of XTI address
strings is described in the section entitled ‘‘System definitions’’ in the TETware Programmers
Guide.

Once you have customised the systems file on the master system, you should copy it to the tet
root directory on the slave system.

4.9.3.3 The tetdist.cfg file

The file tet-root/demo/tetdist.cfg contains variable assignments for slave systems that are
equivalent to those on the master system that may be specified in environment variables. As
supplied with the demonstration, this file contains lines similar to the following:

TET_REM001_TET_ROOT=/home/tet
TET_REM001_TET_TSROOT=${TET_ROOT}/demo

# The following variables are referenced only by XTI-based versions of
# TETware - you should not define them if you built TETware to use the
# socket network interface
#
# TET_XTI_TPI=/dev/tcp
# TET_XTI_MODE=tcp
# TET_LOCALHOST=01.02.03.04

If the tet root directory on the slave system is not /home/tet, you must change the first
variable to refer to the tet root directory on the slave system.

July 2000 Page 23
The Open Group



Test Environment Toolkit TET3-UG-1.4
TETware User Guide

The last three variables are only required if TETware on the master system has been built to use
the XTI network interface. You must substitute values for these variables which are correct for
your system. Note that the value that you specify for TET_LOCALHOST must be the machine’s
external IP address and not the address of the loopback interface. Do not specify a value for
TET_LOCALHOST if you built TETware on the master system to use the socket network
interface.

4.9.3.4 The tetbuild.cfg and tetclean.cfg files

As distributed these files contain values which are appropriate when you run the demonstration
on two UNIX systems. In order to accommodate different file name suffixes, you must edit these
files if you run either part of the demonstration on a Windows NT system. Details of the changes
that you must make are presented in comments contained in these files on both the master and the
slave system.

4.9.3.5 Makefiles

You must check the test case makefiles on each system to ensure that they will build the test
cases correctly.

You may need to add the names of libraries to the SYSLIBS variable in order to resolve external
function names used in the TETware Test Case Manager and API. For example, if you have built
TETware to use the socket network interface, you may need to append −lsocket and −lnsl to
this variable on some systems.

If you are running either part of the distributed demonstration on a Windows NT system, you will
need to customise the file name suffix variables in the makefiles as well as the SYSLIBS
variable. Details of the changes that you must make are presented in comments contained in the
makefiles.

4.9.4 Running the distributed demonstration
Once you have installed and configured the distributed demonstration to run on your systems, you
are ready to run the demonstration.

You should perform the following operations on the master system to run the demonstration
program:

1. Log in to the master system and change directory to tet-root.

2. Make sure that the setting of your PATH environment variable includes tet-root/bin.

3. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

4. Type the following command to run the demonstration program:

tcc -bec demo

When tcc starts, it will respond with a line similar to the following:

Journal file is: tet-root/demo/results/0001bec/journal

Then the demonstration test suite will be built, executed and cleaned up.

5. Once tcc has finished execution, you can examine the journal file and verify the results of
the demonstration. Test cases 1 and 3 are expected to pass, test case 2 is expected to fail.
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4.9.5 Problem diagnosis
If the demonstration did not run as expected, it is likely that one or more TETware components
will have generated diagnostic messages describing what went wrong. You should check for
diagnostic information in locations listed in the following table:

��������������������������������������������������������������������������
Location of diagnostic information Source of diagnostic message����������������������������������������������������������������������������������������������������������������������������������������������������

tcc
tetsyncd
tetxresd

tcc’s standard error stream
(appears on the terminal unless redirected)

��������������������������������������������������������������������������
tcc
Test Case Managers on each system
APIs on each system

Journal file (on the master system)

��������������������������������������������������������������������������
tccd
Test Case Managers on each system
APIs on each system

tccd log file on each system
(defaults to /tmp/tccdlog)

����������������������������������������������������������������������������
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5. Using TETware

5.1 Introduction
This chapter describes how to use TETware. Before you can use TETware, you must install
TETware on all the systems that you want to use to run local, remote or distributed tests, as
described in the TETware Installation Guide.

5.2 TETware concepts

5.2.1 Introduction
This section describes some concepts employed in TETware.

5.2.2 TETware components
The components that make up TETware are described in the chapter entitled ‘‘TETware
overview’’ elsewhere in this guide. You should read this chapter now if you have not already
done so.

5.2.3 Modes of operation
The Test Case Controller (tcc) operates in one of several modes as follows:

build mode – in this mode, test cases are built
execute mode – in this mode, invocable components are executed
clean mode – in this mode, test cases are cleaned; i.e., the test case directory is

returned to the state that it was in before the test case was built
and/or executed

One or more modes of operation are specified by command-line options each time that tcc is
invoked.

5.2.4 TETware-Lite

5.2.4.1 Local and remote systems

The Lite version of tcc is able to process non-distributed test cases on the local system. It
cannot process distributed test cases or test cases on remote systems.

5.2.4.2 Test case types

TETware-Lite is able to process local test cases. It cannot process remote test cases or
distributed test cases.

5.2.5 Distributed TETware

5.2.5.1 Local and remote systems

The distributed version of tcc is able to process non-distributed test cases on both the local
system and on one or more remote systems. In addition, tcc is able to process distributed test
cases where parts of each test case execute on the local (or master) system and/or on one or more
remote (or slave) systems.
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Distributed TETware systems are identified by a three-digit system ID. System ID zero refers to
the local system and other system ID values refer to remote systems. In this context, the local
system is defined as the one on which tcc is invoked.

Usually, different TETware systems are located on different physical machines. However, there
is no reason why different system IDs should not refer to the same machine.

5.2.5.2 Test case types

Distributed TETware is able to process local test cases, remote test cases and distributed test
cases. For a description of what is meant by these different test case types, refer to the chapter
entitled ‘‘TETware overview’’ elsewhere in this guide.

5.2.6 TETware directory layout
The whole of TETware resides in a single directory hierarchy on each system that is to participate
in local, remote or distributed testing. The top of this hierarchy is known as the tet root
directory. Below tet root there are directories containing TETware executables and
documentation.

In addition, directory hierarchies that contain the test suites that are to be used with TETware
reside below a single directory per test suite. The top of each test suite directory hierarchy is
known as the test suite root directory. By default, the test suite root directory resides below the
tet root directory on each system.

By default, tcc looks for test cases below the test suite root directory. However, it is possible to
specify an alternate execution directory or a runtime directory; if such a directory is specified,
tcc looks for test cases below that directory instead.

It is possible to ask tcc to save files and/or directory subtrees that may be generated during test
case processing. When files are saved in this way, they are copied to the saved files directory.

An example TETware directory hierarchy is presented in the appendix entitled ‘‘TETware
directory structure’’ at the end of this guide.

5.2.7 Environment variables
The following environment variables are used to control the operation of tcc. These variables
are used by both TETware-Lite and Distributed TETware. When Distributed TETware is used,
these variables control the operation of tcc on the local system (that is: the system on which
tcc is run). Configuration variables which perform similar functions for remote systems to those
performed by the environment variables described here may be specified in the distributed
configuration file tetdist.cfg. The meanings of these distributed configuration variables is
described further in the section entitled ‘‘Configuration variables used for distributed testing’’
elsewhere in this chapter.

TET_ROOT Specifies the location of the tet root directory. This environment variable
must always be set when tcc is run.

TET_EXECUTE If this variable is set, it specifies the location of the alternate execution
directory.

TET_TMP_DIR If this variable is set, it specifies the location of tcc’s temporary directory.
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TET_SUITE_ROOT If this variable is set, it specifies an alternate location below which the test
suite root is located.

TET_RUN If this variable is set, it specifies the location of a runtime directory. tcc
copies the entire test suite directory hierarchy to a location below the
runtime directory and processes the test suite in that location. This
variable is useful when the test suite directory hierarchy resides on a read-
only file system or NFS-mounted from a central server whose file system
should not be modified by the system under test.

5.2.8 Configuration variables
You may specify sets of configuration variables for each of tcc’s modes of operation. Each
variable specification takes the following form:

variable=value

Some configuration variables alter the behaviour of TETware, whereas others are specific to the
test suite being processed and may be accessed by test cases and by build and clean tools.

Configuration variables may be specified in configuration files or by means of a tcc command-
line option. A configuration variable specified on the tcc command line takes precedence over a
variable of the same name that is specified in a configuration file.

Configuration variables that alter the behaviour of TETware are described further in the section
entitled ‘‘Configuration files’’ later in this chapter.

5.2.9 Test purpose results
Each non-distributed test purpose, and each part of a distributed test purpose, is expected to
register exactly one test purpose result code. A result code is a numeric value whose meaning is
defined in a result code table. Each result code has an action associated with it which indicates
what action the Test Case Manager (TCM) should take when a test purpose reports that result
code. Possible values for this action are Continue which means that the TCM should continue
to process the next test purpose (if any), or Abort which indicates that the TCM should abort the
current test case.

The following result codes are defined in TETware:
�����������������������������������������
Result code Meaning Action�����������������������������������������

0 PASS Continue
1 FAIL Continue
2 UNRESOLVED Continue
3 NOTINUSE Continue
4 UNSUPPORTED Continue
5 UNTESTED Continue
6 UNINITIATED Continue
7 NORESULT Continue�������������������������������������������
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A test suite may provide a results code file defining these and other testsuite-specific result codes.
This file is described further in the section entitled ‘‘The results code file’’ later in this chapter.
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5.3 TETware data files

5.3.1 Introduction
This section describes the formats and locations of data files used by TETware.

5.3.2 The scenario file

5.3.2.1 Description

The scenario file contains one or more test scenarios for a test suite. By default, the name of this
file is tet_scen and is located in the test suite root directory on the local system. (However, a
different scenario file name may be specified by means of a tcc command-line option; for
details, refer to the tcc manual page at the end of this guide.)

A scenario file should contain (at least) a scenario named all; by convention, this causes all the
test cases in the test suite to be processed.

Each entry in a scenario file starts with the scenario name and contains one or more scenario
directives and scenario elements. Each scenario name in the file starts at column 1 and lines
containing scenario directives and elements have a blank in column 1. Blank lines and lines
beginning with # are ignored.

Simple descriptions of these directives and elements are presented in the following sections,
together with some examples. A more complete description of the format of the scenario file and
some more comprehensive examples are presented in the chapter entitled ‘‘The scenario file’’ in
the TETware Programmers Guide.

5.3.2.2 Scenario directives

Directives have scope within the scenario. Each directive affects the way in which tcc
processes other directives and elements which appear within the scope of that directive. Note that
some directives may not appear within the scope of other directives.

These directives may appear in scenario files and are processed by tcc as follows:

:include:/file-name
The test cases listed (one per line) in the named file are interpolated in the scenario at the
point where this directive appears.

:parallel[,count]:/file-name
The test cases listed (one per line) in the named file are processed in parallel. If the
optional count argument is specified, count copies of each test case listed in the file are
processed in parallel.

:parallel[,count]:
/test-case-name
. . .
:endparallel:

The named test-cases are processed in parallel.

The precise behaviour of the :parallel: directive may be affected by the value of the
TET_COMPAT configuration variable. Details of the way in which this directive behaves are
presented in the chapter entitled ‘‘The scenario file’’ in the TETware Programmers Guide.
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:repeat,count:/file-name
In build and clean modes, the test cases listed (one per line) in the named file are processed
once in sequence. In execute mode, the test cases listed in the named file are executed
sequentially count times.

:repeat,count:
/test-case-name
. . .
:endrepeat:

In build and clean modes, the named test-cases are processed once in sequence. In execute
mode, the named test-cases are executed sequentially count times.

:timed_loop,seconds:/file-name
In build and clean modes, the test cases listed (one per line) in the named file are processed
once in sequence. In execute mode, the test cases listed in the named file are executed
sequentially until the specified number of seconds has expired.

:timed_loop,seconds:
/test-case-name
. . .
:endtimed_loop:

In build and clean modes, the named test cases are processed once in sequence. In execute
mode, the named test cases are executed sequentially until the specified number of seconds
has expired.

:random:/file-name
The behaviour of this directive depends on the selected modes of operation and on whether
or not it appears within the scope of a looping directive.

When execute mode is selected:

— If this directive appears within the scope of at least one looping directive:

� If build mode is selected, each of the test cases listed (one per line) in the
named file are built once in sequence.

� For each iteration of each of the enclosing looping directives, one of the test
cases listed in the named file is selected at random and executed.

� If clean mode is selected, each of the test cases listed in the named file are
cleaned once in sequence.

— Otherwise:

� One of the test cases listed in the named file is selected at random and
processed according to the selected modes of operation.

When execute mode is not selected:

— Each of the test cases listed in the named file are processed once in sequence
according to the selected modes of operation.
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:random:
/test-case-name
. . .
:endrandom:

The named test cases are processed in the same way as that described above for the first
format of the :random: directive.

These directives are only supported by the Distributed version of tcc and are processed as
follows:

:remote,nnn1[,nnn2 . . .]:/file-name
Each test case listed (one per line) in the named file is processed in sequence. As each test
case is processed this processing takes place on all of the systems nnn1 , nnn2 etc. at once.

:remote,nnn1[,nnn2 . . .]:
/test-case-name
. . .
:endremote:

Each named test case is processed in sequence. As each test case is processed this
processing takes place on all of the systems nnn1 , nnn2 etc. at once.

If the list of systems specified with a :remote: directive includes system ID zero, then the
named test cases are processed as distributed test cases; otherwise, test cases are processed as
(non-distributed) remote test cases.

:distributed,nnn1[,nnn2,. . .]:/file-name
Each test case listed (one per line) in the named file is processed in sequence. As each test
case is processed this processing takes place on all of the systems nnn1 , nnn2 etc. at once.

:distributed,nnn1[,nnn2,. . .]:
/test-case-name
. . .
:enddistributed:

Each named test case is processed in sequence. As each test case is processed this
processing takes place on all of the systems nnn1 , nnn2 etc. at once.

Test cases within the scope of a :distributed: directive are always processed as
distributed test cases irrespective of whether system ID zero is specified in the list of systems.

Directives may be combined by the ; operator. When directives are combined in this way, the
scope of each directive is the same as if each directive had been specified separately but the
syntax used is the same as that which may be used for a single directive, as follows:

:directive1[;directive2 . . .]:/file-name
The test cases listed (one per line) in the named file are processed within the scope of
directive1 , directive2 etc.
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:directive1[;directive2 . . .]:
/test-case-name
. . .
:[. . .enddirective2;]enddirective1:

The named test cases are processed within the scope of directive1 , directive2 etc. Note that
when the ; operator is used in this type of construct, enddirective1, enddirective2 etc.
must appear in reverse order so that each one matches its corresponding directive1 ,
directive2 etc.

Where a file name name is associated with a scenario directive, this name is interpreted relative to
the test suite root directory.

5.3.2.3 Scenario elements

The following elements may appear in scenario files and are processed by tcc as follows:

"text"
text is printed to the journal file as a scenario information line.

ˆscenario-name
The directives and elements which comprise the named scenario are interpolated at the
point where this element appears. A ˆscenario-name may appear in a scenario in any place
that a /test-case-name or a /file-name may appear.

/test-case-name
The named test case is processed according to each of tcc’s selected modes of operation.

:directive:@/test-case-name
The @/test-case-name element may be used in place of a /file-name which is attached to a
directive7. The single named test case is processed within the scope of the associated
directive without the need for a matching :enddirective: to be specified.

5.3.2.4 Test case names

Test case names are interpreted by tcc on each system as follows:

� In build or clean mode, test case names are interpreted relative to the test suite root
directory.

� In execute mode, test case names are interpreted relative to the alternate execution
directory if one has been specified, otherwise they are interpreted relative to the test suite
root directory.

A test case name may be followed by a list of invocable component numbers enclosed in braces.
If this is done, only the invocable components specified in the list are executed in execute mode.
A list of invocable components consists of one or more comma-separated numbers or ranges of
numbers. A range of numbers consists of two numbers separated by a - character.

����������������
7. That is: not separated from the directive by white space.
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For example, the following line specifies invocable components 1, 3, and 5 through 8 for the
named test case:

/tset/tc1{1,3,5-8}

5.3.2.5 Simple scenario examples

This section presents some simple test scenario examples. The first two examples may be
processed either by TETware-Lite or by Distributed TETware.

In the following example, the three test cases are processed sequentially on the local system:

all
/tset/tc1
/tset/tc2
/tset/tc3

In the following example, the three test cases are processed concurrently on the local system:

all
:parallel:
/tset/tc1
/tset/tc2
/tset/tc3
:endparallel:

Since the next two examples specify the processing of remote and distributed test cases, they can
only be processed by Distributed TETware and not by TETware-Lite.

In the following example, instances of each test case are processed concurrently on two remote
systems:

all
:remote,001,002:
/tset/tc1
/tset/tc2
/tset/tc3
:endremote:

In the following example, four distributed test cases are processed sequentially. Parts of each test
case are executed concurrently on the local system and on two remote systems.

all
:remote,000,001,002:
/tset/dtc1
/tset/dtc2
/tset/dtc3
/tset/dtc4
:endremote:
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5.3.3 Configuration files

5.3.3.1 Introduction

The configuration files hold configuration variable assignments for each of tcc’s modes of
operation. In addition, configuration files may hold configuration variable assignments for use by
test cases and by build and clean tools.

5.3.3.2 Configuration file format

Each line in a configuration file specifies a configuration variable assignment in the following
format:

variable=value

Lines beginning with # and blank lines are ignored.

5.3.3.3 Configuration file names

By default, configuration files for each test suite are located in the test suite root directory on each
system. However, if an alternate execution directory is specified on the local system, the execute
mode configuration file may be located there instead if so desired. The name of the build mode
configuration file is tetbuild.cfg, that of the execute mode configuration file is
tetexec.cfg and that of the clean mode configuration file is tetclean.cfg.

The names of these files on the local system may be overridden by tcc command-line options if
desired; for details, refer to the tcc manual page at the end of this guide.

5.3.3.4 Setting configuration variables on local and remote systems when using
Distributed TETware

This subsection describes the interaction between variables that are specified in configuration files
on local and remote systems when Distributed TETware is used. The capabilities described here
are not available when TETware-Lite is used.

Configuration variables may be specified both on the local system and on any remote systems that
are to participate in remote or distributed testing. In this context, the local system is the system
on which tcc is run (whether or not any test cases run on this system), and remote systems are
other systems on which test cases or test case parts are run. When reading the discussion that
follows, you should bear in mind that the local system always has a system ID of zero; other
system IDs always refer to remote systems.

Configuration variable assignments made on the local system are propagated to each of the
remote systems; however, configuration variable assignments made on a remote system normally
have precedence over those that are propagated from the local system.

For example, if the following assignment is made on the local system:

TET_BUILD_TOOL=make

then, the value of TET_BUILD_TOOL will be set to make on the local system and on all the
remote systems.

If the following assignment is made on one of the remote systems:

TET_BUILD_TOOL=augmake
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then the value of TET_BUILD_TOOL is changed to augmake only on that remote system, and
remains unchanged on all of the other systems.

It is possible to direct a variable assignment made on the local system to a particular system by
prefixing its name with TET_REMnnn_ where nnn is the ID of the system that is to receive the
variable.

So, if the following assignments are made on the local system:

TET_BUILD_TOOL=make
TET_REM002_TET_BUILD_TOOL=augmake

then the value of TET_BUILD_TOOL on remote system 002 is set to augmake and the value of
TET_BUILD_TOOL on the local system and all the other remote systems is set to make.

Furthermore, the value of a TET_REMnnn_ variable assignment made on the local system
overrides any assignment to the corresponding variable that may be made on system nnn . So, in
this case, the value of TET_BUILD_TOOL on remote system 002 is set to augmake irrespective
of any assignment that might be made on that remote system.

Finally, if the following assignments are made on the local system:

TET_BUILD_TOOL=augmake
TET_REM000_TET_BUILD_TOOL=make

then the value of TET_BUILD_TOOL on the local system will be set to make and the value of
TET_BUILD_TOOL on all the remote systems will be set to augmake (provided that no
assignment for TET_BUILD_TOOL is made on any of the remote systems).

5.3.3.5 Configuration variables used by TETware

This section describes some of the configuration variables that affect tcc’s operation. The list
presented here only includes those variables that it might be sensible for a TETware user to
change. Other TETware configuration variables and testsuite-specific variables may be specified
by the test suite author. Refer to the TETware Programmers Guide for a complete list of
configuration variables and their meanings.

Except where noted, variables affect the operation of both the Distributed TETware and
TETware-Lite versions of tcc.

When Distributed TETware is used, each of the operation mode-specific sets of configuration
variables that are specified without the TET_REMnnn_ prefix on the local system is known as the
master configuration for the related mode. Variables in the master configuration for each mode
are merged with system-specific configuration variables8 to form the per-system configuration
for that mode. The master configuration variables affect the way that tcc processes test cases on
all participating systems, whereas the per-system configuration variables affect the way that tcc
processes test cases on each system individually.

Some of the variables described below are read from the master configuration and so affect tcc’s
operation on each system in the same way, whereas others are read from the per-system
configurations and so can affect tcc’s operation differently on different systems. The scope of

����������������
8. That is: variables specified on remote systems, or specified on the local system with a TET_REMnnn_ prefix.
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each variable described here is indicated at the end of the variable’s description. Variables noted
as being read from the master configuration will be ignored if constrained to a particular system
by use of a TET_REMnnn_ prefix or by being specified in a configuration file on a remote
system.

TET_EXEC_IN_PLACE Possible values: True or False; default: False.
Specifies whether or not tcc should execute test cases ‘‘in
place’’. If false, tcc copies test case files to a temporary
directory before executing them. The setting of this variable
is only meaningful in execute mode. In Distributed TETware
the value of this variable is read from the master
configuration.

TET_OUTPUT_CAPTURE Possible values: True or False; default: False.
Specifies whether or not tcc should capture standard output
and standard error output from test cases and record it in the
journal. For historical reasons the value of this variable also
provides default values for the TET_API_COMPLIANT and
TET_PASS_TC_NAME configuration variables. In
Distributed TETware the value of this variable is read from
the master configuration.

TET_API_COMPLIANT Possible values: True or False;
default: inverse of the value of TET_OUTPUT_CAPTURE.
Specifies whether or not test cases and tools use a TETware
API. If true, test cases and tools are expected use the API to
print diagnostics and register results. If false, tcc treats the
test case or tool as if it consists of a single invocable
component containing a single test purpose. tcc prints the
messages to the journal file that would be printed by an API-
conforming test case and generates a test purpose result based
on the test case’s exit status (zero = PASS, non-zero = FAIL).
In Distributed TETware the value of this variable is read
from the master configuration.

TET_PASS_TC_NAME Possible values: True or False;
default: the value of TET_OUTPUT_CAPTURE.
If true, tcc passes the name of the test case to be processed
on the command-line when executing a build or clean tool. If
false, tcc does not pass a test case name to a build or clean
tool. Note that tcc always passes a test case name to a
prebuild, buildfail or exec tool. In Distributed TETware the
value of this variable is read from the per-system
configuration.

TET_SAVE_FILES This variable specifies a (comma separated) list of file names.
If, after tcc executes a test case, a file matching one of these
names is found below the execution directory hierarchy, that
file is transferred to the saved file directory tree on the same
system. If a directory is found that matches one of the
names, then its contents are transferred recursively. Shell file
name matching syntax may be used in the list of file names.
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In Distributed TETware the value of this variable is read
from the per-system configuration.

TET_TRANSFER_SAVE_FILES Possible values: True or False; default: False.
If true, files processed on a remote system in accordance with
the description of TET_SAVE_FILES above are transferred
to the saved file directory on the local system instead of being
saved on that remote system. The value of this variable has
no effect in TETware-Lite. In Distributed TETware the value
of this variable is read from the per-system configuration.

5.3.3.6 Example configuration file

Here is an example of a simple build mode configuration file for a test suite that uses make as its
build tool:

# example build mode configuration file

TET_BUILD_TOOL=make
TET_BUILD_FILE=-f makefile
TET_OUTPUT_CAPTURE=True

5.3.3.7 Distributed configuration file

When Distributed TETware is used, the file tetdist.cfg in the test suite root directory on the
local system holds configuration variables used for remote and distributed testing. This file is not
used by TETware-Lite.

Distributed configuration variables are used to specify parameters for remote systems that are
equivalent to those parameters on the local system that tcc obtains from environment variables
or deduces from its current working directory. In addition, the distributed configuration file may
include variable assignments relating to the TETware network interface.

These variables are not accessible by test cases or tools using API configuration variable lookup
functions.

5.3.3.8 Configuration variables used for distributed testing

The following configuration variables are used by the Distributed version of tcc when
processing test cases on remote systems. In each case, nnn is the number of the system to which
the variable relates.

These variables are specified in the distributed configuration file tetdist.cfg on the local
system. The distributed configuration file and the variables described here are not used by
TETware-Lite.

TET_REMnnn_TET_ROOT The values of these variables specify the locations of tet root
directories on remote systems. One of these variable
assignments must be made for each remote system that may
participate in remote or distributed testing. The values of
these variables are passed to test cases and tools in the
environment as communication variables on each system.
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TET_REMnnn_TET_TSROOT The values of these variables specify the locations of test
suite root directories on remote systems. One of these
variable assignments must be made for each remote system
that may participate in remote or distributed testing.

TET_REMnnn_TET_SUITE_ROOT

These variables are not used by TETware but, when
specified, are passed to test cases and tools in the
environment as communication variables on each system.
This is done in order to enable existing ETET test cases
which rely on the presence of a TET_SUITE_ROOT
environment variable to be processed on a remote system by
Distributed TETware.

TET_REMnnn_TET_EXECUTE The values of these variables specify the locations of
alternate execution directories on remote systems. The use of
these variables is optional but, if they appear, they perform
the equivalent functions on remote systems to that performed
by the value of the TET_EXECUTE environment variable on
the local system (refer to the section entitled ‘‘Environment
variables’’ earlier in this chapter). The values of these
variables are passed to test cases and tools in the environment
as communication variables on each system.

TET_REMnnn_TET_RUN The values of these variables specify the locations of runtime
directories on remote systems. The use of these variables is
optional but, if they appear, they perform the equivalent
functions on remote systems to that performed by the value
of the TET_RUN environment variable on the local system
(refer to the section entitled ‘‘Environment variables’’ earlier
in this chapter). The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMnnn_TET_TMP_DIR The values of these variables specify the locations of
temporary directories on remote systems which are used
instead of the default location when TET_EXEC_IN_PLACE
is false. The use of these variables is optional but, if they
appear, they perform the equivalent functions on remote
systems to that performed by the value of the
TET_TMP_DIR environment variable on the local system
(refer to the section entitled ‘‘Environment variables’’ earlier
in this chapter).

In addition, the following distributed configuration variables may be specified when the XTI
network interface is used:

TET_XTI_TPI The name of the XTI transport provider identifier on the local
system. If this variable is not specified, its value defaults to
/dev/tcp.
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TET_XTI_MODE Possible values: TCP (to indicate TCP/IP) or OSICO (to
indicate OSI connection-oriented transport).
The value of this variable indicates the underlying transport
provider to be used. This variable must always be specified
when the XTI network interface is used.

TET_LOCALHOST This variable must be specified when the XTI network
interface is used and the underlying transport provider is
TCP/IP. The value of this variable should be the Internet
address of the local system. This address is presented in dot
notation and must be an address that can be used to access the
local system from remote systems (i.e., it should not be the
address of the loopback interface). All four fields in the
address must be specified.

5.3.3.9 Example distributed configuration file

Here is an example distributed configuration file for a distributed test suite whose parts run on the
local system and two remote systems:

# example distributed configuration file

TET_REM001_TET_ROOT=/user1/tet
TET_REM001_TET_TSROOT=/user1/tet/testsuite
TET_REM002_TET_ROOT=/user6/project/tet3
TET_REM002_TET_TSROOT=/user6/project/tet3/testsuite

5.3.4 The results code file
When a TETware program needs to interpret a test purpose result, it does so by referring to a
table of results codes. Initially, this table contains a list of code values which have standard
meanings which may (optionally) be augmented by lists contained in files provided by the test
suite author. Files provided in this way may reside in both the tet root directory and the test
suite root directory. Typically the file at the tet root level might contain codes for use by all test
suites whereas the file at the test suite root level might contain codes for use with an individual
test suite.

The default name for the file at each level is tet_code but this name may be changed by means
of the TET_RESCODES_FILE configuration variable9. In Distributed TETware any results
code files should only be provided on the local system.

Each line in a results code file consists of (blank-separated) fields as follows:

Result code value
Result name
Action indicator

����������������
9. Note that although this variable is specified in configuration files which are per operation mode, the variable itself is

interpreted per tcc invocation and not per operation mode. Therefore it is an error for this variable to be specified
with different values in different mode-specific configuration files which are read by a particular tcc invocation.
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The result code value is a positive number between 0 and 127. Values between 0 and 31 are
reserved for use by TETware. The result name is a text string enclosed between double quotes
and indicates the name of the result. The text string may contain embedded blanks. The action
indicator informs the TCM what to do when a test purpose returns the corresponding result and
should be one of Continue to cause the TCM to continue processing the next test purpose, or
Abort to cause the TCM to abandon processing the test case.

Blank lines and lines beginning with # are ignored.

Here is an example of a result code file:

# example result code file

# first, the standard codes required by TETware
0 "PASS" Continue
1 "FAIL" Continue
2 "UNRESOLVED" Continue
3 "NOTINUSE" Continue
4 "UNSUPPORTED" Continue
5 "UNTESTED" Continue
6 "UNINITIATED" Continue
7 "NORESULT" Continue

# then, the codes specific to this test suite
32 "INSPECT" Continue
33 "STOP RUN" Abort

When tcc starts up, its internal table contains entries for only the standard result codes. Then, if
a file is provided at the tet root level, entries in that file are added to the table. Finally, if a file is
provided at the test suite root level, entries in that file are added to the table. Thus, entries in the
file at the test suite root level have precedence over entries in the file at the tet root level and
entries in both files have precedence over the default entries which initially populate the internal
table. Therefore, it is an error for either of the optional results code files to contain entries for one
of the standard result codes with an incorrect result name.

5.3.5 The journal file
At the start of each test run, tcc creates a directory in the test-suite-root/results directory on
the local system, whose name consists of an ascending sequence number followed by one or more
of b, e and c, indicating which operation mode(s) was being used by tcc. By default, the
journal for the test run is placed in a file called journal in this directory.

For example, if the 5th tcc run was in build and execute mode, the name of the default journal
file would be

tet-root/results/0005be/journal

However, a different journal file name may be specified by means of a tcc command-line
option; for details, refer to the tcc manual page at the end of this guide.

Each line in the journal file consists of three fields separated by | characters. The first field
contains a number which indicates the type of the journal line. The second field contains
information depending on the type of the journal line. The third field generally contains some
kind of message text. Descriptions of journal lines are presented in the appendix entitled
‘‘TETware journal lines’’ at the end of this guide.
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5.3.6 The systems and systems.equiv files
These files are only used by Distributed TETware processes. The are not used by TETware-Lite.

The systems file resides in the tet root directory on each system and is used by Distributed
TETware processes to map TETware system IDs to some information (such as a host name) that
can be used by the network interface to identify a machine. The format of the systems file
varies according to which network interface is used by TETware.

The systems.equiv file resides in the tccd user’s home directory on each system (usually
that of the user tet on a UNIX system). This file may be used by tccd to determine whether or
not to accept a request from a remote system. Note that not all TETware network interfaces make
use of this file.

Example systems and systems.equiv files are included in the TETware distribution.
Refer to the manual pages at the end of this guide for details of the formats of these files.

5.4 Network security considerations for Distributed TETware
This section describes issues for consideration by users and system administrators when using
Distributed TETware.

Since Distributed TETware is intended for use in a testing environment which is not accessible
from an external network, network security issues are not really addressed by Distributed
TETware.

tccd offers services to any network entity that connects to its well-known port and can satisfy its
logon criteria. Some of the services offered by tccd may present a potential security hazard; in
particular, the ability to execute other processes. When tccd is built to use the socket network
interface, users can exercise some control over login requests from another machine by means of
entries in the systems.equiv file. However, when tccd is built to use the XTI network
interface, users cannot control whether or not tccd accepts logon requests from other machines.

tetsyncd and tetxresd both offer services to other processes without any authentication,
apart from the server logon procedure which does not perform host name checking. However,
they do not use well-known ports and so are protected to some extent by ‘‘security through
obscurity’’.

As a result of all this:

Users are strongly advised against running Distributed TETware on machines
that can be accessed from an external network, unless they are satisfied that
adequate measures are in place to prevent unauthorised access to networks that
serve those machines.

Page 42 July 2000
The Open Group



TET3-UG-1.4 Test Environment Toolkit
TETware User Guide

6. TETware programs

6.1 Introduction
This chapter describes the function and use of TETware programs. Sections which describe the
Test Case Controller and Test Case Manager are applicable to both TETware-Lite and
Distributed TETware, whereas sections which describe server (or daemon) processes are
applicable only to Distributed TETware.

6.2 The Test Case Controller tcc

6.2.1 Description
The Test Case Controller (tcc) undertakes test suite scenario processing. tcc processes test
cases in accordance with one or more modes of operation, as described in the section entitled
‘‘Modes of operation’’ earlier in this chapter. The default behaviour of tcc can be modified by
many command-line options, details of which are presented in a manual page at the end of this
guide.

Although the user interface to tcc is the same in both Distributed TETware and TETware-Lite,
the operation of tcc is quite different in the two TETware versions. In TETware-Lite there is
only one system (the local system) and tcc itself performs all the actions required to process test
cases. However, in Distributed TETware there may be more than one system (local and/or
remote) and tcc does not perform the actions required to process test cases itself. Instead, it
sends requests to server processes which perform each required action on the appropriate system.
Note that the distributed version of tcc always runs on the local system; indeed, in TETware
terminology the local system is defined as the system on which tcc runs.

6.2.2 Required environment variables
Before you invoke tcc, you must ensure that the value of your TET_ROOT environment variable
points to the tet root directory on the local system.

6.2.3 Normal scenario processing

6.2.3.1 Description

When tcc is invoked, it processes each test case in the specified scenario. (If no scenario is
specified, then tcc processes each test case in the scenario named all). Test case processing is
performed for each operational mode currently in force. For example, if tcc is invoked in build
mode, each test case in the scenario is built or, if tcc is invoked in build and execute mode, then
each test case in the scenario is first built and then executed.

6.2.3.2 Examples

Here are some simple examples of how to use tcc to perform normal scenario processing:

1. To build all test cases in a test suite called mytestsuite:

tcc -b mytestsuite

or
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cd tet-root/mytestsuite
tcc -b

The journal is placed in tet-root/mytestsuite/results/nnnnb/journal.

2. To build, execute and clean all test cases in a test suite called mytestsuite:

tcc -bec mytestsuite

or

cd tet-root/mytestsuite
tcc -bec

The journal is placed in tet-root/mytestsuite/results/nnnnbec/journal.

3. To execute test cases in a test suite called mytestsuite that are listed in a scenario
called myscenario in the default scenario file:

tcc -e mytestsuite myscenario

The journal is placed in tet-root/mytestsuite/results/nnnne/journal.

4. To build and execute test cases in a test suite called mytestsuite that are listed in the
default scenario in a file called myscenfile in the current directory, place the journal in
a file called myjournal in the current directory and print a trace of test case building and
execution:

tcc -be -p -s myscenfile -j myjournal mytestsuite

6.2.4 Rerun and Resume processing

6.2.4.1 Description

In addition to the normal scenario processing described above, tcc can re-run or resume
processing of a previous test run. When you invoke tcc in rerun or resume mode, you specify
the name of the scenario and the journal file from the previous run, and a list of test purpose result
code names or tcc operation modes. Needless to say, the scenario that you specify must be the
same as the one that was used to generate the old journal file. (If the scenario name is not
specified explicitly, tcc re-processes the scenario named all).

When you run tcc in rerun mode, tcc re-processes test cases in the scenario whose results in
the old journal file match one of those specified in the result code list. When you run tcc in
resume mode, tcc re-processes all test cases in the scenario starting from the first test case
whose result in the old journal file matches one of those specified in the result code list.

The result code list may consist of one of the following:

i. A (comma separated) list of result code names.

ii. A (comma separated) list containing one or more of the letters b, e and c, representing
build mode, execute mode and clean mode, respectively, in the previous run.

If the list contains result code names, then test purposes which report one of these results are
matched. If the list contains tcc operating modes, then test purposes which did not report PASS
in the named operating mode(s) are matched.

When performing rerun and resume processing in build and clean modes, tcc performs
processing at the test case level in build and clean mode, and at the invocable component level in
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execute mode.

When you run tcc in rerun mode, the old journal file may either be the result of a normal test
run or of a previous rerun. It is not necessary for the selected modes of operation to be the same
as those specified for the previous run. However, you should avoid specifying impossible
operation mode combinations. For example, if you perform a test run which includes clean mode
and then attempt to rerun without specifying build mode or rebuilding the test cases to be rerun in
some other way, attempts to re-execute selected test cases are bound to fail.

When you run tcc in resume mode, the old journal file must be the result of a normal test run.
You cannot resume using an old journal file which is the result of a previous resume run. In
addition it is necessary for the selected modes of operation to be the same as those specified for
the test run that generated the old journal file.

6.2.4.2 Examples

Here are some simple examples of how to use tcc to perform rerun and resume processing:

1. To re-build all test cases in the test suite named mytestsuite that previously failed to
build in the run whose journal file was named oldjournal:

tcc -b -r b oldjournal mytestsuite

2. To resume building of the first test case and execution from the first invocable component
in the test suite named mytestsuite which reported FAIL or UNRESOLVED in the
journal file named oldjournal:

tcc -be -m FAIL,UNRESOLVED oldjournal mytestsuite

6.2.5 Test case locking
When tcc processes a test case, it prevents possible interference from other instances of tcc by
acquiring one or more exclusive or shared locks. These locks are acquired in the test case source
directory and (optionally) in the test case execution directory.

An exclusive lock is acquired by creating a file called tet_lock in the directory that is to be
locked. A shared lock is acquired by creating a file with a unique name below a directory called
tet_lock in the directory that is to be locked, creating the tet_lock directory if necessary as
well. A diagnostic is printed to the journal file if tcc is unable to acquire the locks that it needs.

Although each instance of tcc is always careful to remove the locks that it created when they are
no longer required, it is possible that old locks might remain after some system or process
malfunction. In the event of this happening it is necessary to remove the old locks by hand.

6.2.6 Saved files processing
As indicated earlier in the section entitled ‘‘Configuration variables used by TETware’’, tcc can
be instructed to save certain files and/or directories that may be created during test case
execution. This action is controlled by the value of the configuration variable
TET_SAVE_FILES and (when Distributed TETware is used) by the value of
TET_TRANSFER_SAVE_FILES.

If TET_TRANSFER_SAVE_FILES is false when Distributed TETware is used, files are saved
on the system on which they were created (be it local or remote). However, if
TET_TRANSFER_SAVE_FILES is true, files that are to be saved are transferred from remote
systems to the local system and saved there. The setting of TET_TRANSFER_SAVE_FILES
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has no effect when TETware-Lite is used.

When files are to be saved without transfer on a particular system, tcc creates a saved files
directory in the test-suite-root/results directory on that system, whose name consists of an
ascending sequence number followed by one or more of b, e and c, indicating which operation
mode(s) was being used by tcc, thus:10

test-suite-root/results/nnnn[bec]

However, when files are to be transferred and saved on the local system by Distributed TETware,
tcc instead creates additional directories named REMOTEnnn below this directory on the local
system, where nnn indicates the system ID (either local or remote) from which the files are to be
transferred, thus:

test-suite-root/results/nnnn[bec]/REMOTEnnn

Each directory thus created becomes the top of the saved files directory hierarchy for its
respective system.

The variable TET_SAVE_FILES may be set to a (comma-separated) list of file names. If, after
tcc executes a test case, a file matching one of these names is found below the execution
directory hierarchy, that file is transferred to the saved file directory hierarchy. Directories are
created as required below the saved files directory so that, after each file has been saved, the
saved file’s path name below the top of the saved files directory hierarchy is the same as the
portion of the file’s path name below the test case’s execution directory.

If a directory is found that matches one of the names, then its contents are transferred recursively.

When Distributed TETware is used, the processing described above is undertaken on each system
for which a TET_SAVE_FILES variable has been specified.

6.2.7 Test session interruption
You can send certain keyboard-generated signals to tcc in order to cause it to interrupt the
processing of an individual test case or of an entire test run.

When tcc receives a SIGINT signal, it aborts processing of the current test case. On a UNIX
system this signal can usually be generated by typing a control-C or DEL character on the
terminal where tcc is running. On a Win32 system this signal is always generated by typing
control-C.

When tcc receives a SIGQUIT signal (on a UNIX system) or a SIGBREAK signal (on a Win32
system), it aborts processing of the entire test run. On a UNIX system this signal can usually be
generated by typing a control-\ character on the terminal where tcc is running. On a Win32
system this signal is always generated by typing control-BREAK.

Users should be aware that the act of interrupting a test case can take some time to complete,
particularly when the test case itself does not immediately respond to the termination signal sent
by tcc or if there is a substantial amount of journal file or saved files processing to perform
when the test case terminates.

����������������
10. This is the same directory name as that used for the directory on the local system in which the journal file is placed.
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In addition, users should be aware that the use of test session interruption facilities on a Win32
system can have an adverse effect on the subsequent operation of the system. Refer to the
appendix entitled ‘‘Implementation notes for TETware on Win32 systems’’ towards the end of
this guide for further details.

6.3 The Test Case Controller daemon tccd

6.3.1 Description
The Test Case Controller daemon (tccd) is a server that performs functions on behalf of the Test
Case Controller when Distributed TETware is used. As with all subsections describing
Distributed TETware servers, this subsection is not applicable to TETware-Lite.

tccd must be started on each system (both local and remote) on which test cases are to be
processed, before tcc is invoked on the local system.

When you install Distributed TETware on a UNIX system, it is recommended that you should ask
your system administrator to arrange for tccd to be started automatically as part of each
machine’s startup procedure. When you install Distributed TETware on a Windows NT system,
you must arrange to start tccd yourself by running the tccd bootstrap program tccdstart.
Details of how to start tccd are presented in the section entitled ‘‘Starting tccd’’ in the
TETware Installation Guide for each type of operating system.

A manual page describing the various tccd command-line options is presented at the end of this
guide.

6.3.2 tccd versions and modes of operation
On a UNIX system it is possible to build several versions of tccd from the source code; the
version that is built is determined by a decision that must be made at compile time. Two of the
versions of tccd are known as the rc version and the inittab version. The rc version is intended
to be started by an entry in one of the /etc/rc system startup scripts, and the inittab version is
intended to be started by an entry in the file /etc/inittab. The only difference between
these two versions is that the rc version puts itself in the background when invoked, and the
inittab version does not.

A third version of the Test Case Controller daemon may be built on systems that use the socket
network interface, which is suitable for use in conjunction with the inetd super-server which
runs on many UNIX systems. This version is known as the inetd version and is named
in.tccd in accordance with established conventions.

The rc and inittab versions of tccd listen for requests from client processes, much like other
network service daemons. When a request is received, tccd forks off a child copy of itself to
service the client’s requests and continues to listen for requests as before. The child tccd
processes requests from the client and terminates automatically when it is no longer required.

The inetd version, in.tccd, operates slightly differently. inetd listens for client requests on
behalf of all the servers that it knows about. When inetd receives a request on the well-known
tcc port, inetd forks off a copy of itself which immediately executes in.tccd. in.tccd
then processes requests from the client and terminates automatically when it is no longer
required. A consequence of this is that there is no in.tccd permanently running on a UNIX
system; an instance of in.tccd is only invoked when actually requested from another system.
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It is only possible to build a single version of tccd on a Windows NT system. Of the three
versions of tccd that may be run on a UNIX system, the version of tccd that runs on a
Windows NT system most closely resembles the inetd version of tccd described previously.
On a Windows NT system, tccd is started on demand by a bootstrap program called
tccdstart which performs a function similar to that performed by inetd on a UNIX system.

A consequence of the way in which tccd operates is that a machine running tccd can service
requests from more than one client once, since each client obtains its own copy of tccd to use.

Since the different versions of the Test Case Controller daemon only differ in their operation on
startup, references to tccd in the rest of this section and throughout this guide may be taken to
apply equally to all versions of tccd unless explicitly stated to the contrary.

6.3.3 tccd user and group ID
By default, when tccd is executed on a UNIX system, it attempts to change its user and group
IDs to those specified for the user tet in the system password database. Failure to change the
user or group ID is treated as fatal if tccd is invoked initially with administrative privilege (i.e.,
with a user or group ID of less than 100). tccd then changes directory to the home directory of
the user tet and sets its HOME environment variable to refer to that directory.

A different user name may be specified if tccd is invoked with the −u command-line option. If
tccd is invoked in this way, it performs all of these operations using the specified user name
instead of the user tet.

When tccd is executed on a Windows NT system, it does not attempt to change its user ID but
instead runs with the ID of the user who starts it. In addition, if the HOME environment variable
is not defined, tccd sets it to the name of the directory in which tccd is invoked.

6.3.4 tccd log file
When tccd is executed, it connects its standard output and standard error streams to the file
/tmp/tccdlog on a UNIX system or to c:/tmp/tccdlog on a Windows NT system. In
addition, tccd connects its standard input to /dev/null on a UNIX system or to nul on a
Windows NT system. If a different log file is specified by the -l command-line option, tccd
reconnects its standard output and error streams to that file as soon as possible. The result of this
is that test cases and other processes which may be executed by tccd start execution with their
standard input, standard output and standard error streams connected to these files as well11.

All messages printed by tccd to the log file include the process ID and a time stamp, so that it is
possible to determine the origin of a message when more than one tccd executes on the same
machine. If a message cannot be printed to the log file for some reason, tccd attempts to send
the message to /dev/console (on a UNIX system) or con (on a Windows NT system) as a
last resort.

When the parent tccd daemon (but not the inetd version of tccd) starts, it prints a START
message to the log file.

����������������
11. If a test case or a build or clean tool is executed with TET_OUTPUT_CAPTURE set to True, then tcc arranges for

tccd to execute the tool with standard output and standard error streams connected to a different file. The contents
of this file are copied to the journal file when when the tool finishes execution.
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When tccd receives the initial logon request from a client, it prints a message to the log file
indicating the origin of the message and which system ID has been assigned to the system.

6.3.5 Terminating tccd
Each child tccd terminates automatically after its client process disconnects from it. The parent
tccd on a UNIX system may be terminated by sending it a SIGTERM signal.

6.4 The Test Case Manager
The Test Case Manager (TCM) is not a separate program but is instead part of each TETware
API.

Distinct versions of the C, C++ and Java APIs are provided with TETware-Lite and Distributed
TETware, since the distributed versions provide support for remote and distributed testing,
whereas the Lite versions do not. However, the same versions of the other APIs are provided
with both TETware-Lite and Distributed TETware since these APIs do not provide support for
distributed testing.

The C and C++ TCMs are linked with the compiled user-supplied test code and the C API library
to form an executable file. When a distributed test case is executed by Distributed TETware, the
TCMs on all the participating systems synchronise with each other at certain times during test
execution, so as to ensure that test case parts running on the various systems keep in step with
each other. Refer to the chapter entitled ‘‘Test case synchronisation’’ elsewhere in this guide for
details of test case synchronisation.

The C and C++ APIs send diagnostic output to the journal file as test case manager messages. If
this is not possible, each API writes diagnostic output to the TCM’s standard error stream12.

The Shell, Korn Shell and Perl TCMs are each sourced by the script containing the user-supplied
test code. These TCMs do not support distributed testing.

The class files that contain the Java TCM is accessed by the Java interpreter using the value of the
CLASSPATH environment variable. The Java API support library is accessed using the Java
Native Interface (JNI).

6.5 The Synchronisation daemon tetsyncd

6.5.1 Introduction
The Synchronisation daemon tetsyncd provides support for distributed test case execution
when Distributed TETware is used. As with all subsections describing Distributed TETware
servers, this subsection is not applicable to TETware-Lite.

����������������
12. By default the TCM’s standard error stream is connected to the tccd log file when Distributed TETware is used.
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6.5.2 Description
tetsyncd is a server that runs on the local system13 and undertakes the processing of automatic
and user synchronisation requests. An automatic synchronisation request is generated by the Test
Case Manager, and a user synchronisation request is made when a test purpose makes calls to the
tet_remsync() API library routine.

tetsyncd cannot be started interactively but is started for you when required by tcc.
tetsyncd terminates automatically approximately 60 seconds after the last client process has
disconnected from it.

tetsyncd sends diagnostic output to its standard error stream. This stream is inherited from
tcc; thus, diagnostics generated by tetsyncd appear wherever tcc’s standard error stream is
directed.

6.6 The Execution Results daemon tetxresd

6.6.1 Introduction
The Execution Results daemon tetxresd provides support for test case execution when
Distributed TETware is used. As with all subsections describing Distributed TETware servers,
this subsection is not applicable to TETware-Lite.

6.6.2 Description
tetxresd is a server that runs on the local system and undertakes the processing of journal
output and test purpose results for API-conforming test cases. In addition, tetxresd performs
certain administrative functions on the local system on behalf of processes running on remote
systems, mostly related to transfer save files processing.

tetxresd cannot be started interactively but is started for you when required by tcc.
tetxresd terminates automatically approximately 60 seconds after the last client process has
disconnected from it.

tetxresd sends diagnostic output to its standard error stream. This stream is inherited from
tcc; thus, diagnostics generated by tetxresd appear wherever tcc’s standard error stream is
directed.

����������������
13. That is: the system on which tcc runs.
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7. Test case synchronisation

7.1 Introduction
This chapter describes how systems synchronise with each other when Distributed TETware is
used, and explains how to interpret diagnostic messages which are generated when
synchronisation requests do not complete successfully.

The facilities described in this chapter are not available when TETware-Lite is used.

7.2 Synchronisation request concepts

7.2.1 Request types
There are two types of synchronisation performed by Distributed TETware processes. Automatic
synchronisation requests are generated when Test Case Managers synchronise with each other at
certain pre-defined points during test case execution. User synchronisation requests are generated
when different parts of a distributed test purpose call the tet_remsync() API library routine.

7.2.2 Request parameters
Each synchronisation request is accompanied by a sync point number, a system ID list, a sync
vote and an optional timeout. In addition, a request may include an indication that the requesting
process wishes to send or receive sync message data during the synchronisation operation.

Processes on systems which want to synchronise with each other send requests to the TETware
Synchronisation daemon (tetsyncd). tetsyncd waits until all systems have submitted their
requests and then notifies each participating process of the result.

The value of the sync vote specified in a synchronisation request can be either yes or no.
tetsyncd notifies all participating processes of how each system voted in each request.

If a process specifies a timeout when making a request, then tetsyncd starts a per-process
timeout as soon as the request is received. Each per-process timeout is reset to its initial value as
each subsequent request is received from other participating systems; however, if the timeout for
any process expires before all systems have submitted their requests then the synchronisation is
considered to have failed.

It is possible for one system making a synchronisation request to send sync message data with
the request. If the synchronisation is successful, then tetsyncd returns this data to other
participating systems which have indicated willingness to receive such data when synchronisation
is complete.

7.2.3 Sync events
tetsyncd defines a new sync event when the first system makes a request to synchronise to a
particular sync point with a group of other systems. A sync event is considered to have
completed as soon as one of the following conditions are met:

1. All of the systems that are expected to synchronise have done so.

2. One of the systems that has synchronised times out after having done so.

3. A process that has made a synchronisation request disconnects from tetsyncd before all
the other systems that are expected to synchronise have done so.
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When the event completes, all processes that have participated in the event are notified of the
result. An event is considered to have succeeded if all systems that are expected to participate in
the event submit requests with a yes vote. If a process on any of the participating systems
submits a no vote, times out or disconnects from tetsyncd before the event completes, then
the event is considered to have failed.

7.2.4 Sync states
tetsyncd maintains a set of sync states for each sync event. One sync state in this set is
maintained for each system that is expected to participate in a sync event.

The sync state of a system is indicated by one of the following mnemonics:

SYNC-YES The system has synchronised with a yes sync vote.

SYNC-NO The system has synchronised with a no vote.

NOT-SYNCED The system has not yet participated in this sync event.

TIMED-OUT The system has synchronised but the associated timeout has expired before the
sync event completed.

DEAD The system has synchronised but the participating process has disconnected from
tetsyncd before the sync event completed.

These mnemonics are used in diagnostic messages that relate to synchronisation request failures
and other unexpected synchronisation conditions.

7.2.5 With what to synchronise?
As indicated above, when a TETware process makes a synchronisation request, it specifies a list
of system IDs with which is wishes to synchronise. This means that any one TETware process
running on a particular system can participate in a sync event on behalf of that system. It is not
possible for a process to use TETware synchronisation facilities to synchronise with a particular
process on a named system, or for processes on the same system to use these facilities to
synchronise with each other.14

7.3 Automatic synchronisation requests

7.3.1 Description
Automatic synchronisation requests are generated by the TETware Test Case Manager, and by
the API when a remote executed process is started. The list of systems that are expected to
participate in automatic sync events for each distributed test case is defined before the first
request is made. Each automatic synchronisation request is accompanied by a sync ID which
identifies this list of systems. Processes which make automatic synchronisation requests do not
send or receive sync message data.

����������������
14. Note that the term system refers to a logical system ID, not to a physical machine. Therefore, it is possible for two

or more co-operating processes with different system IDs running on the same physical machine to use TETware
synchronisation facilities to synchronise with each other.
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The following subsections describe the circumstances under which automatic synchronisation
requests are made, and the parameters that are used in each type of request.

7.3.2 Test case manager synchronisation
When a distributed test case is executed, the TCMs on each participating system synchronise with
each other during certain stages of test case processing. The sync point number associated with
each request is used to identify which stage is about to begin. The timeout specified with each
request depends on which stage is about to begin.

The following table lists these stages, the sync point numbers that are used to identify them and
the timeouts that are used:
�������������������������������������������������������������������������������

Timeout
Stage in test case processing Sync point number15

(seconds)�������������������������������������������������������������������������������
At TCM startup time 1 60
Before the startup function (if any) is called 2 60
At the start of each invocable component (ICno + 1) ∗ 216 60
At the start of each test purpose ((ICno + 1) ∗ 216) + (TPno ∗ 2) 60
At the end of each test purpose ((ICno + 1) ∗ 216) + (TPno ∗ 2) + 1 600
Before the cleanup function (if any) is called ((ICmax + 2) ∗ 216) + 2 60���������������������������������������������������������������������������������
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In this table, ICno is the number of the invocable component being processed, TPno is the
number of the test purpose being processed and ICmax is the highest numbered invocable
component in the test case.

Normally, TCMs on each participating system specify a yes sync vote in each request.
However, if a TCM on one system is about to execute a test purpose which has been deleted (by a
previous call to tet_delete() in that test case), it instead specifies a no sync vote in the
request made at test purpose start. When all the other TCMs see this no vote, they interpret this
to mean that the test purpose is deleted and do not execute it.

In addition, if the consolidated result of a test purpose has an action code of Abort, the TCM on
the master system16 synchronisises to the end of the last test purpose in the test case using a no
vote. This causes all the other TCMs to perform the following actions:

i. Any remaining test purposes in the current invocable component are deleted.

ii. No further invocable components are executed, but test case cleanup processing is
performed.

����������������
15. It will be seen that the way that automatic sync point numbers are calculated imposes a limit of (215 − 2) test

purposes per invocable component and (215 − 3) invocable components per test case.

16. That is: the first system in the list specified with the associated :remote: or :distributed: directive.
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7.3.3 Remote executed process synchronisation
When a test case starts a remote process by calling tet_remexec(), the remote process
synchronises with the test case that called tet_remexec(). This is to ensure that the test case
waits until the remote process has started up before continuing execution. Sync point number 1
and a yes sync vote are used in this request and the timeout is set to 60 seconds.

If the remote system’s tccd is unable to execute the process for some reason, it performs the
initial synchronisation operation on behalf of that remote process but instead specifies a no vote
in the request.

The way that synchronisation with remote executed processes is implemented makes it possible
for a test case to start more than one process on the same remote system.

7.3.4 Error handling
There are two classes of error that can occur during automatic synchronisation requests, as
follows:

— the request fails as a result of some problem that occurs in the API or in tetsyncd; these
are described below as synchronisation request failures

— some problem is detected with one of the other systems which participated (or should have
participated) in the sync event; these are described below as synchronisation errors

If an automatic synchronisation request failure occurs, then the TCM emits a single diagnostic
indicating which automatic synchronisation request was being attempted and the cause of the
failure.

If a problem is detected with one of the other systems involved in a sync event, then the TCM
emits one diagnostic for each affected system. Each diagnostic indicates which automatic
synchronisation request was being attempted and system ID and sync state of the affected system.

7.3.5 Example error messages
In the following examples, suppose that parts of a distributed test case are being executed on
systems 0, 1 and 2.

7.3.5.1 Example 1

Suppose that a test case could not be started on system 1 for some reason. The TCM on (say)
system 0 will time out waiting for system 1 to synchronise at TCM startup time, and will generate
the following message:

system 0, reply code = ER_TIMEDOUT: initial sync error, \
sysid = 1, state = NOT-SYNCED

The TCM that started successfully on system 2 will generate the following message:

system 2, reply code = ER_SYNCERR: initial sync error, \
sysid = 0, state = TIMED-OUT

system 2, reply code = ER_SYNCERR: initial sync error, \
sysid = 1, state = NOT-SYNCED
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7.3.5.2 Example 2

If the TCMs on systems 1 and 2 synchronise to the end of (say) test purpose 4 and the TCM on
system 1 times out before the TCM on system 0 reaches the same point, the TCM on system 1
will generate the following message:

system 1, reply code = ER_TIMEDOUT: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT-SYNCED

and the TCM on system 2 will generate the following message:

system 2, reply code = ER_SYNCERR: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT-SYNCED

system 2, reply code = ER_SYNCERR: Auto Sync error at end of TP 4, \
sysid = 1, state = TIMED-OUT

At this point, the sync event is considered to have completed.

When the TCM on system 0 finally makes its synchronisation request at the end of test purpose 4,
it will generate the following message:

system 0, reply code = ER_DONE: Auto Sync failed at end of TP 4

This indicates that the TCM on system 0 has missed the sync event because the event has already
completed.

7.4 User synchronisation requests

7.4.1 Description
A user synchronisation request is generated when a test purpose in a distributed test case calls the
tet_remsync() API library routine17. The sync point number, system ID list, vote and
timeout are specified in each call. In addition to these parameters, a process can send, or indicate
willingness to receive, sync message data. When this is done and all participating systems use
the same sync point number, message data sent by the sending system may be returned to the
receiving systems on completion of the event.

tetsyncd defines a separate sequence of user sync events for each distinct system ID list
specified in tet_remsync() calls made by test purposes in a particular distributed test case.
Thus, a user sync event will only be successful if the test purposes on all systems that are
expected to participate in the event all specify the same system ID list in their tet_remsync()
calls.

User sync events have lower precedence than automatic sync events. Therefore, if the test
purpose on one system returns control to the TCM while test purposes on other systems are
waiting on a user sync event that includes that system, the user sync event is considered to have
completed unsuccessfully and participating processes are notified accordingly.

����������������
17. The tet_remsync() function replaces the tet_sync() and tet_msync() functions that have been

implemented in previous DTET and dTET2 releases. In order to provide backward compatibility with existing test
suites, tet_sync() and tet_msync() are still supported in TETware but these functions are now marked ‘‘to
be withdrawn’’.
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7.4.2 Error handling
Synchronisation request failures and synchronisation errors for user synchronisation requests are
defined in the same way as for automatic synchronisation requests. In addition, if one or more of
the participating systems specifies a no vote, this causes a failure indication on all systems.

By default, the API prints a test case manager message to the journal file when a user
synchronisation request is unsuccessful. Each diagnostic indicates the sync point number of the
request that was unsuccessful and the system IDs and sync states of the systems which failed to
synchronise or timed out. The formats of diagnostics printed to the journal file are different from
those generated for unsuccessful automatic synchronisation requests. Examples of the formats
that may be used to report an unsuccessful user synchronisation request are presented in the next
section.

However, it is possible for the test suite author to arrange for a different action to be taken when a
user synchronisation request is unsuccessful. When this is done, the default action is not taken
and the API does not generate journal messages of the type described in the next section.

7.4.3 Example error messages
The following subsections contain examples of the error messages that are generated by the API’s
default error handler routine. These messages are not generated when a user-supplied error
handler routine is specified.

In the following examples, suppose that parts of a distributed test case are being executed on
systems 0, 1 and 2. Suppose that sync point number 12 is being used in each case and that the
timeout is set to 30 seconds.

7.4.3.1 Example 1

Suppose the test purpose on system 0 expects to synchronise with the test purpose on system 1,
but the test purpose on system 1 returns control to the TCM without making a synchronisation
request. The API on system 0 will generate the following messages:

system 0: sync operation failed, syncptno = 12, \
other system did not sync or timed out

system 0: system = 1, state = NOT-SYNCED

7.4.3.2 Example 2

Suppose that all the systems expect to synchronise with each other but that system 1 times out
before system 0 reaches the sync point. The API on system 1 will generate the following
messages:

system 1: sync operation failed, syncptno = 12, \
request timed out after waittime of 30 seconds

system 1: system = 0, state = NOT-SYNCED
system 1: system = 2, state = SYNC-YES

and the API on system 2 will generate the following messages:
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system 2: sync operation failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 2: system = 0, state = NOT-SYNCED
system 2: system = 1, state = TIMED-OUT

At this point the event is to considered to have completed.

When the test purpose on system 0 finally makes its synchronisation request, the request will fail
because the associated event has already happened. The API on system 0 will generate the
following message:

system 0: sync operation failed, syncptno = 12, event already happened

This indicates that the part of the test purpose on system 0 has missed the sync event because the
event has already completed.

7.4.3.3 Example 3

Suppose that the test case on system 1 terminates unexpectedly before the sync event completes.
The API on system 0 will generate the following messages:

system 0: sync operation failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 0: system = 1, state = DEAD
system 0: system = 2, state = SYNC-YES

and the API on system 2 will generate the following messages:

system 2: sync operation failed, syncptno = 12, \
one or more of the other systems did not sync \
or timed out

system 2: system = 0, state = SYNC-YES
system 2: system = 1, state = DEAD
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8. Interacting with test cases in Distributed TETware

8.1 Introduction
When a test case or tool is run under the control of the Lite version of tcc it inherits standard
input, standard output and standard error streams from tcc (provided output capture mode is not
in effect). This means that it is possible to interact with test cases and tools when tcc is run
from a terminal.

By contrast, when a test case or tool is run under the control of the Distributed version of tcc, its
standard input is connected to the null device and its standard output and standard error are
connected to the tccd log file. This means that it is not possible to interact with test cases or
tools when they are executed by tcc in the normal way. Instead it is necessary to instruct tcc
to execute each test case under the control of a tool that enables input and output to be directed
from/to a terminal.

This chapter describes such a tool. This tool is a shell script and its name is tet_start. Its
function is to execute a test case in its own window, so as to enable the user to interact with the
test case in the normal way. Although tet_start is primarily designed as an exec tool, it is
possible to use it as a front end to other tools as well.

Information about the way in which tcc processes an exec tool is presented in the section
entitled ‘‘Execute mode processing’’ in the TETware Programmers Guide.

8.2 System requirements

8.2.1 UNIX systems
On a UNIX system, tet_start runs the test case in a new xterm window. This means that
an xterm client (or equivalent) must be available on each machine where test cases are to be run
under control of tet_start. By default the window is displayed on the machine’s graphics
display (if it has one). However, it is not necessary for the machine to have a graphics display
since tet_start can be instructed to use any available X-terminal or workstation that is
running an X server.

8.2.2 Win32 systems
On a Win32 system, tet_start runs the test case in a window created by the start
command that is part of the MKS Toolkit. This means that the MKS Toolkit must be installed on
each machine where test cases are to be run under control of tet_start. On a Win32 system,
tet_start always displays the window on the system’s monitor.

8.3 Using tet_start
You can tell tcc to execute each test case under the control of tet_start by setting the
TET_EXEC_TOOL variable in the execute mode configuration. For example:

TET_EXEC_TOOL=tet-root/bin/tet_start

(You don’t need to use the full path name if your search PATH includes tet-root/bin.)

Then, when you use tcc to process a scenario in execute mode, tet_start runs each test case
in the scenario in its own window. The window’s title includes the name of the test case being
executed and the system number. Any output generated by the test case is displayed in the
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window and characters typed in the window are made available to the test case. When the test
case exits, tet_start prints the test case’s exit status followed by a prompt. When you type a
RETURN, tet_start terminates, the window closes and control is returned to tcc.

You can use tet_start to execute another exec tool. This capability can be useful if you want
to use a debugger to operate on a remote or distributed test case. You can use the
TET_EXEC_FILE configuration variable to specify the other exec tool. For example:

TET_EXEC_TOOL=tet-root/bin/tet_start
TET_EXEC_FILE=other-exec-tool

If you need to pass arguments to the other exec tool, you can specify these on the end of the
assignment to TET_EXEC_FILE. For example:

TET_EXEC_TOOL=tet-root/bin/tet_start
TET_EXEC_FILE=other-exec-tool args . . .

Further information about the way that tcc processes the TET_EXEC_TOOL and
TET_EXEC_FILE configuration variables is presented in the sections entitled ‘‘Execute mode
processing’’ and ‘‘Configuration variables which modify TETware’s operation’’, both in the
TETware Programmers Guide.

8.4 Customising tet_start

8.4.1 Introduction
You can use certain configuration variables to pass additional information to tet_start. You
can define these variables in the configuration for the current mode of operation. For example, if
you need to define any of these variables when you use tet_start as an exec tool, you should
define the variables in the execute mode configuration.

If you are using Distributed TETware to process remote or distributed test cases on several
systems, it may be necessary to specify different values of these variables in the configurations
for the different systems. This is particularly likely if the machines on which the systems reside
are of different types. There is a complex relationship between variables defined on the local
system and variables defined on remote systems. This relationship is described in the section
entitled ‘‘Setting configuration variables on local and remote systems when using Distributed
TETware’’ elsewhere in this guide. Further details are presented in the section entitled
‘‘Configuration variable processing in Distributed TETware’’ in the TETware Programmers
Guide.

The variables that may be used to customise tet_start are described in the following
subsections.

8.4.2 UNIX systems

8.4.2.1 Specifying which xterm command to use

On a UNIX system, tet_start uses xterm to create the new window. tet_start looks
for xterm in a list of standard places, followed by directories specified in the PATH environment
variable. When tet_start is used on a remote system it inherits PATH from tccd. On most
systems it is unlikely that this value of PATH will include the directory which contains xterm,
so searching a list of standard places increases the chance that tet_start will be able to find
xterm unaided.
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If necessary, you can use the TET_XTERM configuration variable to change the name of the
xterm program. Some reasons why you might need to do this include:

— when you need to specify the location of xterm explicitly;

— when xterm is called something else on your system (for example: aixterm,
color_xterm, hpterm etc.)

— when you want to pass additional arguments to xterm.

For example, to instruct xterm to use the 8x13 font instead of the default, you might make the
following assignment:

TET_XTERM=/usr/X11R6/bin/xterm -font 8x13

As a more complicated example, consider a distributed test case running on several systems.
Suppose that remote system 1 is running a version of SVR4 where xterm needs to access shared
libraries which cannot be found using the default library search path. In this case you might
make the following assignment in the execute mode configuration on remote system 1:

TET_XTERM=LD_LIBRARY_PATH=:/usr/X/lib /usr/X/bin/xterm

Or you could make the following assignment in the execute mode configuration file on the local
system18:

TET_REM001_TET_XTERM=LD_LIBRARY_PATH=:/usr/X/lib /usr/X/bin/xterm

8.4.2.2 Directing the new window to a particular display

By default, xterm connects to the X server specified by the DISPLAY environment variable.
tet_start checks to see if there is a DISPLAY variable in its environment and, if there is not,
it supplies a default value of DISPLAY=unix:0.0. This value instructs xterm to connect to
the X server running on a directly connected monitor.

You can use the TET_XTERM_DISPLAY configuration variable to supply an explicit value for
the DISPLAY environment variable that is inherited by the xterm command.

For example, if you are running parts of a distributed test case on several systems and you want
all the windows to appear on your workstation’s monitor, you might make the following
assignment in the execute mode configuration file on the local system:

TET_XTERM_DISPLAY=frodo:0.0

(assuming that your workstation is called frodo).

It should be noted that a value of TET_XTERM_DISPLAY is always required for each remote
system on which tet_start is to be run if that system does not have an X server running on a
directly connected monitor.

����������������
18. That is: the system on which tcc runs.
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8.4.3 Win32 systems

8.4.3.1 Specifying the location of the start command

On a Win32 system, tet_start uses the MKS start command to create the new window. If
the ROOTDIR environment variable is set, tet_start looks for the start command in the
$ROOTDIR/mksnt directory; otherwise in the c:/mksnt directory. If the command cannot
be found using this path name, it is searched for using the PATH environment variable.19

If necessary, you can use the TET_START configuration variable to specify an explicit location
of the MKS start command.

8.5 Application notes

8.5.1 General
1. You must not enable output capture mode if you want test case output to appear in the

window that is created by tet_start. That is: if you specify a value for
TET_OUTPUT_CAPTURE in the configuration for the current mode of operation, be sure
to set it to False.

2. If you use a debugger to operate on part of distributed test case and you set a breakpoint in
a test purpose function or a startup or cleanup function, you should be aware of the impact
this can have on the timeouts associated with automatic sync points. In particular, if you
leave a test case part waiting at a break point for any length of time it is likely that the
automatic sync point at the end of the corresponding function on the other system(s) will
time out.

Information about automatic sync points and the timeouts associated them is presented in
the chapter entitled ‘‘Test case synchronisation’’ elsewhere in this guide.

3. In Distributed TETware, diagnostic output from tet_start itself and the commands that
it executes usually appears in the tccd log file on each system.

4. The exit status of tet_start is taken from the exit status of xterm (on a UNIX system)
or start (on a Win32 system). Usually this is zero, irrespective of the executed test
case’s exit status. It should be noted that when an exec tool is used, the exit status reported
by tcc on the TC End line in the journal is the exit status of the exec tool and not of the
test case.

8.5.2 UNIX systems
1. If you resize a window, all processes running in the window receive a SIGWINCH signal.

The TCM catches all the signals it can and so it terminates when it receives this signal. In
order to overcome this it is necessary to tell the TCM to leave the SIGWINCH signal alone
by using the TET_SIG_LEAVE configuration variable.

����������������
19. It is possible that a Windows 95 command of the same name might be found when PATH is used; see ‘‘Application

notes’’ later in this chapter.
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For example, if SIGWINCH has the value 28 on your system, you should make the
following assignment in the execute mode configuration:

TET_SIG_LEAVE=28

Further information about this configuration variable is presented in sections entitled
‘‘Insulating from the test environment’’ in each of the chapters in the TETware
Programmers Guide which describes an API.

8.5.3 Win32 systems
1. If you use the TET_START configuration variable to specify an alternative name for the

start command, you should use / (forward slash) as the directory separator character in
the path name. The results are undefined if the value of TET_START contains a \
(backslash) character.

2. Most of the TETware TCMs do not trap keyboard signals on Win32 systems. So, if you
type a control-C or control-BREAK in a window in which a test case is running, it is likely
that the test case will terminate without generating a result. Refer to the appendix entitled
‘‘Implementation notes for TETware on Win32 systems’’ in this guide for further details.

3. Users of Windows 95 systems should be aware that if tet_start cannot find the MKS
start command and the TET_START configuration variable is not set, it might try and
use the Windows 95 start command instead. To avoid this possibility it is
recommended that TET_START should always be set on a Windows 95 system.
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A. The TETware end-user licence

+++++++++++++++++++++++++++ TET END USER LICENCE +++++++++++++++++++++++++++

BY OPENING THE PACKAGE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT.
IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL
THE PRODUCT AND RETURN IT TO THE PLACE OF PURCHASE FOR A FULL REFUND.

��������������������������������������������
TETWARE RELEASE 3.7 END USER LICENCE

REDISTRIBUTION NOT PERMITTED��������������������������������������������

This Agreement has two parts, applicable to the distributions as follows:

A. Free binary evaluation copies − valid for 90 days, full functionality − no warranty.

B. Free binary restricted versions − no warranty, limited functionality.

C. Licenced versions − full functionality, warranty fitness as described in documentation, includes
source, binary and annual support.

PART I (A & B above) − TERMS APPLICABLE WHEN LICENCE FEES NOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE).

GRANT.

X/Open grants you a non-exclusive licence to use the Software free of charge if

a. you are a student, faculty member or staff member of an educational institution (K-12, junior college,
college or library) or an employee of an organisation which meets X/Open’s criteria for a charitable
non-profit organisation; or

b. your use of the Software is for the purpose of evaluating whether to purchase an ongoing licence to
the Software.

The evaluation period for use by or on behalf of a commercial entity is limited to 90 days; evaluation use
by others is not subject to this 90 day limit. Government agencies (other than public libraries) are not
considered educational or charitable non-profit organisations for purposes of this Agreement. If you are
using the Software free of charge, you are not entitled to hard-copy documentation, support or telephone
assistance. If you fit within the description above, you may use the Software for any purpose and without
fee.

DISCLAIMER OF WARRANTY.

Free of charge Software is provided on an ‘‘AS IS’’ basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
X/OPEN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
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PART II (C above) − TERMS APPLICABLE WHEN LICENCE FEES PAID.

GRANT.

Subject to payment of applicable licence fees, X/Open grants to you a non-exclusive licence to use the
Software and accompanying documentation (‘‘Documentation’’) as described below.

Copyright  1996, 1997 X/Open Company Ltd.
Copyright  1998, 1999, 2003 The Open Group

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated
as directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted. Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open.
Distribution of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is permitted subject to the
following conditions:

— this copyright notice is included unchanged with any binary distribution;

— the company distributing binary versions notifies X/Open;

— the company distributing binary versions holds an annual TET support agreement in effect with
X/Open for the period the product is being sold, or a one off binary distribution fee equal to four years
annual support is paid.

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

Portions of this work contain code and documentation derived from other versions of the Test Environment
Toolkit, which contain the following copyright notices:

Copyright  1990, 1992 Open Software Foundation
Copyright  1990, 1992 Unix International
Copyright  1990, 1992 X/Open Company Ltd.
Copyright  1991 Hewlett-Packard Co.
Copyright  1993 Information-Technology Promotion Agency, Japan
Copyright  1993 SunSoft, Inc.
Copyright  1993 UNIX System Laboratories, Inc., a subsidiary of Novell, Inc.
Copyright  1994, 1995 UniSoft Ltd.

The unmodified source code of those works is freely available from ftp.xopen.org. The modified
code contained in TETware restricts the usage of that code as per this licence.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Page 68 July 2000
The Open Group



TET3-UG-1.4 Test Environment Toolkit
TETware User Guide

B. TETware directory structure
The following diagram illustrates the directory structure used by TETware. Each directory level
is represented by a level of indentation. Directory names are followed by a / character. Some
directories and files shown here are part of the TETware distribution, whereas others are part of
the user-supplied test suites or are created in the course of TETware’s operation.

The suffixes shown in this diagram are the ones that are used on UNIX systems. On Win32
systems, object files (.o files) have the suffix .obj, archive library files (.a files) and import
library files (.so files) have the suffix .lib and executable files have the suffix .exe. Other
suffixes shown here are the same on both systems.

The structure shown here is the complete one used when a source code distribution of Distributed
TETware is built to support all of the available options. Therefore not all of the directories and
files shown here are present in TETware-Lite or if a binary distribution is installed.

tet-root/

bin/

tcc
tccd or in.tccd∂
tccdstart∂
tet_start
tetsyncd∂
tetxresd∂
other TETware executables
DLLs on Win32 systems

contrib/

directories containing user-contributed software

doc/

TETware documentation

inc/

tet3/

TETware API header files

directories containing compatibility-mode links to API header files§

lib/

java/ �

libjapi.so�
java class files�

ksh/

����������������
∂ Not present in TETware-Lite.

§ Only on UNIX systems where TETware has been installed with an option which provides source code compatibility
with for test suites written for use with previous TET versions.

� Only on systems where the Java API has been installed.
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tetapi.ksh
tcm.ksh

perl/

api.pl*
tcm.pl*

tet3/

Ctcm.o†
Ctcmchild.o†
Cthrtcm.o†‡
Cthrtcmchild.o†‡
libapi.a
libapi_s.so�
libtcm_s.a�
libthrapi.a‡
libthrapi_s.so‡�
libthrtcm_s.a‡�
tcm.o
tcm_m.o
tcm_ms.o�
tcmchild.o
tcmchild_s.o�
tcmc_m.o
tcmc_ms.o�
tcmrem.o∂
tcmr_m.o∂
thrtcm.o‡
thrtcm_m.o‡
thrtcmchild.o‡
thrtcmc_m.o‡

xpg3sh/

tetapi.sh
tcm.sh

directories containing compatibility-mode links to API object and library files§

src/

defines/

platform-specific makefile definition files

java/�

Java API source tree

ksh/

����������������
* Only on systems which support Perl.

† Only on systems which support C++.

‡ Only on systems which support threads.

� Only on systems where shared API libraries have been built.
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Korn Shell API source tree

perl/

Perl API source tree

tet3/

TETware C source tree

xpg3sh/

Shell API source tree

systems∂
systems.equiv∂
test-suite-root/

tet_code
tet_scen
tetbuild.cfg
tetclean.cfg
tetdist.cfg
tetexec.cfg
results/

nnnn[bec]/

REMOTEnnn/∂
transfer save files

journal
other results files

tet_tmp_dir/

nnnnnx/

test case files and directories
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C. TETware journal lines
This appendix describes the various journal lines that may appear in a TETware journal file.

Test Case Controller Start

0|version time date|who

This message is generated by tcc at the beginning of each TCC execution. The
parameters include the version of tcc used, the time at which TCC execution started
and the current date. The message area contains information about who ran the test
and lists the tcc command-line that was used.

Local System Information

5|sysname nodename release version machine|text

This message follows the Test Case Controller Start message. On a UNIX system
the parameters are obtained from the information returned by the uname() system
call. On a Win32 system the parameters identify the name of the operating system,
the computer name, the operating system’s major and minor version numbers and the
processor type. In Distributed TETware this information relates to the local system.

Test Case Start

10|activity testcase time|IClist

A test case start message is generated by tcc for each test case executed in a
scenario. The parameters are the sequence number of this TCC activity, the path
name of the test case and the time the test was started. If the corresponding scenario
line contains a list of invocable components to be executed, then that IC list is
included in the text area of the message.

Test Case Manager Start

15|activity version ICcount|text

The TCM writes this message during its initialisation. The parameters include the
sequence number of this TCC activity, the version of the TCM being used and the
number of invocable components to be executed.

Local System Configuration Start

20|pathname mode|text

Configuration start messages are placed in the journal by tcc at test session startup
for each of the selected modes of operation. Parameters are the path name of the
configuration file being referenced and the mode to which this configuration
information applies.

Remote System Configuration Start

20|nnn mode|text

Where nnn describes the remote system ID instead of the path name of the
configuration file.
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Configuration Variable Setting

30||variable=value

A configuration variable setting line is written to the journal by tcc for each
variable set for the current mode. The message area indicates the name of the
configuration variable and the value to which it was set.

Configuration End

40||text

A configuration end message is placed in the journal by tcc to indicate the end of
configuration options for a particular mode.

Test Case Controller Message

50||text

tcc generates messages when it encounters execution problems. The message area
gives an indication of the nature of the problem.

Scenario Information

70||text

tcc generates a scenario information line when it encounters a journal message in
the scenario file being processed. The text of the message is included in the message
area.

Test Case End

80|activity status time|text

A test case end message is generated by tcc after each test case completes
execution. The parameters are the TCC activity number, the time the execution
completed and an indication of the TCM’s completion status.

User Abort

90|time|text

tcc generates an operator abort message when its execution is interrupted by the
user.

Captured Output

100|activity|text

tcc generates a captured message for each line of output captured when the output
capture mode is enabled. The parameter is the TCC activity counter.

Build Start

110|activity testcase time|text

A build start message is generated by tcc prior to build tool execution. The
parameters are the TCC activity counter, the path name of the test case being built
and the time the build started.
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Build End

130|activity status time|text

A build end message is generated by tcc upon completion of build tool execution.
It contains the TCC activity number, an indication of the completion status of the
build tool and the time of that completion.

Test Purpose Start

200|activity TPnumber time|text

The TCM generates a test purpose start message for each test purpose executed. The
message contains the TCC activity number, the test purpose number and the time
execution started.

Test Purpose Result

220|activity TPnumber result time|result-name

The TCM generates a result message for each test purpose executed. Parameters for
this message are the TCC activity number, the test purpose number, the result code
and the time execution completed.

Clean Start

300|activity testcase time|text

tcc writes a clean start message to the journal before invoking the clean tool for a
given test case.

Clean End

320|activity status time|text

After a clean operation on a test case is complete, tcc records the TCC activity
number, the completion status and the time at which the operation was completed.

Invocable Component Start

400|activity ICnumber TPcount time|text

The TCM generates an invocable component start message for each invocable
component that is executed during a test case run. This message contains the TCC
activity counter, the invocable component number, number of test purposes to be
executed and the time invocable component execution started.

Invocable Component End

410|activity ICnumber TPcount time|text

The TCM generates an invocable component end message for each invocable
component that is completed. The message contains the TCC activity counter, the
invocable component number, the number of test purposes actually executed and the
time of the invocable component completion.

Test Case Manager Message

510|activity|text

If the TCM or API encounters a problem, a TCM message will be written to the
journal. The parameter indicates the TCC activity counter and the message area
contains a brief description of the problem.
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Test Case Information

520|activity TPnumber context block sequence|text

When a test case outputs information to the execution results file it is recorded as test
case information. The message specified by the test case is in the text area of this
line.

Parallel Start

600|count|text

The scenario file parallel directive start marker.

Parallel End

620||text

The scenario file parallel directive end marker.

Implied Sequential Start

630||text

Marks the start of an Implied Sequential directive generated by tcc when in ETET
compatibility mode.

Implied Sequential End

640||text

Marks the end of an Implied Sequential directive generated by tcc when in ETET
compatibility mode.

Repeat Start

700|count|text

The scenario file repeat directive start marker, where count is the number of times
the test cases within the scope of the repeat directive are to be repeated.

Repeat End

720||text

The scenario file repeat directive end marker.

Timed Loop Start

730|seconds|text

The scenario file timed_loop directive start marker. Execution of test cases
within the scope of this directive is repeated until the specified number of seconds
have elapsed.

Timed Loop End

740||text

The scenario file timed_loop directive end marker.
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Random Start

750||text

The scenario file random directive start marker.

Random End

760||text

The scenario file random directive end marker.

Remote Start

800|nnn1,nnn2,. . .|text

The scenario file remote directive start marker. nnn1 , nnn2 etc. are the system IDs
specified with this directive.

Remote End

820||text

The scenario file remote directive end marker.

Distributed Start

830|nnn1,nnn2,. . .|text

The scenario file distributed directive start marker. nnn1 , nnn2 etc. are the
system IDs specified with this directive.

Distributed End

840||text

The scenario file distributed directive end marker.

Test Case Controller End

900|time|text

When tcc finishes processing the scenario, it generates a TCC end message. This
message indicates the time execution completed.
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D. TETware demonstration journal file

D.1 Introduction
Instructions on how to run the Distributed TETware demonstration test suite are presented in one
of the sections in the chapter entitled ‘‘Running the TETware demonstrations’’ elsewhere in this
guide. This appendix contains an example journal file that might be generated when this test
suite is built, executed and cleaned by tcc on a pair of UNIX systems.

D.2 Example journal file
0|3.0b 20:09:33 19961128|User: tet (105) TCC Start, \

Command line: tcc -bec demo
20|/home/tet/tet3/demo/tetbuild.cfg 0|Config Start
30||TET_BUILD_TOOL=make
30||TET_BUILD_FILE=-f makefile
30||TET_OUTPUT_CAPTURE=True
30||TET_API_COMPLIANT=False
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.0b
40||Config End
20|/home/tet/tet3/demo/tetexec.cfg 1|Config Start
30||TET_OUTPUT_CAPTURE=False
30||TET_EXEC_IN_PLACE=False
30||TET_API_COMPLIANT=True
30||TET_PASS_TC_NAME=False
30||TET_VERSION=3.0b
40||Config End
20|/home/tet/tet3/demo/tetclean.cfg 2|Config Start
30||TET_CLEAN_TOOL=rm
30||TET_CLEAN_FILE=-f
30||TET_OUTPUT_CAPTURE=True
30||TET_API_COMPLIANT=False
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.0b
40||Config End
20|/home/tet/tet3/demo/tetdist.cfg 3|Config Start
30||TET_REM000_TET_ROOT=/home/tet/tet3
30||TET_REM000_TET_SUITE_ROOT=/home/tet/tet3
30||TET_REM000_TET_TSROOT=/home/tet/tet3/demo
30||TET_REM000_TET_TMP_DIR=/home/tet/tet3/demo/tet_tmp_dir
30||TET_REM001_TET_ROOT=/home/tet
30||TET_REM001_TET_TSROOT=/home/tet/demo
30||TET_REM001_TET_TMP_DIR=/home/tet/demo/tet_tmp_dir
40||Config End
20|remote_001 0|Config Start
30||TET_BUILD_TOOL=make
30||TET_BUILD_FILE=-f makefile
30||TET_OUTPUT_CAPTURE=True
30||TET_API_COMPLIANT=False
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.0b
40||Config End
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20|remote_001 1|Config Start
30||TET_OUTPUT_CAPTURE=False
30||TET_EXEC_IN_PLACE=False
30||TET_API_COMPLIANT=True
30||TET_PASS_TC_NAME=False
30||TET_VERSION=3.0b
40||Config End
20|remote_001 2|Config Start
30||TET_CLEAN_TOOL=rm
30||TET_CLEAN_FILE=-f
30||TET_OUTPUT_CAPTURE=True
30||TET_API_COMPLIANT=False
30||TET_PASS_TC_NAME=True
30||TET_VERSION=3.0b
40||Config End
70||"starting scenario"
800|000,001|Remote Start, scenario ref 2-0
110|0 /ts/tc1 20:09:34|Build Start, scenario ref 3-0
100|0| cc -I../../inc/tet3 -Xa -o tc1 tc1.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|0| -lsocket -lnsl
130|0 0 20:09:55|Build End, scenario ref 3-0
110|1 /ts/tc1 20:09:34|Build Start, scenario ref 3-1
100|1| cc -I../../inc/tet3 -Xa -o tc1 tc1.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|1| -lsocket -lnsl
130|1 0 20:09:55|Build End, scenario ref 3-1
10|2 /ts/tc1 20:09:55|TC Start, scenario ref 3-0
15|2 3.0b 1|TCM Start
400|2 1 1 20:09:58|IC Start
200|2 1 20:09:58|TP Start
520|2 1 00104958 1 1|This is the first test case (tc1)
520|2 1 00004957 1 1|This is the first test case (tc1)
220|2 1 0 20:09:59|PASS
410|2 1 1 20:09:59|IC End
80|2 0 20:09:59|TC End, scenario ref 3-0
300|3 /ts/tc1 20:10:00|Clean Start, scenario ref 3-0
320|3 0 20:10:02|Clean End, scenario ref 3-0
300|4 /ts/tc1 20:10:00|Clean Start, scenario ref 3-1
320|4 0 20:10:02|Clean End, scenario ref 3-1
110|5 /ts/tc2 20:10:02|Build Start, scenario ref 4-0
100|5| cc -I../../inc/tet3 -Xa -o tc2 tc2.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|5| -lsocket -lnsl
130|5 0 20:10:17|Build End, scenario ref 4-0
110|6 /ts/tc2 20:10:02|Build Start, scenario ref 4-1
100|6| cc -I../../inc/tet3 -Xa -o tc2 tc2.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|6| -lsocket -lnsl
130|6 0 20:10:17|Build End, scenario ref 4-1
10|7 /ts/tc2 20:10:17|TC Start, scenario ref 4-0
15|7 3.0b 1|TCM Start
400|7 1 1 20:10:20|IC Start
200|7 1 20:10:20|TP Start
520|7 1 00105006 1 1|This is the second test case (tc2, slave)
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520|7 1 00005005 1 1|This is the second test case (tc2, master).
520|7 1 00005005 1 2|
520|7 1 00005005 1 3|The master part of this test purpose reports PASS
520|7 1 00005005 1 4|but the slave part of this test purpose reports FAIL
520|7 1 00005005 1 5|so the consolidated result of the test purpose is FAIL.
520|7 1 00005005 1 6|
520|7 1 00005005 1 7|The lines in this block of text are printed by a single
520|7 1 00005005 1 8|call to tet_minfoline() in the master part of the test
520|7 1 00005005 1 9|purpose so output from the slave part of the test purpose
520|7 1 00005005 1 10|won’t be mixed up with these lines.
220|7 1 1 20:10:20|FAIL
410|7 1 1 20:10:20|IC End
80|7 0 20:10:22|TC End, scenario ref 4-0
300|8 /ts/tc2 20:10:24|Clean Start, scenario ref 4-0
320|8 0 20:10:25|Clean End, scenario ref 4-0
300|9 /ts/tc2 20:10:24|Clean Start, scenario ref 4-1
320|9 0 20:10:25|Clean End, scenario ref 4-1
70||"next is the last test case"
110|10 /ts/tc3 20:10:25|Build Start, scenario ref 6-0
100|10| cc -I../../inc/tet3 -Xa -o tc3 tc3.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|10| -lsocket -lnsl
130|10 0 20:10:41|Build End, scenario ref 6-0
110|11 /ts/tc3 20:10:25|Build Start, scenario ref 6-1
100|11| cc -I../../inc/tet3 -Xa -o tc3 tc3.c ../../lib/tet3/tcm.o \

../../lib/tet3/libapi.a \
100|11| -lsocket -lnsl
130|11 0 20:10:41|Build End, scenario ref 6-1
10|12 /ts/tc3 20:10:42|TC Start, scenario ref 6-0
15|12 3.0b 2|TCM Start
400|12 1 1 20:10:50|IC Start
200|12 1 20:10:50|TP Start
520|12 1 00005056 1 1|This is tp1 in the third test case (tc3, master)
520|12 1 00005056 1 2|sync with slave (sysid: 1)
520|12 1 00105063 1 1|This is tp1 in the third test case (tc3, slave)
520|12 1 00105063 1 2|sync with master (sysid: 0)
220|12 1 0 20:10:50|PASS
410|12 1 1 20:10:50|IC End
400|12 2 1 20:10:50|IC Start
200|12 2 20:10:50|TP Start
520|12 2 00005056 1 1|This is tp2 in the third test case (tc3, master)
520|12 2 00005056 1 2|send message "test data" to slave (sysid: 1)
520|12 2 00105063 1 1|This is tp2 in the third test case (tc3, slave)
520|12 2 00105063 1 2|sync with master (sysid: 0) and receive data
520|12 2 00105063 1 3|received message "test data" from master
220|12 2 0 20:10:50|PASS
410|12 2 1 20:10:50|IC End
80|12 0 20:10:51|TC End, scenario ref 6-0
300|13 /ts/tc3 20:10:52|Clean Start, scenario ref 6-0
320|13 0 20:10:54|Clean End, scenario ref 6-0
300|14 /ts/tc3 20:10:52|Clean Start, scenario ref 6-1
320|14 0 20:10:54|Clean End, scenario ref 6-1
820||Remote End, scenario ref 2-0
70||"done"
900|20:10:54|TCC End
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E. Server reply codes

E.1 Introduction
When a TETware client process makes a request of a server, a server reply code is returned to the
client which indicates the success or failure of the request. Many of these reply codes are
interpreted by the client and so are never visible to the user. However, some reply codes may be
printed in TETware diagnostic messages which appear in the journal file on the master system or
in the tccd log file on one of the slave systems.

In addition, when an API function call is unsuccessful, the API places a value in the global
variable tet_errno which indicates the reason for the failure. The symbolic names
corresponding to the values which may appear in tet_errno are defined in
tet-root/inc/tet3/tet_api.h and are formed by prepending the string TET_ to each of the
names listed here. The meaning of each API error code thus defined is the same as that of the
corresponding server reply code described here.

A client-server architecture is not used in TETware-Lite. In situations where the Distributed
version of tcc sends an action function request to tccd, the Lite version of tcc performs the
action itself. However, the control logic in both versions of tcc is the same. Therefore an action
function invoked within the Lite version of tcc returns the same reply code to the control logic
as when that action function is invoked remotely in tccd as a result of a request sent from the
Distributed version of tcc. Thus it is possible for certain diagnostic messages generated by the
Lite version of tcc to include a server reply code even though the associated processing does not
involve interaction with a server.

E.2 List of server reply codes
The following is a list of possible server reply codes and their meanings:

ER_OK No error.
The request completed successfully.

ER_2BIG Argument list too long.
The request could not be processed because the size of an argument list
presented to one of the exec or spawn system calls was greater than the
maximum permitted by the system.

ER_ABORT Abort test case.
The action associated with the consolidated result of a distributed test
purpose indicated that the test case should be aborted.

ER_CONTEXT Request out of context.
A request arrived before a pre-requisite message had been received by the
server.

ER_DONE Event already happened.
A synchronisation request arrived after the related sync event had
completed, or IC or TP start or end requests arrived in the wrong order, or a
CONFIG request violated the configuration variable exchange protocol.
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ER_DUPS Duplicate system IDs in list.
The list of system IDs specified in the request contained duplicate entries.

ER_ERR General error code.
Diagnostics which include this reply code are always preceded by another
message describing the error in more detail. If the error actually occurred on
a slave system, it is likely that the more detailed message will appear in the
tccd log file on the slave system rather than in the journal file on the
master system.

ER_FID Bad file ID.
An invalid file ID was specified in a file transfer request. This usually
indicates an internal program error of some kind.

ER_FORK Can’t fork.
tccd was unable to fork while processing an OP_EXEC request. A
message describing the reason for the failure is printed in the tccd log file
on the affected system.

ER_INPROGRESS Event in progress.
An attempt was made to modify the system ID list associated with an event
after the event had started, or IC or TP start or end requests arrived in the
wrong order, or a CONFIG request violated the configuration variable
exchange protocol.

ER_INTERN Internal server error.
A server request processing function neglected to supply a message reply
code. This usually indicates an internal program error of some kind.

ER_INVAL Invalid request parameter.
The value of one of the request parameters was not valid for this request
type. This error may be raised both in the client’s server function interface
code and in the server’s request processing code.

ER_LOGON Logon protocol error.
A client issued a server request before having first logged on to the server, or
attempted to log on to a server more than once. This error may be raised
both in the client’s server function interface code and in the server’s request
processing code. This usually indicates an internal program error of some
kind.

ER_MAGIC Bad magic number.
An interprocess message header contained an invalid magic number. This
can occur if the client and server data streams become out of sync or when
the client and server are incompatible (e.g., because they are derived from
different TETware releases).

ER_NOENT No such file or directory.
A file specified in an OP_EXEC request could not be found, or a saved files
directory could not be accessed.
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ER_PERM No permission.
A request was received from a client that was not authorised to send it, or
the server did not have the permissions necessary to perform the requested
action.

ER_PID Invalid process ID.
The process ID specified in an OP_WAIT or OP_KILL request did not refer
to a process started by the requesting system.

ER_RCVERR Message receive error.
A server could not process a request because an I/O error occurred while the
message was being received.

ER_REQ Invalid request.
A request was attempted that was not valid for this server type. This error
may be raised both in the client’s server function interface code and in the
server’s request processing code. This usually indicates an internal program
error of some kind.

ER_SIGNUM Invalid signal number.
The signal number specified in an OP_KILL request was not valid on the
target system.

ER_SNID Bad sync ID.
A request to tetsyncd specified an invalid sync identifier. This usually
indicates an internal program error of some kind.

ER_SYNCERR Synchronisation was unsuccessful.
A sync event completed unsuccessfully because one or more of the
participants did not synchronise, submitted a no sync vote, timed out or
terminated unexpectedly.

ER_SYSID Bad system ID.
A client running on a system which is not participating in a distributed test
purpose tried to participate in an event relating to that test purpose, or no
process from a system that was supposed to be participating in an event was
logged on to the server.

ER_TIMEDOUT Request timed out.
The timeout specified with the request expired before the request could
complete.

ER_TRACE Tracing not configured.
An OP_TRACE request was sent to a server which had been compiled with
tracing disabled.

ER_WAIT No un-waited-for children to report.
An OP_WAIT request with a zero timeout found that the specified process
had not yet exited.

ER_XRID Bad execution results file ID.
A request to tetxresd specified an invalid execution results file identifier.
This usually indicates an internal program error of some kind.
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F. Mnemonics used in TETware diagnostics

F.1 Introduction
This appendix describes some of the mnemonics that may be used in diagnostic and trace
messages generated by TETware programs. Some mnemonics are used both in Distributed
TETware and TETware-Lite, whereas others are only used in Distributed TETware.

F.2 Process types
Each type of process is assigned a process type identifier.

The following table lists TETware process types and their meanings:
������������������������������������������������������
Process type Program name Description������������������������������������������������������
MTCC tcc Master test case controller
MTCM test-case-name Master test case manager
STAND program-name Stand-alone programs
STCC tccd Test case controller daemon
STCM test-case-name Slave test case manager
SYNCD tetsyncd Synchronisation daemon
XRESD tetxresd Execution results daemon��������������������������������������������������������
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F.3 Process states
The client and server interface code in Distributed TETware maintains a process state for each
connection to another process. The meanings of many of the states depend on whether the
connected process is a client or a server.

The following table lists TETware process states and their meanings:

�������������������������������������������������������������������������
Connected

Process Connected to
process state

Description
��������������������������������������������������������������������������
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all clients any server CONNECT Connecting to server
all clients any server DEAD Server connection has closed
all servers any client DEAD Client has disconnected
all clients any server IDLE Awaiting reply from server
all servers any client IDLE Awaiting request from client
all clients any server PROCESS Performing normal processing
all servers any client PROCESS Processing a request from client
all processes any process RCVMSG Receiving a message
all processes any process SNDMSG Sending a message
tetsyncd any client WAITSYNC Waiting for a sync event to complete��������������������������������������������������������������������������
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F.4 Server request codes
Each request sent by a client to a server process includes a request code. Some requests are
implemented in all TETware servers, whereas others are specific to a particular server.

The following table lists TETware server request codes and their meanings:

���������������������������������������������������������������������
Request code Processed by Description����������������������������������������������������������������������

�
�
�

�
�

�
�

OP_ACCESS tccd Check accessibility of a file
OP_ASYNC tetsyncd Auto sync request
OP_CFNAME tccd Register configuration file name
OP_CHDIR tccd Change directory
OP_CODESF tetxresd Send results code file name
OP_CONFIG tccd Assign configuration variables
OP_EXEC tccd Execute a process
OP_FCLOSE tccd, tetxresd Close a text file
OP_FOPEN tccd, tetxresd Open a text file
OP_GETS tetxresd Read strings from a text file
OP_ICEND tetxresd Signal IC end
OP_ICSTART tetxresd Signal IC start
OP_KILL tccd Send signal to process
OP_LOCKFILE tccd Create a lock file
OP_LOGOFF all servers Log off server
OP_LOGON all servers Log on to server
OP_MKALLDIRS tccd Make directories recursively
OP_MKDIR tccd Make a directory
OP_MKSDIR tccd Make save files directory
OP_MKTMPDIR tccd Make a temporary subdirectory
OP_NULL all servers Discard data successfully
OP_PUTENV tccd Put strings in the environment
OP_PUTS tccd Write strings to a text file
OP_RCFNAME tetxresd Return configuration file name
OP_RCOPY tccd Copy save files locally
OP_RCVCONF tccd Receive configuration information
OP_RESULT tetxresd Send a test purpose result
OP_RMALLDIRS tccd Remove directories recursively
OP_RMDIR tccd Remove a directory
OP_RXFILE tccd Remote file transfer
OP_SETCONF tccd Set configuration mode
OP_SHARELOCK tccd Create a shared lock
OP_SNDCONF tccd Send configuration information
OP_SNGET tetsyncd Get sync ID for an auto sync session
OP_SNRM tetsyncd Remove an auto sync session
OP_SNSYS tetsyncd Send auto sync system name list
OP_SYSID tccd Assign system ID
OP_SYSNAME tccd Send system name list
OP_TFCLOSE tetxresd Close a transfer file
OP_TFOPEN tetxresd Open a transfer file
OP_TFWRITE tetxresd Write to a transfer file
OP_TIME tccd Return the system time����������������������������������������������������������������������
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���������������������������������������������������������������������
Request code Processed by Description����������������������������������������������������������������������

�
�
�

�
�

�
�

OP_TPEND tetxresd Signal TP end
OP_TPSTART tetxresd Signal TP start
OP_TRACE all servers Send trace flags
OP_TSFILES tccd Transfer save files
OP_TSINFO tccd Send transport-specific information
OP_UNLINK tccd Unlink a file
OP_USYNC tetsyncd User sync request
OP_WAIT tccd Wait for a process
OP_XRES tetxresd Write data to an execution results file
OP_XRCLOSE tetxresd Close an execution results file
OP_XROPEN tetxresd Open an execution results file and

return an xres ID
OP_XRSEND tetxresd Associate xres ID with this logon
OP_XRSYS tetxresd Send system name list����������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

F.5 Server reply codes
Each reply sent by a server to a client process includes a reply code. This code indicates whether
or not the corresponding request was successful.

A list of server reply codes and their meanings is presented in the appendix entitled ‘‘Server reply
codes’’ elsewhere in this guide.

F.6 Sync states
tetsyncd maintains a set of sync states for each sync event. One state in this set is maintained
for each system that is expected to participate in the event.

A list of sync states and their meanings is presented in the chapter entitled ‘‘Test case
synchronisation’’ elsewhere in this guide.

F.7 Execution result states
tetxresd maintains a set of process states for each execution results file. One state in this set
is maintained for each system that is expected to contribute to the consolidated result of a
distributed test purpose.

The following table lists execution results states and their meanings:
������������������������������������������������������������������������
Execution results

state
Description

������������������������������������������������������������������������
DEAD The TCM on this system has disconnected from tetxresd
NOTREPORTED The system has not submitted a result for the current test purpose
REPORTED The system has submitted a result for the current test purpose��������������������������������������������������������������������������
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G. Trace and debugging facilities

G.1 Introduction
Each TETware program contains certain facilities which may be used by an experienced software
engineer to trace its operation and for debugging purposes.

When tracing facilities are enabled, messages describing the processing being undertaken are
printed to the standard error stream. Although an explanation of the meanings of these messages
is beyond the scope of a User Guide, the information in this appendix is presented in the belief
that it may be of some use to experienced TETware users.

G.2 Caveats
Trace messages are intended to be interpreted by an experienced software engineer who is
familiar with the internal operation of TETware processes. In most cases, they need to be
interpreted in conjunction with the TETware source code.

Some of the tracing facilities generate huge volumes of output, so you should ensure that you are
prepared to handle the output before you enable tracing. In most cases, it is best to enable only
those messages that you actually need to diagnose a particular problem. Whenever possible, you
should invoke tracing while processing only a small scenario containing a few simple test
purposes, rather than attempting to trace the processing of a fully-featured test suite.

G.3 Description
In each TETware process there are several trace flags that can be used to control the emission of
debug output. Each trace flag has a value associated with it; generally speaking, the higher the
value, the greater the volume of output produced.

The following table lists these flags and the trace message types controlled by them. The flags
marked with a † are not present in TETware-Lite.

�����������������������������������������������������
Trace flag name Trace message type�����������������������������������������������������
tet_Tbuf memory allocation
tet_Texec operation of the tcc execution engine
tet_Tio† message i/o operations
tet_Tloop† start and end of the client and server loops
tet_Tscen operation of the tcc scenario parser
tet_Tserv† generic server operation
tet_Tsyncd† tetsyncd functions
tet_Ttcc miscellaneous tcc functions
tet_Ttccd† tccd functions
tet_Ttcm TCM functions
tet_Ttrace trace subsystem operation
tet_Txresd† tetxresd functions�������������������������������������������������������
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In addition, when the tet_Ttrace flag has a non-zero value, a time-stamp is included in each
message generated by the trace subsystem.

Trace flags can be set from the command line (for tcc, tccd, tetsyncd, tetxresd and
stand-alone programs) and can also be passed to servers in an OP_TRACE message. TCM
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processes may receive trace flags from tcc and tccd in the TET_TIARGS environment
variable.

At present, trace flags are propagated as follows:

� tcc passes trace flags to tetsyncd and tetxresd on the command line, to tccd in an
OP_TRACE message, and to TCM processes in TET_TIARGS.

� tccd passes trace flags to TCM processes in TET_TIARGS.

� TCM processes pass trace flags to tccd in an OP_TRACE message.

� On a Windows NT system, tccdstart passes trace flags to tccd on the command line.

Each process maintains two copies of each trace flag; one (the global value) is passed to other
processes as required, while the other (the local value) is made available in the flag variables
described above. It is therefore the local value that controls the emission of debug information.

Each global value has a set of bits associated with it which determines to which other processes it
will be propagated. If a process receives a trace flag (together with its associated set of bits) and
one of the bits matches the process type of the receiving process, then the process copies the
global value into its local value.

When a trace flag appears on the command line, its format is as follows:

command -T[X. . .,]yn . . .

More that one −T option may appear on a command line. The meanings of −T suboptions are as
follows:

X. . ., This part is optional but, if it appears, it is a comma-terminated process indicator list
indicating to which process the flag should be propagated.

The following process indicators are understood:

M tcc
S tccd
C master TCM/API20

D slave TCM/API21

X tetxresd
Y tetsyncd
T stand-alone programs22

����������������
20. A TCM is a master TCM if it is either managing a non-distributed test case or managing the part of a distributed

test case that is running on the first (or only) system that is specified in the test case’s system list.

21. A TCM is a slave TCM if it is managing part of a distributed test case that is running on the second or subsequent
system that is specified in the test case’s system list.

22. For the purposes of this description a stand-alone program is one that is not one of the components of the TETware
architecture. For example, the TCC daemon bootstrap program (tccdstart) which is used on the Windows NT
system comes into this category.
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y Indicates which trace flag should be set. This is a single trace flag indicator, or all to
indicate that all flags should be set.

The following trace flag indicators are understood:

b tet_Tbuf
c tet_Ttcm
e tet_Tserv
g tet_Texec
i tet_Tio
l tet_Tloop
m tet_Ttcc
p tet_Tscen
s tet_Ttccd
t tet_Ttrace
x tet_Txresd
y tet_Tsyncd

n The value to which the flag should be set. If no value is specified, it defaults to 0.

Function tracing is performed by calls to the TRACEn(), TDUMP() and BUFCHK() macros.

G.4 Examples
Here are some examples of how the user can set trace flags from the tcc command line:

tcc -Tp4 . . . Trace certain operations that are performed by tcc’s scenario parser by
setting the tet_Tscen flag to 4.

tcc -TS,s4 . . . Set the global tet_Ttccd flag to 4 and pass it to tccd, which copies
the global flag to its local flag.

tcc -TXY,i6 . . . Set the global tet_Tio flag to 6 and pass it to tetsyncd and
tetxresd, each of which copy it to their local flag.

tcc -Ts2 . . . Set both the local and global tet_Tserv flags to 2; the global flag is
passed to all processes, each of which copies it to its local flag.

tcc -Tall10 . . . Set both the global and local versions of each flag to 10. Each global flag
is passed to all processes, each of which copies it to its local flag.

Trace options may also be passed on the command line when tccd is started on a particular
system; however, when this is done, trace flags are only propagated to processes that are started
by tccd on that system.

On a Windows NT system, trace options may be specified for tccd by including them on the
tccdstart command line.
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H. Implementation notes for TETware on Win32
systems

H.1 Introduction
TETware has been implemented on the Windows NT and Windows 95 operating systems, as well
as on the UNIX systems on which previous TET versions have been implemented. In this
appendix and throughout this document, the Windows NT and Windows 95 operating systems are
referred to collectively as Win32 systems. The individual system names are only used when it is
necessary to distinguish between them.

This appendix contains details of some features which are specific to the Win32 implementation
of TETware and discusses some of the ways in which the implementation of TETware for Win32
differs from the UNIX implementation.

H.2 Supported TETware versions
TETware-Lite is supported on both Windows NT and Windows 95. Distributed TETware is
supported only on Windows NT.

H.3 File naming conventions

H.3.1 Directory separator character
On a UNIX system, the / character is used as the directory separator character whereas, on a
Win32 system, either the / or the \ character may be used as the directory separator character.

While TETware will interpret file names correctly which use either character, it is recommended
that you only use / as a directory separator character. This is particularly important when
specifying a file name in a configuration file on a Win32 system which might be interpreted on a
UNIX system when a remote or distributed test case is to be processed.

H.3.2 Full path names
When you specify a full path name on a Win32 system, you can specify it either as /path/file or
as x:/path/file.

If you do not include a drive specifier23 in the path name, the current (or default) drive will be
used. This will work as expected provided you do not specify file names on more than one drive
in connection with a particular test suite. If you specify file names on more than one drive in
connection with a particular test suite, all full path names specified for that test suite must include
a drive specifier.

����������������
23. That is: the initial x: sequence.
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H.3.3 Relative path names
When you specify a relative path name on a Win32 system, you can specify it either as path/file
or as x:path/file.24

You should not specify a relative path name that includes a drive specifier, since unpredictable
results can occur when a TETware process attempts to use such a path name after changing its
current working directory. For the same reason you should not specify a simple file name as
x:file.

H.3.4 Test case names
The format of a test case name in a scenario file is defined by the syntax of the scenario language.
This syntax is not modified by the file naming conventions of the host operating system.

Thus a / must always be used as the directory separator character when a test case name appears
in a scenario file. \ is not accepted as a directory separator character in a test case name on
Win32 systems.

H.4 Executable files
On a Win32 system the execute bit in a file’s permission is not significant when determining
whether or not a file is executable. Instead the system determines how to execute a file from the
file name suffix. The spawn and exec family of routines in the Microsoft C runtime support
library understand certain suffixes as indicating executable files and will invoke the appropriate
command interpreter when called upon to execute a .cmd or a .bat file.

In addition to the suffixes recognised by the C runtime support library, the TETware test case and
tool execution subsystem recognises a file with a .ksh suffix as a Korn Shell script and a file
with a .pl suffix as a Perl script. The execution subsystem will invoke sh.exe or perl.exe
as appropriate when called upon to execute one of these files. These interpreters are located using
the PATH environment variable, so script execution will be unsuccessful if the search path does
not include the location of the interpreter that is required to execute the script.

The way in which file names are interpreted on a Win32 system affects the way in which you
should specify a test case name in a scenario file, or a tool name using one of the tool-specific
configuration variables, as follows:

� To specify a test case or tool which is a .com, .exe, .cmd or .bat file, you may either
include or exclude the file’s suffix.

� When you specify a Shell (xpg3sh) or Korn Shell (ksh) API test case to be executed, you
must either arrange for the file name to have a .ksh suffix or set the TET_EXEC_TOOL
configuration variable to sh.

� Likewise, the file name of a Perl test case must either have a .pl suffix or you must set the
TET_EXEC_TOOL configuration variable to perl.

� If you specify a test case without a suffix in a scenario file and you use a command such as
make to build and/or clean the test case, you must arrange for the build and clean tools to

����������������
24. Note that the second form does not have a / character after the drive specifier.
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append the correct suffix to the test case name before passing it to the make command.

� If you specify a tool which is a shell script, you may either name it with a .ksh suffix, or
you may specify sh as the tool and the script as the tool’s instruction file. For example, if
you specify a build tool which is a shell script, you can make one of the following
assignments; either:

TET_BUILD_TOOL=mybuildtool.ksh

or:

TET_BUILD_TOOL=sh
TET_BUILD_FILE=mybuildtool

When the name of the build tool does not contain a directory separator character, TETware
locates the build tool using the PATH environment variable. When a build file is specified,
it should either be specified relative to the test case source directory or should be specified
as an absolute path name, so as to enable it to be accessed when the build tool is executed.

The same considerations apply to the way in which you make assignments to the clean tool
and its optional instruction file, and the optional prebuild, build fail and exec tools and their
optional instruction files when any of these tools are shell scripts.

� Likewise, if you specify a tool which is a Perl script, you may either name it with a .pl
suffix or you may specify perl as the tool and the script as the tool’s instruction file.

Whether or not you decide to specify suffixes or use tools to add them depends on the type of
testing that you want to perform. Some issues to consider are as follows:

� If you are developing tests which will only run on Win32 systems, it is probably most
simple to use suffixes throughout.

� If you are porting tests from a UNIX system to a Win32 system and need to maintain a
common source base, it is probably best not to use suffixes. Instead you should use a build
or clean tool to append a suitable suffix to the test case name at the start of processing, and
an exec tool to perform the correct type of test case execution. Note that this will require
some care if you are processing a scenario which contains a combination of executable and
interpreted test cases.

� If you are processing remote or distributed test cases on a combination of UNIX and Win32
systems, you must either arrange for the names of the test cases to be the same on all
systems or use tools to perform the required name translations on Win32 systems.

An example of a possible solution to this problem is contained in the Distributed C API
demonstration test suite, which is included with the TETware distribution.

It should be noted that the #! convention that may be used to select the interpreter for script files
on many UNIX systems is not understood by the C runtime support library on a Win32 system.
It is particularly important to remember this point when porting a TETware test suite from a
UNIX system to a Win32 system.
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H.5 Application types
Each TETware program which runs on a Win32 system is compiled as a console application.
Test cases compiled as Win32 GUI applications are not supported by TETware.

H.6 Signal handling

H.6.1 Keyboard signals
On a UNIX system it is possible to instruct tcc to abort a test case or a test run by generating an
interrupt or a quit signal from the keyboard. On a Win32 system these instructions may be sent
from the keyboard to tcc by using control-C and control-BREAK. These keystrokes are
mapped by the C runtime support library on to SIGINT and SIGBREAK signals, respectively,
which cause the appropriate action to be taken when caught by tcc.

It should be noted that the Microsoft documentation for the signal() function states that
SIGINT is not supported for any Win32 application which runs on Windows 95 or
Windows NT. It would appear that the same caveat applies to SIGBREAK as well. Therefore the
reliable operation of these functions cannot be guaranteed and it is possible that unpredictable
behaviour may occur when a test case or test run is interrupted by control-C or control-BREAK.

H.6.2 TCM signal trapping
The C, C++ and Perl TCMs do not attempt to trap unexpected signals on Win32 systems.

H.7 Context numbers

H.7.1 Introduction
When a Test Case Information line is printed in the journal, one of the subfields in the second
field contains a context number. The TET specification requires this context number to be unique
during the lifetime of each test purpose. Traditionally the context number has been derived from
the process ID of each process which make up a test purpose.

It is possible for a test purpose to launch one or more child processes and the purpose of the
context number is to distinguish between journal output generated by the different processes. In
particular, the context number is used when tcc reorders the journal lines at the end of each test
case invocation.

When a C language test purpose generates a child process on a UNIX system (whether by calling
tet_fork() or tet_spawn()), the API calls tet_setcontext() in order to set the
context number in the child process to the new process ID.

H.7.2 Generating unique context numbers
The use of the process ID to generate a context number in a child process poses a problem on
Win32 systems.

Process numbers are allocated rather more frequently on Win32 systems than they are on UNIX
systems. Indeed, it is quite possible for the operating system to re-allocate a process ID as soon
as the previous process which used the ID has terminated. So, if a test purpose spawns a child
process, waits for the process to terminate and then spawns another child process, it is likely that
the two child processes will be allocated the same process ID. When this occurs it is impossible
to use a context number based on process ID to distinguish between the journal outputs that have
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been generated by the two child processes.

In order to overcome this problem, the Win32 version of the child process controller does not
make a call to tet_setcontext() but instead generates a context number that is based on the
system time (in 100ths of a second) as well as on the process ID. The algorithm used makes it
very unlikely that two child processes will use the same context number, although that possibility
cannot be ruled out completely. In any event, the context number in the child process is
guaranteed to be different from the context number in the parent process.

H.7.3 Number of digits in a context number
On many UNIX systems, a process ID can be expressed in five digits. Indeed, the API ensures
that the context number contains at least five digits of process ID. However, on a Windows 95
system the process ID is actually an address in high memory, so it is likely that more than five
digits will be required to express this quantity.

The TET specification states that a numeric field in a journal file may contain up to ten digits.
When a context number is generated by the C API, the first three digits contain the system ID of
the originating system and the remaining digits contain the process ID (or, in the case of a child
process on a Win32 system, the value calculated as described previously). On a Win32 system
the API truncates the process ID part of the context number to seven digits in order to ensure that
the maximum number of digits allowed by the specification is not exceeded.

Report writer authors are reminded that they should allow for the possibility that the context
number read from the journal on a Win32 system might contain more digits than the five or eight
that have traditionally been generated by TET implementations running on UNIX systems.

H.7.4 Saved files processing
When you use the TET_SAVE_FILES configuration variable to specify files and/or directories
to be saved after tcc processes a test case in execute mode and
TET_TRANSFER_SAVE_FILES is true, tcc arranges for the files to be transfered to the local
system and saved there. If either the source or the destination system is a Win32 system, files are
transferred using ASCII file transfer mode.

H.8 Test case termination
When tcc needs to terminate the execution of a test case or tool, it does so by means of a call to
the TerminateProcess() function which is part of the Win32 API. This function is also
called by the tet_kill() and tet_remkill() API functions to terminate a process which
is running on a Win32 system.

However, it is understood that the operation of TerminateProcess() can be unpredictable
and may leave the system in a strange state, possibly causing the system to malfunction at some
later time. Therefore, test case authors are discouraged from using tet_kill() and
tet_remkill() to terminate a process which is running on a Win32 system. For the same
reason the use of a timeout specified by tcc −t to force termination of a test case or tool is
discouraged.
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H.9 API considerations

H.9.1 Unimplemented interfaces
Some of the interfaces in the C and C++ APIs are not implemented on Win32 systems. Details
are presented under the ‘‘Portability’’ heading in the descriptions of each of the API functions in
the TETware Programmers Guide.

In particular, tet_fork() is not implemented on Win32 systems. This is because the
Microsoft C runtime support library does not provide the fork() function that is required for
the implementation of tet_fork(). Therefore, when porting a test case which uses
tet_fork() from a UNIX system to a Win32 system, it is necessary to re-design the test case
to use tet_spawn() and tet_wait() instead.

H.9.2 Use of the DLL version of the C runtime support library
You should link a test case with the thread-safe versions of the TETware C TCM and C API
library if any of the following are true:

— you link the test case with the DLL, multi-threaded C runtime support library;

— you link the test case with any other library (either static or DLL) that has been built to use
the DLL, multi-threaded C runtime support library.

You should do this even if you do not intend to use threads in your test case.

This is because:

� The standard TCM/API uses the static, single-threaded C runtime support library.

� The thread-safe TCM/API uses the DLL, multi-threaded C runtime support library.

� It is unwise to mix static and DLL versions of the same library in a single process.

The same considerations apply if you are using the TETware C++ TCM/API.

Note that the use of the static multi-threaded C runtime support library is not supported in
TETware.

H.10 The test case controller tcc

H.10.1 Test case interruption
The use of keyboard signals to abort a test case or test case run can give rise to unpredictable
results on a Win32 system. See the section entitled ‘‘Keyboard signals’’ elsewhere in this
appendix.

H.10.2 Test case timeouts
The operation of tcc −t can give rise to unpredictable results on a Win32 system. See the
section entitled ‘‘Test case termination’’ elsewhere in this appendix.
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H.10.3 Writing the journal to a command pipeline
On a UNIX system it is possible to instruct tcc to open a pipe to a shell command and write the
journal to that. For example:

tcc -j "| shell-command" . . .

On a Win32 system the shell-command is executed by a call to _popen() in the Microsoft C
runtime support library. This function invokes the Win32 command interpreter to execute the
command — usually cmd.exe. Therefore the syntax of shell-command must be acceptable to
the command interpreter that is invoked by the underlying _popen() call.

The shell-command should ignore the SIGINT and SIGBREAK signals. Otherwise, if a
keyboard signal is used to interrupt tcc, the signal will also terminate the shell-command and the
journal will be lost.

For details of some other issues that relate to keyboard signals and test case interruption, see the
section entitled ‘‘Keyboard signals’’ elsewhere in this appendix.

H.11 The TCC daemon tccd

H.11.1 Starting tccd
It is not possible to start tccd directly from the command line on a Windows NT system.
Instead, tccd must be started on demand by a bootstrap program called tccdstart.

H.11.2 User ID
tccd always runs with the user ID of the user who invokes the tccdstart bootstrap program.
The default user ID of tet and the ability to change this using the −u command-line option are
not supported on a Windows NT system.

H.11.3 File creation mask setting
The −m command-line option is not supported on a Windows NT system.

H.12 The TCC daemon bootstrap program tccdstart
On a Windows NT system, tccd is started on demand by a bootstrap program called
tccdstart. This program listens for service requests at the port indicated in the tcc service
specification and starts an instance of tccd each time that a connection is received. The PATH
environment variable is used to locate tccd so you should ensure that your search PATH
includes $TET_ROOT/bin.

You can use certain command-line options to modify the behaviour of tccdstart and the
instances of tccd that are launched as connections are received. Refer to the tccdstart
manual page at the back of this guide for details of the syntax for this command.
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You should invoke tccdstart once on each Windows NT system on which Distributed
TETware is installed, in a new Korn Shell window. When invoked, tccdstart prints a
message on the standard output similar to the following:

tccdstart: 15 Oct 10:35:20: accepting connections

Each time a connection is received on the listen port, tccdstart prints a message similar to
the following:

tccdstart: 15 Oct 10:35:23: connection received from hostname

To stop tccdstart you should type a control-C in the window in which tccdstart is
running. When you do this, tccdstart prints a message similar to the following:

tccdstart: 15 Oct 10:37:40: going down on signal 2

For the reasons indicated in the section entitled ‘‘Keyboard signals’’ elsewhere in this appendix,
it is possible for a race condition to occur in the Winsock library when tccdstart is
interrupted by a control-C. When this occurs it is possible for the shutdown message to be
accompanied by another error message related to the accept() function which can safely be
ignored.
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I. Hints and tips for users of previous TET
implementations

I.1 Introduction
The following sections contain information which may be helpful to users experienced with
previous TET implementations but not yet familiar with TETware.

I.2 TETware for TET 1.10 and ETET users
1. Two versions of TETware are available; namely, TETware-Lite and Distributed TETware.

Of the two, TETware-Lite is the version which most closely resembles TET 1.10 and
ETET.

2. The build and installation procedure is completely different for TETware. Be sure to
follow the instructions contained in the TETware Installation Guide.

3. TET 1.10 test case binaries and associated scenario and configuration files may be run
under the control of both TETware versions of tcc, (as non-distributed test cases) without
modification.25

4. ETET binaries and scenario files may be run under the control of both TETware versions of
tcc, (as non-distributed test cases) without modification. It may be necessary to include
an assignment for the TET_COMPAT variable in each mode-specific configuration file26 in
order to cause certain ETET-specific syntax in a scenario file to be interpreted correctly.

5. TET users will benefit from additional scenario directives which are provided to support
repeated and parallel test case execution. Both TET and ETET users will benefit from
additional directives which are provided to support processing of distributed and non-
distributed test cases on remote systems when Distributed TETware is used.

6. TET users will benefit from additional configuration variables which provide better control
over the way in which tcc interacts with test cases and tools.

7. The C and C++ APIs in Distributed TETware provide additional functions to allow
synchronisation between parts of a distributed test case, supply information about local and
remote system designations and control execution of processes on remote systems.

8. In Distributed TETware there is an additional configuration file − tetdist.cfg − which
must be supplied on the local system when remote or distributed testing is to be performed.

9. Test cases built using the C and C++ APIs in Distributed TETware must be run under
control of the Distributed version of tcc. They cannot be run stand-alone or under the
control of the TETware-Lite tcc. However, test cases built using the C and C++ APIs in
TETware-Lite may be run either stand-alone or under the control of either type of tcc.

����������������
25. However, you should be aware of the disposition of uncaptured test case and tool output when Distributed TETware

is used; this is described in a subsequent note.

26. These files are: the build mode, execute mode and clean mode configuration files.
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10. There is no support for distributed testing when the Shell, Korn Shell or Perl APIs are used.
However, (non-distributed) test cases which use these APIs may be run stand-alone or
under control of either type of tcc. In addition, such test cases can be run on remote
systems under control of the Distributed tcc.

11. When a test case is built using the C and C++ APIs in Distributed TETware, it is best not to
call exit() directly. Instead, each API provides a function tet_exit() which has the
same effect; for details, refer to the section entitled ‘‘Executed process functions’’ in the
TETware Programmers Guide. In TETware-Lite a call to tet_exit() is functionally
equivalent to calling exit().

12. When TETware-Lite is used, uncaptured test case or tool output appears on the terminal
where tcc is invoked, as is the case in TET 1.10 and ETET. However, when Distributed
TETware is used, test cases and tools on all systems run detached from the terminal where
tcc is invoked. Instead, uncaptured output appears in the tccd log file on each system
where test cases are processed.

13. Since TETware is intended to be used as a replacement for other TET versions, TETware
should not be installed with the same value of tet-root as that used by an existing TET or
ETET distribution; otherwise, some existing files will be overwritten.

I.3 TETware for dTET2 users
1. Two versions of TETware are available; namely, TETware-Lite and Distributed TETware.

Of the two, Distributed TETware is the version which most closely resembles dTET2.

2. The build and installation procedure for TETware is similar to that used in dTET2.
However, the make definition file defines.mk is located directly below tet-root/src
rather than at a lower level directory as was previously the case, and the configuration
script dtetcfg has been renamed tetconfig and moved to tet-root/src.

3. The distinction between master and slave systems has (for the most part) gone. Instead, a
system is identified either as the local system (that is, the system on which tcc is run), or
as a remote system.

4. When Distributed TETware is used, tccd must always be run on the local system (as well
as on any remote systems) when a scenario contains test cases or test case parts which are
to be processed on the local system. Since TETware-Lite cannot process remote or
distributed test cases, tccd is not required when TETware-Lite is used.

5. It may be necessary to include an assignment for the TET_COMPAT variable in each
mode-specific configuration file27 in order to cause certain dTET2-specific syntax in a
scenario file to be interpreted correctly.

6. The distributed scenario directive enables a distributed test case to be run entirely on
remote systems.

7. The API functions tet_sync() and tet_msync() have been replaced by a new
function called tet_remsync().28 This function provides the test suite author access to

����������������
27. These files are: the build mode, execute mode and clean mode configuration files.

28. Although tet_sync() and tet_msync() will continue to be supported so as to provide backwards
compatibility with existing dTET2 test suites, these interfaces are now marked ‘‘to be withdrawn’’ and test suite
authors are encouraged to use tet_remsync() in new test cases.
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all the capabilities of the TETware synchronisation subsystem and is more suitable for use
with the symmetrical system model implemented in TETware.

8. There are additional configuration variables which provide better control over the way in
which tcc interacts with test cases and tools.

9. tccd on the local system receives all of tcc’s environment variables soon after tcc logs
on to it. Therefore, environment variables that are in force when tccd starts up (including
variables specified with −e command-line options) may be overwritten by whatever
variables happen to be present in the environment inherited by tcc.

10. The dTET2 trace subsystem is now used throughout TETware instead of just in the
client/server code.

11. Since TETware is intended to be used as a replacement for other TET versions, TETware
should not be installed with the same value of tet-root as that used by an existing dTET2
distribution; otherwise, some existing files will be overwritten.
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J. TETware manual pages
This appendix contains manual pages for TETware programs.

July 2000 Page 107
The Open Group



Test Environment Toolkit TET3-UG-1.4
TETware User Guide

Page 108 July 2000
The Open Group



TET3-UG-1.4 Test Environment Toolkit
TETware User Guide

tcc(1) tcc(1)

NAME
tcc − TETware test case controller

SYNOPSIS
tcc −{bec} [options] [test-suite [scenario]]

tcc −{bec} −{m |r} codelist [options] old-journal-file [test-suite [scenario]]

tcc −V

DESCRIPTION
tcc is the TETware test case controller. It provides support for the building, execution and clean-up
of test scenarios.

When TETware-Lite is built, scenarios may only contain test cases which are to be executed on the
local system and tcc performs all the actions required to process such test cases itself. When
Distributed TETware is built, scenarios can contain local, remote and distributed test cases. The
distributed version of tcc does not perform the actions required to process test cases itself but instead
sends requests to the test case controller daemon tccd which runs on the local system and also on
each participating remote system (see the tccd(1) manual page for details).

Apart from the scenario directives which relate to the processing of remote and distributed test cases,
the user interface to tcc is the same irrespective of whether TETware-Lite or Distributed TETware is
being used.

When tcc is invoked with the −V option, all other command-line arguments are ignored. tcc does
not process test cases but instead prints version information on the standard error stream and exits.

tcc has three modes of operation, namely build, execute and clean, which may be invoked singly or
in any combination. These modes are specified by the −b, −e and −c command-line options, at least
one of which must appear. The other options modify the behaviour of tcc in one or more of these
operational modes. Each mode (with optionally modified behaviour) is applied to the test cases and
invocable components selected for processing.

By default, tcc builds, executes or cleans test cases in the named scenario contained in the scenario
file tet_scen, which is located in the test suite root directory for test-suite (see DIRECTORIES below).
If no scenario is specified, the default scenario named all is used. If no test-suite is specified, tcc
attempts to deduce a default test suite name using the following rules:

1. If the TET_SUITE_ROOT environment variable is set and the current directory lies
under the directory hierarchy specified by this variable, then the test suite is the component
of the current directory’s path name which lies immediately below $TET_SUITE_ROOT.
For example, if $TET_SUITE_ROOT is /usr/tet3 and the current directory is
/usr/tet3/suite1/results, then the name of the default test suite is suite1.

2. If the TET_SUITE_ROOT environment variable is not set and the current directory lies
under the directory hierarchy specified by the TET_ROOT environment variable, then the
test suite is the component of the current directory’s path name which lies immediately
below $TET_ROOT.
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3. If the current directory lies outside of the directory hierarchy specified by the
TET_SUITE_ROOT environment variable (if set) or the TET_ROOT environment
variable (if TET_SUITE_ROOT is not set), then no default test suite name can be
deduced.

DIRECTORIES
By default, tcc interprets test case names relative to the test suite root directory. The location of this
directory is determined as follows on the local system:

1. If the TET_SUITE_ROOT environment variable is set, the test suite root directory is
determined by the test suite name, relative to $TET_SUITE_ROOT.

2. If the TET_SUITE_ROOT environment variable is not set, the test suite root directory
is determined by the test suite name, relative to $TET_ROOT.

3. If the TET_RUN environment variable is set, then the directory subtree below the test
suite root (determined as described above) is copied to the location below $TET_RUN
and this location becomes the new test suite root directory.

However, an alternate execution directory on the local system may be specified by the
TET_EXECUTE environment variable or by a command-line option (see OPTIONS below). If an
alternate execution directory is specified, tcc interprets test case names relative to this directory when
operating in execute mode.

By default, tcc creates a directory called tet_tmp_dir below the test suite root directory. However, a
different temporary directory name on the local system may be specified by the TET_TMP_DIR
environment variable. Each invocation of tcc creates a unique subdirectory below the temporary
directory on startup and removes it and its contents on normal completion.

By default, tcc creates a sequentially numbered directory below a directory called results in the test
suite root directory for the named test-suite on the local system, and places the journal file and saved
intermediate result files there. In Distributed TETware, this directory is also created on each remote
system. This directory is known as the results directory or saved files directory.

CONFIGURATION FILES
During execution, tcc reads configuration variables from certain configuration files on both the local
and the remote systems (if any). By default, the name of the build mode configuration file is
tetbuild.cfg, that of the execute mode configuration file is tetexec.cfg and that of the clean mode
configuration file is tetclean.cfg. The build and clean mode configuration files reside in the test suite
root directory on each system. The execute mode configuration file resides in the alternate execution
directory if one has been specified, otherwise in the test suite root directory.

The Distributed version of tcc reads distributed configuration variables are read from the file named
tetdist.cfg in the test suite root directory on the local system. This file must at least contain
definitions for the tet root and test suite root directories for any remote systems that are specified in
the scenario being processed.

JOURNAL FILE
By default, tcc writes the journal to a file named journal in the results directory on the local system.
On startup, tcc writes the name of the journal file being used to the standard output.

RESULT CODES
tcc uses a table of result codes to interpret the results generated by API-conforming test cases. A
default table containing standard codes is built in to tcc. It is possible to specify additional codes in
user-supplied result codes files located below the tet root and test suite root directories on the local
system. These files are optional but, if they exist, the codes specified in them are added to the table
of standard codes. The default name for each of these files is tet_code but this name can be changed
by means of the TET_RESCODES_FILE configuration variable.
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SAVED FILES PROCESSING
tcc can be instructed to save certain files and/or directories that may be created during test case
execution. The files to be saved are specified by the TET_SAVE_FILES variable in the execute
mode configuration. When a file is to be saved, tcc copies it to a path name below the saved files
directory that is the same as the original file’s path name relative to the test case execution directory.

In Distributed TETware, a file selected by TET_SAVE_FILES may be saved either on the system on
which it is created (local or remote), or on the local system. If the TET_TRANSFER_SAVE_FILES
variable in the execute mode configuration is false, the file is saved on the system on which it is
created as described previously. Otherwise, if TET_TRANSFER_SAVE_FILES is true, the file
created on system nnn is transferred to the local system and saved below a directory named
REMOTEnnn in the saved files directory.

OPTIONS
The following options alter the default behaviour described above:

−a directory
Use directory as the alternate execution directory instead of the one specified by the
TET_EXECUTE environment variable (if any). In Distributed TETware this option only
specifies the location of the alternate execution directory on the local system.

−f file Use file as the clean mode configuration file instead of the default. In Distributed TETware
this option only specifies the location of the clean mode configuration file on the local
system.

−g file Use file as the build mode configuration file instead of the default. In Distributed TETware
this option only specifies the location of the build mode configuration file on the local
system.

−I Enable interactive journal trace. Journal lines which indicate the start and end of
processing of each test case in each of the chosen modes of operation are written to the
standard error stream as well as being written to the journal file.

−i directory
Place the default journal file and saved intermediate results files in directory instead of in
the default location. In Distributed TETware this option only specifies the location of the
results directory on the local system.

−j file Use file as the journal file instead of the default.

−j − Write the journal to the standard output instead of to the default. Note that tcc may write
informational messages to the standard output as well. In addition, output from test cases
and tools may appear on tcc’s standard output when TETware-Lite is built. So a process
that reads journal lines from tcc’s standard output when this option is used should allow for
the possibility that not all the lines that it reads will be in journal format. Users should be
aware of the possibility of losing some or all of the journal if a process that reads tcc’s
standard output terminates prematurely.

−j |shell-command
Open a pipe to shell-command and write the journal to that, instead of to the default. Users
should be aware of the possibility of losing some or all of the journal if shell-command
terminates prematurely. On a Win32 system, shell-command should ignore keyboard
signals (see KEYBOARD SIGNALS below).

−l scenario-line
Process scenario-line as if it appeared in a scenario file below a scenario named all. More
than one −l option may be specified; the scenario-lines are processed in the order in which
they appear on the command line. scenario-line must be presented as a single argument so
it must be quoted if it contains embedded spaces. If a scenario file is specified by a −s
option, any scenario-lines are processed before that scenario file is read. If no −s option is
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specified, the default scenario file tet_scen is not read when −l is used.

−n string
Do not process test case names that contain string . More than one −n option may appear.

−p Enable progress reporting. As each build, execute or clean operation is started, a line
indicating the time, mode and scenario line being processed is printed on the standard
output.

−s file Use file as the scenario file instead of the default.

−t timeout
Terminate the build, execute or clean of an individual test case if processing would
continue for more than timeout seconds.

−v variable=value
The specified configuration variable is set to value , overriding any assignment in the
configuration file for the current mode. It is probably best to surround value with single
quotes if it contains characters which have special meaning to the Shell. More than one −v
option may appear.

−x file Use file as the execute mode configuration file instead of the default. In Distributed
TETware this option only specifies the location of the execute mode configuration file on
the local system.

−y string
Only process test case names that contain string . More than one −y option may appear.
The −n option has higher precedence than the −y option; thus, a test case is not processed if
its name is matched by strings specified with both the −n and the −y options.

RERUN AND RESUME OPTIONS
The following options are mutually exclusive:

−m code-list
Causes tcc to resume the previous run of the specified scenario in the named test-suite
whose results are in old-journal-file . code-list specifies the point in the previous run from
which processing is to be resumed and may consist of a comma-separated list of result
codes, or of one or more of the letters b, e and c to specify failures in particular processing
modes. If code-list consists of result codes, then processing resumes at the first invocable
component whose result in the previous run matched one of those in the list. If code-list
specifies processing modes, then processing resumes at the first test case which failed to
build or clean or the first invocable component which, when executed, did not report PASS
in the previous run.

For example:

tcc −b −m b

Resume building from the first test case that failed to build.

tcc −e −m FAIL,UNRESOLVED

Resume execution from the first invocable component that reported FAIL or
UNRESOLVED.

tcc −bec −m b,e
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Resume building, execution and cleaning from the first test case which failed to build or
from the first invocable component that did not report PASS.

−r code-list
Causes tcc to re-run individual test cases and invocable components from the specified
scenario in the named test-suite whose results are in old-journal-file . code-list specifies the
elements that are to be re-run and may consist of a comma-separated list of result codes, or
of one or more of the letters b, e and c to specify failures in particular processing modes. If
code-list consists of result codes, then test cases and invocable components are re-run if the
corresponding result in the previous run matched one of the result codes in the list. If
code-list specifies processing modes, then a test case is re-run if it failed to build or clean
and an invocable component is re-run if it did not report PASS when it was executed in the
previous run.

For example:

tcc −b −r b

Re-build test cases that previously failed to build.

tcc −e −r FAIL,UNRESOLVED

Re-execute all invocable components that previously reported FAIL or UNRESOLVED.

tcc −bec −r b,e

Re-build, execute and clean all test cases that previously failed to build or execute, and all
invocable components that did not previously report PASS when executed.

KEYBOARD SIGNALS
When tcc catches a SIGINT signal it aborts processing of the current test case and steps on to the
next test case (if there is one).

When tcc catches a SIGQUIT signal (on a UNIX system) or a SIGBREAK signal (on a Win32
system) it aborts processing of the current test case and exits.

If tcc is invoked with the −j |shell-command option on a Win32 system, keyboard signals should
only be used to interrupt tcc if they are being ignored by shell-command . Otherwise the signal will
also terminate the shell-command and some or all of the journal will be lost.

FILES

test-suite-root /tet_scen
Default scenario file. In Distributed TETware, only required on the local system.

test-suite-root /tetbuild.cfg
Default build mode configuration file.

alt-exec-dir /tetexec.cfg
Optional default execute mode configuration file when an alternate execution directory has
been specified.

test-suite-root /tetexec.cfg
Default execute mode configuration file when alt-exec-dir /tetexec.cfg does not exist or an
alternate execution directory has not been specified.

test-suite-root /tetclean.cfg
Default clean mode configuration file.
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test-suite-root /tetdist.cfg
The distributed configuration file. Not used by TETware-Lite. In Distributed TETware,
only required on the local system.

$TET_ROOT/tet_code
test-suite-root /tet_code

Default result code files. In Distributed TETware, only accessed on the local system.

test-suite-root /tet_tmp_dir
Default temporary directory hierarchy.

test-suite-root /results/nnnn{bec}
Default results and saved files directory.

results-dir/REMOTEnnn
In Distributed TETware on the local system, the saved files directory for system nnn .

results-dir/journal
Default journal file. In Distributed TETware, only created on the local system.

SEE ALSO
‘‘The Test Case Controller’’ in the TETware Programmers Guide.
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tccd(1) tccd(1)

NAME
tccd − Distributed TETware test case controller daemon

SYNOPSIS
When the socket network interface is used:

tccd [−e name=value] [−l logfile] [−m umask] [−p port] [−u user]

in.tccd [−e name=value] [−l logfile] [−m umask] [−u user]

When the XTI network interface is used:

tccd −p addr [−M mode] [−P tpi] [−e name=value] [−l logfile] [−m umask] [−u user]

DESCRIPTION
tccd is the Distributed TETware Test Case Controller daemon. It is used by the Test Case Controller
and by Test Case Managers to execute various functions on the local system, and also on remote
systems that are participating in remote and distributed test cases.

When tccd starts up on a UNIX system, it attempts to change its user ID to that of the user tet,
although failure to do this is only treated as fatal if tccd is invoked initially with administrative
privilege (i.e., with a user or group ID of less than 100). tccd changes directory to the home
directory specified for the user tet in the system password database and sets its HOME environment
variable to refer to that directory.

When tccd starts up on a Windows NT system, it does not attempt to change its user ID and executes
in the directory in which is is invoked. If there is no HOME variable in tccd’s environment on
startup, tccd sets its HOME environment variable to refer to that directory.

When the socket network interface is used on a UNIX system, tccd listens for service requests at the
port indicated in the tcc service specification; usually in the /etc/services file. When a connection
request is received, tccd forks a copy of itself, allocates an ephemeral port for the connection and
processes the request in the child process.

When tccd is invoked on a Windows NT system, it does not itself listen for service requests or
accept connections. Instead this function is performed by the TCC daemon bootstrap program
tccdstart (see the tccdstart(1) manual page for details).

The socket version of tccd refuses to process requests for service originating from systems other than
those listed in the systems.equiv file.

When the XTI network interface is used on a UNIX system, tccd listens for service requests at the
address specified by the −p command-line option. When a connection request is received, tccd forks
a copy of itself, accepts the connection and processes the request in the child process. The XTI
version of tccd only runs on UNIX systems and does not use the systems.equiv file to determine
whether or not to accept connections.

By default, tccd writes diagnostic information to the file /tmp/tccdlog on a UNIX system, or to
c:/tmp/tccdlog on a Windows NT system.

The following options are understood for all network interfaces:

−e name=value
Merge the environment variable assignment specified by name=value into the
environment to be used by tccd and its children. More than one −e option may appear.
Note that when the Test Case Controller logs on to tccd on the local system, it sends a
copy of its environment to tccd after logging on. Thus it is possible for an environment
variable assignment made with −e to be overwritten by an instruction from tcc when an
instance of tccd runs with a system ID of zero.
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−l logfile Send diagnostic output to logfile instead of to the default. However, certain diagnostics
may still appear in /tmp/tccdlog or c:/tmp/tccdlog if they are generated before logfile
can be opened.

−m umask Set the value of the file creation mask for tccd and its children to the (octal) value
specified by umask instead of the default value of 022. Only the low 6 bits of the file
creation mask can be set in this way. This option is not supported on a Windows NT
system.

−u user Run with the user ID for the named user instead of that specified for the user tet.
Change directory to the home directory specified for user in the system password
database. This option is not supported on a Windows NT system.

The following option is understood when the socket network interface is used on a UNIX system:

−p port Listen for service requests on the named port instead of the one indicated in the tcc
service specification.

The following options are understood when the XTI network interface is used:

−M mode Specifies the underlying transport provider to use. mode should be TCP to use XTI over
TCP/IP (the default) or OSICO to use XTI over OSI connection-oriented transport.
Each mode is only available if it was enabled by defining the corresponding symbol at
the time tccd was built.

−P tpi Use tpi as the transport provider identifier instead of the default /dev/tcp.

−p addr Listen for incoming connections on the address specified by the XTI address string addr ,
which consists of a transport- and machine-dependent sequence of 2-digit hexadecimal
values.

On a UNIX system, tccd is normally started at system boot time as a result of an entry in one of the
/etc/rc files or, if it was compiled with the symbol INITTAB defined, from an entry in the file
/etc/inittab. Either version of tccd may be started interactively from a Shell command line if so
desired; however, the INITTAB version of tccd does not background itself and so should be put in
the background by invoking it with &.

tccd cannot be started directly from the command line on a Windows NT system; instead, it must be
started on demand by the TCC daemon bootstrap program tccdstart (see the tccdstart(1) manual
page for details).

in.tccd is a version of tccd suitable for use on UNIX systems in conjunction with the inetd super-
server and may be started on demand as a result of an entry in the file /etc/inetd.conf. in.tccd only
works with the socket network interface and may not be started interactively from a Shell command
line.

FILES

$HOME/systems.equiv
List of hostnames of client systems permitted to use tccd when the socket network
interface is used.

/tmp/tccdlog (UNIX) or c:/tmp/tccdlog (Windows NT)
Default diagnostic output file for tccd and its children.

/dev/console (UNIX) or con (Windows NT)
Used as a last resort to print diagnostics when the log file cannot be opened and the
standard error stream is closed.
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/dev/tcp Default transport provider identifier on a UNIX system when the XTI network interface
is used.
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tccdsrv(1) tccdsrv(1)

NAME
tccdsrv − tccd launcher service for Windows NT systems

SYNOPSIS
tccdsrv −install [−a] [−e name=value] [−l logfile] [−p port] [−s] [−t tet-root]
[−u username [−x password]]

tccdsrv −remove

DESCRIPTION
tccdsrv is a version of tccdstart that runs as a Windows NT service. It is used to start instances of
tccd on demand when Distributed TETware is installed on a Windows NT system.

Once installed and activated, tccdsrv listens for service requests at the port indicated in the tcc
service specification. When a connection request is received, tccdsrv allocates an ephemeral port for
the connection and spawns an instance of tccd, passing the connected port to the new process. The
location of tccd is determined at the time that tccdsrv is installed (see ‘‘FILES’’ below).

Since a Windows NT service must be run under the control of the Service Control Manager, tccdsrv
cannot be invoked from the command line unless run in install or remove mode (see ‘‘SERVICE
INSTALLATION AND REMOVAL’’ below).

SERVICE INSTALLATION AND REMOVAL
When invoked with the −install option, tccdsrv installs itself in the Service Control Manager
database. If an instance of tccdsrv is already installed, it is removed first.

When invoked with the −remove option, tccdsrv removes itself from the Service Control Manager
database. If an instance of tccdsrv is running as a service, it is stopped first.

OPTIONS
The following options are understood when tccdsrv is invoked with the −install option:

−a Install tccdsrv in auto-start mode. If this option is not specified, tccdsrv installs itself in
manual start mode.

−e name=value
−l logfile

These options and their arguments are passed to each invocation of tccd. See the
tccd(1) manual page for details.

−p port Listen for service requests on the named port instead of the one indicated in the tcc
service specification.

−s Start running as a service immediately after installation.

−t tet-root Specifies the value of tet-root that is to be used to locate the tccd executable, instead of
the value specified by the TET_ROOT environment variable.

−u username
Instructs the Service Control Manager to log on to the account specified by username
instead of the LocalSystem account, before running tccdsrv. The specified username
must have permission to log on as a service.

−x password
Instructs the Service Control Manager to use password when logging on to the account
specified by the −u option.
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DIAGNOSTICS
When running as a service, tccdsrv writes diagnostics and other messages to the Application Event
Log. The Event Viewer program may be used to view these messages. tccdsrv terminates after
reporting an error when running as a service. The error condition should be cleared before re-
starting tccdsrv manually (see ‘‘Starting and stopping tccdsrv manually’’ below.)

When running in install or remove mode, tccdsrv writes diagnostics to the standard error stream.

NOTES
Installing TETware on a networked drive
The following considerations apply when TETware and/or a test suite is installed on a networked
drive:

1. A user name must be specified with −u (together with a password specified with −x if
necessary) when tccdsrv is run in install mode. The user must have permission to
access files on the networked drive.

2. If tccdsrv is installed on a networked drive, the drive must be mapped before the
tccdsrv service is started. Since the Service Control Manager starts services marked for
automatic start before a user is logged in, the −a option should not be specified when
running tccdsrv in install mode.

Starting and stopping tccdsrv manually
If the tccdsrv service is installed in manual start mode, it must be started manually before it can be
used. This operation may be performed from the Start→Control Panel→Services menu.

Passing environment variables to tccd
When tccdsrv runs as a service, it inherits its environment from the Service Control Manager. This
environment is passed on to each instance of tccd that is started by tccdsrv. The Service Control
Manager makes the system environment variables available to services, but not the per-user
environment variables. (These variable assignments can be examined and/or changed by using the
My Computer→Properties→Environment menu. Note that, if you use this menu to change
environment variable assignments, the Service Control Manager will not pick up the new values until
after the next system reboot.)

When tccdsrv is invoked in install mode, one or more −e options may be used to pass through
additional environment variable assignments each instance of tccd. For example, if C-language test
cases are to be built, it might be useful to pass through the values of variables such as include and lib
that are used by the the Microsoft C compiler.

Note that if a variable assignment contains an embedded space, the entire argument must be enclosed
in a pair of literal double quote characters. If this is not done, the argument parsing functions in the
Microsoft C runtime support library will split an argument into two on each white space boundary
and the correct value will not be seen by tccd. Mostly this is a problem when a variable assignment
such as PATH, include or lib contains a long file name that includes embedded white space.
Alternatively, this problem can be overcome by using short MS-DOS file names when defining such
a variable.

For example, suppose the value of lib to be passed to tccd is c:/program files/devstudio/vc/lib.
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When using the MKS Korn Shell, this variable may be specified either like this:

tccdsrv −install −e ′"lib=c:/program files/devstudio/vc/lib"′ . . .

or like this:

tccdsrv −install −e ′lib=c:/progra˜1/devstudio/vc/lib′ . . .

Locating the systems.equiv file
tccd searches for the systems.equiv file in the directory specified by the value of the HOME
environment variable. If this variable is undefined (as would normally be the case when tccd is
started by tccdsrv), its value defaults to c:/. An explicit value of HOME to be passed to each
instance of tccd may be specified by using the −e option when tccdsrv is run in install mode.

For example, the following tccdsrv invocation instructs tccd to look for the systems.equiv file in
c:/users/tet:

tccdsrv −install −e HOME=c:/users/tet . . .

REGISTRY
tccdsrv makes registry entries below the following keys:

HKEY_LOCAL_MACHINE\CurrentControlSet\Services\EventLog\Application\tccdsrv
Values required to enable tccdsrv to write to the Application Event Log.

HKEY_LOCAL_MACHINE\SOFTWARE\UniSoft\TETware\3.7\tccd
Location of the tccd.exe binary, arguments to be passed to tccd and so forth.

FILES

tet-root /bin/tccd.exe
Location of the tccd executable. This location is determined at install time. The value
of tet-root is taken from the value specified by the −t option, or from the value of the
TET_ROOT environment variable that is in effect at the time that tccdsrv is run in
install mode.
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tccdstart(1) tccdstart(1)

NAME
tccdstart − tccd bootstrap program for Windows NT systems

SYNOPSIS
tccdstart [−e name=value] [−l logfile] [−p port]

DESCRIPTION
tccdstart is used to start instances of tccd on demand when Distributed TETware is installed on a
Windows NT system.

tccdstart listens for service requests at the port indicated in the tcc service specification. When a
connection request is received, tccdstart allocates an ephemeral port for the connection and spawns
an instance of tccd, passing the connected port to the new process. The PATH environment variable
is used to locate tccd so it is necessary to include $TET_ROOT/bin in this variable when tccdstart
is to be invoked.

tccdstart does not run in the background. It should be invoked in its own console window.

The following options are understood:

−e name=value
−l logfile

These options and their arguments are passed to each invocation of tccd. See the
tccd(1) manual page for details.

−p port Listen for service requests on the named port instead of the one indicated in the tcc
service specification.
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systems(4) systems(4)

NAME
systems − map logical system ID to system host name

DESCRIPTION
The file $TET_ROOT/systems is used by Distributed TETware processes to determine how to
connect to another TETware system. Information contained in this file may be accessed by test cases
by means of the tet_getsysbyid() API function. This file is not used in TETware-Lite.

Each entry in the file consists of a number of fields. Fields are separated by white space. Blank lines
and lines beginning with # are ignored by routines that search this file. The first field in each entry
always specifies the logical system ID which is a number that is used to identify a TETware system.
System ID 0 denotes the system on which tcc runs (the local system); other positive values denote
remote systems.

A systems file should exist in the $TET_ROOT directory on all the systems that are to run local,
remote or distributed test case.

It is possible for several logical system IDs to refer to the same physical machine. Needless to say,
chaos will break out if entries for the same logical system ID in systems files on different systems
point to different physical machines.

When the socket network interface is used, each entry in the systems file contains fields as follows:

Logical system ID
System host name
tccd port number (optional)

The system host name may be either a host name that can be looked up in the host database, or an
Internet address in dot notation. When an entry contains the optional port number field, TETware
processes use the specified port number when connecting to tccd on the system specified by the host
name field. If the port number field is omitted, processes use the well-known port number taken
from the tcc service specification when connecting to tccd on the system specified by the host name
field.

When the XTI network interface is used, each entry in the systems file contains fields as follows:

Logical system ID
System host name
XTI address string

At present, the contents of the system host name field is not used by XTI transport-specific routines.
The XTI address string consists of a sequence of hexadecimal 2-digit values which define an address
that may be used by the underlying transport provider. The contents of this field are transport
provider-dependent, and may also depend on the network transport implementation, word size and
byte order of the machine on which the file resides. Therefore, it is likely that the value of this field
in an entry for a particular machine will be different on machines which have different architectures
or network transport implementations.

Page 122 July 2000
The Open Group



TET3-UG-1.4 Test Environment Toolkit
TETware User Guide

systems.equiv(4) systems.equiv(4)

NAME
systems.equiv − permit or deny tccd access from remote systems

DESCRIPTION
The file systems.equiv is used by tccd to decide whether or not to accept service requests from
remote systems.

When tccd is started on a UNIX system, it looks for the systems.equiv file in the home directory for
the user tet, or in the home directory for the named user if tccd is invoked with the −u user option.

When tccd is started on a Windows NT system, it looks for the systems.equiv file in the directory
specified by the value of the HOME environment variable or, if no HOME variable is present, in the
current working directory.

Each line in the systems.equiv file consists of a single field that contains the host name of a system
from which requests are to be accepted, or an Internet address in dot notation if there is no entry for
the system in the hosts database. If the field contains a host name, it must be the primary host name
for that system in the hosts database in order for requests to be accepted; host aliases or nicknames in
the hosts database are not recognised if they appear in the systems.equiv file.

Blank lines and lines beginning with # are ignored by routines that search this file.

CAVEATS
The systems.equiv file is only consulted when the socket network interface is used. It has no effect
when the XTI network interface is used.
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