Test Environment Toolkit

TETware User Guide
Revision 1.2
TET3-UG-1.2

Released: 18th September 1998

The Open Group

The information contained within this document is subject to change without notice.

Copyright [0 1992, 1993, 1996, 1997 X/Open Company Limited
Copyright 00 1993 I nfor mation-Technology Promotion Agency, Japan
Copyright [1994, 1995 UniSoft Ltd.

All rights reserved. No part of this source code or documentation may be reproduced, stored in aretrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user licence agreement, without the prior permission of the copyright
owners. The text of the end-user licence agreement appears in Appendix A of this document. In addition,
a copy of the end-user licence agreement is contained in the file Li cence which accompanies the
TETware distribution.

Motif, OSF/1, UNIX" and the ‘X’ device are registered trademarks and I T Dial Tone and The Open Group
are trademarks of The Open Group in the US and other countries.

X/Open is atrademark of X/Open Company Limited in the UK and other countries.

Win32™, Windows NT™ and Windows 95™ are registered trademarks of Microsoft Corporation.

This document is produced by UniSoft Ltd. at:

150 Minories
LONDON
EC3N 1LS
United Kingdom

1. Introduction
Preface

11
12
13
14
15

CONTENTS

Audience

Conventions used in thls gw de
Related documents

Problem reporting

2. TETware overview

Introduction

Test suite structure

TETwareversions .

Components .

Features and facilities .

Simple TETware architecture di agrams

21
2.2
2.3
24
2.5
2.6

2.7
2.8

4.1

4.3

4.4
4.5
4.6
4.7
4.8

26.1
2.6.2
2.6.3

Introduction .
TETware-Lite archltecture .
Distributed TETware architecture .

Distributed TETware systems and network options
Supported operating system types

3. Installing TETware

Running the TETware demonstrations .

Introduction
4.2 System requirements

4.2.1
4.2.2

Using TETware-Lite .
Using Distributed TETware
4.2.2.1 Configuration
4.2.2.2 Thesyst ens file .

The C APl demonstrations

43.1
4.3.2

Part 1 —thecontri b/ dem)llo te;t swte
Part 2—thecont ri b/ denp test suite

The C++ APl demonstration .

The Perl APl demonstration

The Shell APl demonstration

The TCL API demonstration .

The Distributed C APl demonstration

4.8.1
4.8.2
4.8.3

4.84
4.8.5

Introduction

Installation

Configuration .

4.8.3.1 Introduction . . .
4.8.3.2 Thesystens file . .
4.8.3.3 Thet et di st. cf gfile

4834 Thetetbuil d.cfgandtetcl ean. cfgflles

4.8.3.5 Makefiles
Running the distributed demonstratlon
Problem diagnosis

5. Using TETware

PO NOOODURDNWWW NRPRPEPBREPR

11
12
12
12
12
12
13
13
14
15
16
16
17
18
18
19
19
19
19
20
20
20
21
21

23

5.1 Introduction
5.2 TETware concepts .

521
522
5.2.3
524

525

5.2.6
527
528
529

Introduction :
TETware components
Modes of operation
TETware-Lite

5.24.1 Local and remote wstems

5.2.4.2 Test casetypes
Distributed TETware

5.2.5.1 Loca and remote systems

5.2.5.2 Test casetypes
TETware directory layout
Environment variables
Configuration variables .
Test purpose results

53 TETwaredatafiles

531
53.2

533

534
535

5.3.6 Thesystens andsyst ens. eqU| v flles
5.4 Network security considerations for Distributed TETware

Introduction

The scenario file

5.3.2.1 Description

5.3.2.2 Scenario directives .
5.3.2.3 Scenario elements
5.3.2.4 Test case names

5.3.2.5 Simple scenario examples

Configuration files

5.3.3.1 Introduction . .
5.3.3.2 Configuration file format
5.3.3.3 Configuration file names

5.3.3.4 Setting configuration variables on Iocal and remote systems
when using Distributed TETware . . .
5.3.3.5 Configuration variables used by TETware .

5.3.3.6 Example configuration file

5.3.3.7 Distributed configuration file . .
5.3.3.8 Configuration variables used for distributed testlng
5.3.3.9 Example distributed configuration file

Theresults code file .
Thejourna file

6. TETware programs
6.1 Introduction)
6.2 TheTest Case Control Ier t cc

6.2.1
6.2.2
6.2.3

6.24

Description

Required envi ronment varlables
Normal scenario processing
6.2.3.1 Description

6.2.3.2 Examples .
Rerun and Resume processing .
6.2.4.1 Description

6.2.4.2 Examples

23
23
23
23
23
23
23
23
23
23
24
24
24
25
25
26
26
26
26
26
29
29
30
31
31
31
31

31
32
34
34
34
36
36
37
38
38

39
39
39
39
39
39
39
39
40
40
41

6.3

6.4
6.5

6.6

6.2.5
6.2.6
6.2.7

Test caselocking .
Saved files processing
Test session interruption

The Test Case Controller daemont ccd

6.3.1
6.3.2
6.3.3
6.34
6.3.5

Description

t ccd versions and mod% of operatl on
t ccd user and group ID

t ccd logfile .

Terminating t ccd

The Test Case Manager .
The Synchronisation daemon t et syncd .

6.5.1
6.5.2

Introduction
Description

The Execution Results daemon t et Xres d

6.6.1
6.6.2

Introduction
Description

7. Test case synchronisation
Introduction
Synchronisation requ&ct concepts

7.1
7.2

7.3

7.4

721
722
7.2.3
724
7.2.5

Request types .

Request parameters

Sync events

Sync states .
With what to wnchron|se’> .

Automatic synchronisation requests

731
732
7.3.3
734
7.3.5

Description .

Test case manager synchronlsatlon
Remote executed process synchronisation
Error handling :

Example error messages

7.35.1 Example 1

7.3.5.2 Example 2

User synchronisation requests

74.1
742
74.3

Description

Error handling .
Example error messages
7.4.3.1 Example 1
7.4.3.2 Example 2
7.4.3.3 Example 3

8. Interacting with test casesin Distributed TETware
Introduction
System requirements

8.1
8.2

8.3
8.4

821
8.2.2

UNIX systems
Win32 systems

Usingtet _start
Customisingtet _start

84.1
8.4.2

Introduction
UNIX systems
8.4.2.1 Specifying WhICh xt er mcommand to use

IS
U

41

SEHEEHEERREEBEN

46
46

47
47
47
47
47
47
48
48
48
48
49
50
50
50
50
51
51
51
52
52
52
52
53

55
55
55
55
55
55
56
56
56
56

O o w >

8.4.2.2 Directing the new window to aparticular display .

8.4.3 Win32 systems

8.4.3.1 Specifying the Iocatl on of the st art command

8.5 Application notes
85.1 Generd .
8.5.2 UNIX systems
8.5.3 Win32 systems

The TETware end-user licence
TETware directory structure
TETwarejournal lines

TETware demonstration journal file
D.1 Introduction
D.2 Examplejourna file

Server reply codes
E.1 Introduction .
E.2 Listof server reply codes :

. Mnemonics used in TETware diagnostics .

F.1 Introduction

F.2 Processtypes

F.3 Process states

F.4 Server request codes
F.5 Server reply codes .
F.6 Sync states .
F.7 Execution result states

Trace and debugging facilities
G.1 Introduction .
G.2 Cavests

G.3 Description .

G.4 Examples

. Implementation notes for TETware on Win32 systems .

H.1 Introduction
H.2 Supported TETware versions
H.3 File naming conventions . .
H.3.1 Directory separator character
H.3.2 Full path names
H.3.3 Relative path names .
H.3.4 Test case names
H.4 Executablefiles
H.5 Application types
H.6 Signal handling Co
H.6.1 Keyboardsignals .
H.6.2 TCM signal trapping
H.7 Context numbers .o
H.7.1 Introduction .
H.7.2 Generating unique context numbers
H.7.3 Number of digitsin a context number

-iv -

57
58
58
58
58
58
59

63
65
69

75
75
75

79
79
79

83
83
83
83
84
85
85
85

87
87
87
87
89

91
91
91
91
91
91
92
92
92
94
94
94
94
94
94
94
95

H.8 Testcasetermination 9

H.9 APl considerations . . Ce e 95
H.9.1 Unimplemented mterfaces .o Ce 95

H.9.2 Useof the DLL version of theC runtlme support I|brary Ce e 96

H.10 TheTCCdaemontcecd 96
H.10.1 Startingt ccd Ce e e e 96

H.10.2 User ID .o Ce e e e e 96

H.10.3 File creation mask sett| ng .o Ce e e 96

H.11 The TCC daemon bootstrap program t ccdst ar t Ce e 96

I. Hintsand tips for users of previous TET |mpI ementations 99
.1 Introduction - Ce e e 99
.2 TETwarefor TET 1.10 and ETET Users 99
.3 TETwarefordTET2users 100

J TETwaremanualpages 103

-Vi -

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

1. Introduction
1.1 Preface

This document isthe TETware User Guide.

TETware is implemented on UNIX operating systems and also on the WindowsNT and
Windows 95 operating systems. It includes al of the functionality of the Test Environment
Toolkit Release 1.10 (TET), the Distributed Test Environment Toolkit Version 2 Release 2.3
(dTET2) and the Extended Test Environment Toolkit Release 1.10.3 (ETET), together with a
number of new features.

Throughout this document, the Windows NT and Windows 95 operating systems are referred to
collectively as Win32 systems. The individual system names are only used when it is necessary
to distinguish between them.

1.2 Audience

This document is intended to be read by systems administrators who will install TETware on
their computer systems, and by software testing engineers who will use TETware to run
verification test suites.

Test suite authors should refer to the TETware Programmers Guide for information about how to
use the TETware Application Program Interface.

1.3 Conventions used in this guide
The following typographic conventions are used throughout this guide:

e Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

o The names of variables are presented in italic font. You should substitute the variable's
value when typing a command that contains aword in this font.

« Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a\ character
for formatting purposes. If you type such an example, you should type it in al on one line and
omit the\ character.

1.4 Related documents

Refer to the following documents for additional information about TETware:

o Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
isimplemented.

o Test Environment Toolkit: TETware Programmers Guide
o Test Environment Toolkit: TETware Knowledge Base

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use

18th September 1998 Page 1
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

each new release of TETware.

1.5 Problem reporting

If you have subscribed to TETware support and you encounter a problem while installing and
using TETware, you can send a support request by electronic mail to the address given in the
TETware Release Notes. Please follow the instructions contained in the release notes about how
to submit such a request; in particular, please be sure to include all the information asked for by
these instructions when submitting the request.

Page 2 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

2. TETwareoverview

2.1 Introduction

The purpose of TETware is to provide a uniform framework, or test scaffold, into which both
non-distributed and distributed test suites can be incorporated. By providing such a scaffold, test
suites from different vendors can share a common interface allowing for, among other things,
ease of portability.

In this context, and throughout this guide, the term non-distributed test means a test which
executes on a single computer system. A non-distributed test can execute on the local system
(that is: the system on which the TETware Test Case Controller is executing) or on a remote
system (that is. a system other than the one on which the TETware Test Case Controller is
executing).

Likewise, the term distributed test means a test which consists of severa parts; each test part
executes concurrently on a different computer system and contributes to the overall test result.
Typicaly, distributed tests are used to verify some kind of interaction between two or more
systems.

2.2 Test suite structure

A test suite is the largest grouping of tests that can be processed by the TETware Test Case
Controller.

A test suite is made up of one or more test cases. A test case is the smallest test program unit
that can be built or cleaned up by the Test Case Controller.

A test case consists of one or more invocable components. An invocable component is the
smallest test program unit that can be executed by the Test Case Controller.

An invocable component consists of one or more test purposes. A test purpose typicaly tests an
individual element of system operation for conformance to some statement of required behaviour,
and yields a result indicating whether or not the element passed the test. Often, an invocable
component contains a single test purpose.

A distributed test purpose is a test purpose which consists of severa parts and each part
executes on a different computer system. Each part of a distributed test purpose submits a
partial result which indicates the success or failure of that part of the test purpose. These partial
results are gathered from the various parts of the test purpose and, after arbitration between the
partial results, a consolidated result is generated for the test purpose which appears in the test
case journa file. A description of the way in which this arbitration is performed is presented in
the section entitled **Making journal entries’’ in the TETware Programmers Guide.

A test scenarioisalist of one or more invocable components from atest suite that are processed
by a particular Test Case Controller invocation. A test suite often has a scenario named all
associated with it; this scenario smply lists all the invocable componentsin the test suite.

18th September 1998 Page 3
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

2.3 TETwareversions

TETware is available in one of two versions. One version is called TETware-Lite and is able to
process non-distributed test cases on a single computer system (the local system). The other
version is caled Distributed TETware and is able to process both distributed and non-
distributed test cases on the local system and on one or more remote systems.

2.4 Com ponents
TETware-Lite includes the following components:

e A Test Case Controller providing support for the building, execution, and clean-up of test
scenarios. The name of this component ist cc.

o Test Case Managers and Application Programming Interface libraries which can be used to
build test cases written in C, C++, Shell, Korn Shell and Perl. These components are not
executable programs but are instead linked or otherwise included in each user-supplied test
case.

The names of these components are as follows*:

tcmo C Test Case Manager

tenchild. o C API child processinterface module

l'i bapi.a C AP function library

thrtcmo Thread-safe C Test Case Manager®
thrtcnchild. o Thread-safe C API child processinterface module
libthrapi.a Thread-safe C API function library

Gcmo C Test Case Manager

Ctcenthild. o C++ API child processinterface module
Chrtcmo Thread-safe C++ Test Case Manager
Cthrtcnchild. o Thread-safe C++ API child processinterface module
tcm sh Shell Test Case Manager

tetapi.sh Shell API function library

tcm ksh Korn Shell Test Case Manager

tetapi . ksh Korn Shell API function library

tcm pl Perl Test Case Manager

api . pl Perl API function library

1. OnWin32 systems, executable program files have the suffix . exe.

2. The. o and. a suffixes shown here are the ones that are used on UNIX operating systems. On Win32 systems the
. o filesinstead have the suffix . obj and the . a files instead have the suffix . | i b. All the other suffixes are the
same on each operating system.

3. On UNIX systems the thread-safe components can be built to support either POSIX threads or Ul threads (but not
both at the same time).

On Win32 systems the thread-safe components are built for use with the multi-threaded DLL version of the
C runtime support library.

Page 4 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

In addition to the components described for TETware-Lite, Distributed TETware includes the
following components:

e A Test Case Controller daemon which performs test case processing actions on behalf of
the Test Case Controller (t ccd).

e A Test Case Controller daemon bootstrap program for use on WindowsNT systems
(tccdstart).

o A Synchronisation daemon which handles synchronisation requests from different parts of
adistributed test case (t et syncd).

e An Execution Results daemon which handles journal entries made by test cases
(t et xr esd).

« The C APl includes aremote executed process interface module (t cnr em 0).

In Distributed TETware, the C and C++ APIs may be used to build both distributed and non-
distributed test cases. The other APIs may be used to build non-distributed test cases which may,
nevertheless, be processed on both the local system and on remote systems.

The distributed Test Case Controller can process test cases written to use either the Distributed or
Lite versions of all the APIs. However, the TETware-Lite Test Case Controller cannot process
test cases written to use the Distributed versions of the C and C++ APIs.

Although Distributed TETware is a superset of TETware-Lite, the way in which the Test Case
Controller operatesis rather different in the two TETware versions, as follows:

o In TETware-Lite, the Test Case Controller itself performs all the actions that are required
to process test cases.

o By contrast, Distributed TETware uses a client-server architecture. The distributed version
of the Test Case Controller does not itself perform the actions required to process test
cases. Instead, it issues requests to servers running on each participating system which
perform the required actions in its behalf. Thus the distributed version of the Test Case
Controller can process test cases on the local system, on one or more remote systems, or on
some combination of the two.

Reference manual pages for TETware programs and file formats are presented in an appendix to
this guide. Test suite authors should refer to the TETware Programmers Guide for information
about the TETware APIs.

2.5 Featuresand facilities

TETware provides facilities to execute test cases in several ways as follows. All these facilities
are available in Distributed TETware. Facilities marked with a T are not available in TETware-
Lite.

« Execution of non-distributed test cases on the local system (i.e., local test cases).

« Execution of non-distributed test cases on a single remote system (i.e., remote test cases).t

Concurrent execution of non-distributed test cases on several remote systems.t

Execution of distributed test cases with the parts of each test case executing simultaneously
on either the local system and one or more remote systems, or entirely on two or more
remote systems.t

18th September 1998 Page 5
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

« Execution of asingle test case selected at random from alist of test cases.
« Combinations of the above elements executing in parall€l.

« Sequences of the above elements executing a specified number of times or until some time
period has expired.

2.6 Simple TETwar e ar chitecture diagrams

2.6.1 Introduction

The diagrams presented in this section provide a simplified view of how the different TETware
components relate to each other. More complete diagrams are presented in the appendix entitled
“*Conceptual models used by TETware’’ in the TETware Programmers Guide.

2.6.2 TETware-Litearchitecture

The following diagram provides a simplified view of how the different components relate to each

other in TETware-Lite:
scenario
file

tcc

TCM

results
file

tcc — TETware-Lite Test Case Controller
TCM — Test Case Manager + test case parts

It will be seen that al the processing takes place on a single system (the local system) and that a
client/server architecture is not used. Thus, remote and distributed test cases cannot be processed
by TETware-Lite.

Page 6 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

2.6.3 Distributed TETware architecture

The following diagram provides a simplified view of how the different components relate to each
other when a distributed test case is executed by Distributed TETware:

|

Local System i Remote System(s)
|
tcc |

— / \\ .

/ tet syncd |
\

|
| TCM

TCM
|
t et xresd |
|
|
1
results 1
file }
|
tcc — Distributed TETware Test Case Controller
tccd — Test Case Controller daemon
tetsyncd — Synchronisation daemon
tetxresd — Execution results daemon
TCM — Test Case Manager + test case parts

Processing is similar when Distributed TETware executes a non-distributed test case; the main
difference is that the Synchronisation daemon t et syncd does not participate in this type of
processing.

It will be seen from this diagram that, unlike dTET2, the architecture used by Distributed
TETware is fully symmetrical. That is, there is no longer a distinction between master and slave
systems when test cases are executed. t cc does not itself perform test case management
functions but instead requests t ccd to do so on its behaf. Consequently it does not matter
whether a (non-distributed) test case or a (distributed) test case part is processed on the local
system® or on aremote system; the processing logic is the same in each case.

4. That is: the system on whicht cc runs.

18th September 1998 Page 7
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

2.7 Distributed TETware systems and networ k options

When the Distributed TETware version of t cc processes test cases, it may do so on a local
system and/or one or more remote systems. This s illustrated by the diagram presented in the
previous section which showsthat several server processes take part in this processing.

Although it is usual for each TETware system to reside on a different physica machine, the way
that systems are defined makes it possible for more than one logical TETware system to map to a
physical machine. Indeed, it would be possible for all the logical systems participating in a
distributed test case to coexist on a single physical machine if such a configuration were to be
required. The way that the mapping of logical systems to physical machines is performed is
described in the chapter entitled **Using TETware’’ elsewherein this guide.

TETware server processes communicate with each other using some kind of network interface.
Support is provided for several different network interfaces and the decision as to which one to
use must be made before TETware is built. This is described further in the chapter entitled
“‘Building TETware’’ in each of the platform-specific versions of the TETware Installation
Guide.

2.8 Supported operating system types

TETware-Lite has been implemented for use on computers which run UNIX operating systems
and also on computers which run the WindowsNT and Windows95 operating systems.
Distributed TETware has been implemented for use on computers which run UNIX operating
systems and also on computers which run the Windows NT operating system.

The design of TETware and its predecessors has been influenced to alarge extent by the facilities
that are available on UNIX systems. While care has been taken to ensure that the UNIX and
Win32 implementations operate in as similar a way as possible, it is inevitable that certain
differences exist between them. These differences are discussed further in the appendix entitled
“‘Implementation notes for TETware on Win32 systems'’ at the end of this guide.

Page 8 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

3. Installing TETware

There is one version of the TETware Installation Guide for each family of operating systems on
which TETware is implemented. For details of how to build and install TETware, please refer to
the version of the TETware Installation Guide that is appropriate for your computer system.

18th September 1998 Page 9
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 10 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

4. Runningthe TETware demonstrations

4.1 Introduction

This chapter describes how to run the TETware demonstration test suites. Before you can run the
demonstrations, you should install TETware on all the systems that you want to use to run local,
remote or distributed tests.

There are several demonstration test suites included with TETware as follows:

TETwar e demonstration test suites

Name Path Description

denoll0 tet-root/ contri b/ Simple demonstration test suite for the C API.
Thisis documented in the TET Programmers
Guide.

cpl usdeno | tet-root/ contri b/ Simple demonstration test suite for the C++ API.
Thisisthe C APl demonstration suite (denp110)
modified to use the C++ API.

deno tet-root/ cont ri b/ Another simple demonstration test suite for the

C API. Thisincludes afurther illustration of the
capabilities of TETware. Theinstructionsin the
READIVE file should be followed. A version of
thistest suite ported to Win32 systemsis provided
inthefiletet-root/ cont ri b/ wi n32. zi p.
per| deno tet-root/ contri b/ Demonstration test suite for the Perl API. Thisis
aPerl APl demonstration suite similar to the
simple C API demonstration. A version of this
test suite ported to Win32 systemsis provided in
the directory tet-root/ cont ri b/ NTper | deno.

SHELL- API tet-root/ contri b/ Demonstration test suite for the Shell API. Thisis
a Shell APl demonstration suite.

tcl deno tet-root/ contri b/ Demonstration test suite for the TCL API. Thisis
aTCL APl demonstration suite. The TCL API is
also included in the contrib distribution.

capi tet-root/ contri b/ An extended C API demo suite from the TETware
Programmers Guide. This includes additional
build tools and a sample report writer. This test
suiteteststhechnod() , uname(),fil eno()
and st at () system interfaces. See the READVE
file included with this test suite for more
information.

deno tet-root/ src/ t et 3/ Distributed demonstration test suite for the C API.
Thisisthe official demonstration test suite for
Distributed TETware.

Note that the contributed demonstrations below tet-root/ cont r i b have been designed by their
contributors to work on UNIX systems unless otherwise noted above, and it is likely that a small
amount of porting effort will be required in order to cause these demonstrations to install and/or

18th September 1998 Page 11
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

function correctly on a Win32 system. In most cases this effort includes (at least) the
modification of the build, clean and installation mechanisms in order to cater for the different file
names and suffixes which must be used on Win32 systems.

4.2 System requirements

The distributed demonstration must be run using Distributed TETware. The other demonstrations
can berun using either Distributed TETware or TETware-Lite.

Y ou should follow the instructions in one of the following subsections at this level, depending on
which version of TETware you have installed.

4.2.1 Using TETware-Lite

There is no system configuration required when you run the demonstrations using TETware-Lite.
Note that since TETware-Lite is not able to process distributed test cases, it cannot be used to run
the distributed demonstration.

4.2.2 Using Distributed TETware
4.2.2.1 Configuration

If you have installed Distributed TETware, you will need to make use of two machines connected
to the same local area network in order to run the distributed demonstration program. When the
distributed demonstration is run, one of these machines will act as the local (or master) system
and the other will act as the remote (or slave) system. The master system is defined as the one on
which you will runt cc.

Although the ssimple C, Perl and C++ demonstrations can be run on a single machine, they till
require the following setup when run with Distributed TETware.

Y ou must perform the following actions:

1. Ensure that Distributed TETware is installed on each system that will participate in the
demonstrations.

2. Veify that the t ccd daemon is running on the system(s) and that it has permission to
access and modify both thetet root directory and the test suite root directory hierarchy.

Ensure that you know the name of the tet-root directory on each system.

4. |If you have ingtalled the version of Distributed TETware which uses the socket network
interface, you should ensure that an entry for each participating system exists in the
syst enms. equi v file on each system. On a UNIX system this fileis located in thet et
user's home directory. On a WindowsNT system this file is located in the directory
specified by the value of the HOVE environment variable which is in effect whent ccd is
started, or int ccd’s current working directory if no HOVE variable is present.

4.2.2.2 Thesyst ens file

Before you can run the demonstration programs, you must customise the syst ens file.

In order to do this, you should log in to the master system and change directory to tet-root. The
file tet-root/ syst ens contains the mappings that assign system identifiers to host names. An

example systems file is supplied with the demonstration in
tet-root/ src/ t et 3/ deno/ syst ens which contains lines similar to the following:
Page 12 18th September 1998

The Open Group

TET3-UG-1.2 Test Environment Toolkit

TETware User Guide
Exanpl e systemfile for denobnstration
000 mast er
001 sl ave

You should copy this file to tet-root/ syst enms on the master system. Then, edit the copy,
replacing mast er with the host name of the master system and sl ave with the host name of
the dlave system. You should ensure that these host names are in the host database on both the
master and the slave system (often in thefile/ et ¢/ host s on UNIX systems).

Once you have customised the sy st ens file on the master system, you should copy it to the tet
root directory on the slave machine.

4.3 The C APl demonstrations
431 Part 1 —thecontri b/ denpl10 test suite

This section describes how to run the simple demonstration TET test suite in
tet-root/ contri b/ denmo. This is the standard TET 1.10 demonstration. This test suite
executes only on a single system and does not require remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To dtart, if you are not aready there, change to the directory in which the demonstration
test suite resides, thus;

cd tet-root/ contri b/ denpl110
2. Make surethat tet-root/ bi n isinyour PATH.
3. Set your TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

4. Review the contentsof t s/ makef i | e and ensurethat it is correct for your system.
Type the following command to run the demonstration:

tcc -bec contrib/denpll0

Asthe demonstration executes, it displays the following message:
Journal file is: tet-root/ contrib/denpl10/results/0001lbec/]j ournal

You can then look in tet-root/ cont ri b/ denp110/resul t s/ 0001bec/j our nal to see
the results of the demonstration. Note that, when using Distributed TETware, standard output
from test casesis redirected to thet ccd log file (defaultsto/ t np/ t ccdl og).

A sample filter to generate a results summary is contained @ in
tet-root/ contri b/ usl t ool s/ vres. This filter is an awk script. Type the following
commands in order to install and run this script:

cp $TET_ROOT/ contri b/ usltool s/vres $TET_ROOT/ bi n/ vr es
chnod a+x $TET_ROOT/ bi n/ vres
vres resul ts/0001lbec/j ournal

When run, vr es produces the following output:

18th September 1998 Page 13
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Results: results/0001bec/journa

Total tests: 3 PASS = 3 FAIL =0
Pass Breakdown:

Nurmber of successes: 3 Nunber of warni ngs: 0
Nurmber unsupport ed: 0 Nunber not in use: 0
Nurmber of untested: 0 Nunber of FIP: 0
Fai | ure Breakdown:

Nurmber of failures: 0 Nunber unresol ved: 0
Nurmber uni ni ti at ed: 0 Nunber unreport ed: 0

Other sample report writer tools are included in the tet-root/ contrib/crpt,
tet-root/ contri b/ tetreport andtet-root/ contri b/ scri pts directories.

An aternative execution scenario file is provided to demonstrate some of the ETET-derived
features of TETware. The name of thisfile is tet-root/ cont ri b/ denp110/ et et _scen and
its contents are as follows:

Denonstration test suite.
A default execution scenario to deno the ETET features
tests

"starting scenario”

/ts/tcl

/ts/tc2

"next is the last test case"

/ts/tc3

"done"

al |
"pick a randomtest"
:random “tests
"repeat four tines /ts/tcl”
:repeat,4: @ts/tcl
"run all the tests in parallel”
cparallel: "tests
"pi ck randomtests for 35 seconds"
:tinmed_| oop, 35; random “tests

The following commands will build and execute the test suite using the ETET-derived features:

tcc -b contrib/deno
tcc -e -p -v TET_COWAT=etet -s etet_scen contrib/deno

4.3.2 Part 2—thecontri b/ deno test suite

This section describes how to run the C demonstration TET test suite in
tet-root/ cont ri b/ denp. This test suite executes only on a single system and does not require
remote systems to be set up.

Thisis amodified version of the denp110 test suite and is intended to give familiarity with the
outline structure for a test suite and its associated files, the test scenario file and the t cc
command.

Page 14 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

Thefilet et _scen isthe default scenario or ‘‘test list’’ to be executed. The example given has
a simple scenario named al | which is used by default, and several other example test scenarios
that can be called by name.

The following instructions should be followed:

1. Check your environment for running t cc. Make sure that tet-root/ bi n isin your PATH
and that the TET_ROOT environment variable refersto tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

2. If you are not aready there, change to the directory in which the demonstration test suite
resides, thus;

cd tet-root/ contri b/ denmp
3. Build thetest suite asfollows:

tcc -p -b contrib/deno
4. Executethetests:

tcc -p -e contrib/denp

tcc -p -e contrib/deno all # the sane as above
5. Clean thetests:

tcc -p -c contrib/deno
6. Rebuild the tests:

tcc -p -b contrib/deno

7. Review the extended examples within the t et _scen scenario file, and then execute the
different test scenarios:

tcc -ep contrib/denmo parall el
tcc -ep contrib/deno random

tcc -ep contrib/deno enhanced

4.4 The C++ APl demonstration

This section describes how to run the simple C++ demonstration TET test suite in
tet-root/ cont ri b/ cpl usdeno. Thistest suite executes only on a single system and does not
reguire remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To sart, if you are not aready there, change to the directory in which the demonstration
test suite resides, thus;

cd tet-root/ contri b/ cpl usdeno

2. Thereisamakefile in each test case directory below thet s directory. Review the contents
of each makefile and ensure that it is correct for your system.

18th September 1998 Page 15
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

3. Makesurethat tet-root/ bi nisinyour PATH.
4, Setyour TET ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Typethe following command to run the demonstration:

tcc -bec contrib/cpl usdeno

Asthe demonstration executes, it displays the following message:
journal file nane is: tet-root/ contrib/cplusdeno/results/0001lbec/journal

You can then look in tet-root/ contri b/ cpl usdeno/ resul t s/ 0001bec/j ournal to
see the results of the demonstration.

45 ThePerl APl demonstration

This section describes how to run the simple Perl demonstration TET test suite in
tet-root/ cont ri b/ perl denmo. This test suite executes only on a single system and does not
reguire remote systems to be set up.

The following instructions will cause the test suite to be built, executed and cleaned:

1. To dtart, if you are not aready there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/ contri b/ perl deno
2. Review the contents of t s/ makef i | e and ensurethat it is correct for your system.
Make sure that tet-root/ bi n isin your PATH.
4. Setyour TET_ROOT environment variable to refer to tet-root, thus:

TET _ROOT=tet-root
export TET_ROOT

5. Typethe following command to run the demonstration:

tcc -bec contrib/perldeno

Asthe demonstration executes, it displays the following message:
journal file nane is: tet-root/ contri b/ perldeno/results/0001bec/journal

You can then look in tet-root/ cont ri b/ per| dermo/ resul t s/ 0001bec/ j our nal to see
the results of the demonstration.

4.6 The Shell APl demonstration

This section describes how to run the SHELL APl demonstration TET test suite in
tet-root/ cont ri b/ SHELL- API . This test suite is deliberately simple and tests the user-level
commands unane and chnod. Sample tests include checking a returned error code and error
message against and expected error code and error message, and printing out system specific
information for verification by the tester.

Page 16 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

This test suite executes only on a single system and does not require remote systems to be set up.
The following instructions will cause the test suite to be built and executed:

1. To start, if you are not aready there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/ contri b/ SHELL- API
2. Review the contents of the READVE file.

3. Make sure that tet-root/ bi n and tet-root/ cont ri b/ SHELL- APl / bi n are in your
PATH.

4. Setyour TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Make sure that the commands in tet-root/ cont ri b/ SHELL- API / bi n are executable,
thus:

chnod a+x bin/buildtool bin/cleantool bin/install
6. Typethe following command to install the suite:

./Ibin/install
7. Typethe following command to build the suite;

tcc -p -b -a ‘pwd'/ts_exec contrib/SHELL- API
8. Typethe following command to execute the suite:

tcc -p -e -a ‘pwd'/ts_exec contrib/SHELL- API

Asthe demonstration executes, it displays the following messages.

tcc: journal file is tet-root/ contrib/ SHELL- API/results/0002e/journal
10: 21: 27 Execute /ts/chnod/ chmod-tc on system 000
10: 21:31 Execute /ts/unane/unane-tc on system 000

You can then look in tet-root/ cont ri b/ SHELL- API / r esul t s/ 0002e/ j our nal to see
the results of the demonstration.

4.7 TheTCL API demonstration

This section describes how to run the TCL APl demonstration TET test suite in
tet-root/ contri b/ tcl deno.

To use this demonstration suite you will need to have installed the TCL API, whichisincluded in
the contrib distribution in tet-root/ cont ri b/t cl api .

Thistest suite executes only on a single system and does not require remote systems to be set up.

This is a ssimple demonstration of how to use the TCL API. This version assumes that the t cl
command is in /usr/local/bin/tcl. You can edit the source files in the
tet-root/ cont ri b/ t cl deno/ t s directory to change thisif required.

Test 1illustrates startup/cleanup with some simple PASS and FAIL results.

18th September 1998 Page 17
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Test 2 isavery simple test case.
Test 3 generatesin addition an INSPECT resullt.
The following instructions will cause the test suite to be built and executed:

1. To sart, if you are not aready there, change to the directory in which the demonstration
test suite resides, thus:

cd tet-root/ contri b/ tcl deno
2. Review the contents of the READMVE file.
Make sure that tet-root/ bi n isin your PATH.
4. Setyour TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

5. Typethe following command to run the demonstration:
tcc -p -bec contrib/tcldeno
6. By building and executing test 3 again as followsit is possible to change the behaviour:

tcc -p -be -v message="nynessage" -y test3 contrib/tcldeno

4.8 The Distributed C API demonstration
4.8.1 Introduction

The TETware distributed demonstration program is a simple test suite consisting of three
distributed test cases that are built, executed and cleaned on each system participating in the test.
You may run the demonstration program to verify that Distributed TETware has installed
correctly.

This demonstration test suite has been designed to run on a pair of UNIX systems, a pair of
Windows NT systems, or on one UNIX and one Windows NT system. When the demonstration
is configured to run between a UNIX and a Windows NT system, you may configure either type
of system to act as either master or slave.

The instructions presented here for building and installing the demonstration on a Windows NT
system assume that you are using the same defined build environment that is used when TETware
is built on such a system; that is: Microsoft Visua C++ and the MKS Toolkit. Since the
demonstration has been designed for use in this environment on a Windows NT system, it is
likely that you will have to make changes to the source code and/or the installation method in
order to use a different environment. For further details of the defined build environment, refer to
the section entitled ‘‘System requirements’ in the TETware Installation Guide for the
Windows NT and Windows 95 Operating Systems.

It will be seen that al the parameters whaose values depend on the type of host operating system
are specified either in the makefiles or in the configuration files which reside on each system.
This demonstration provides an example of one way in which TETware features may be used in
order to maintain maximum test case portability between the two types of operating system.

Page 18 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

4.8.2 Installation

Y ou must perform the following actions to install the demonstration program on each system:
1. Log on to the system that you want to use as the master system.
2. Copy the master part of the demonstration to tet-root/ deno on the master system, thus:

cd tet-root/ src/tet 3/ deno/ mast er
find . -print | cpio -pdv tet-root/ denmo

Log on to the system that you want to use as the slave system.

4. Copy the slave part of the demonstration to the test suite root directory on the save
system, thus:

cd tet-root/ src/tet3/deno/ sl ave
find . -print | cpio -pdv tet-root/ denmo

4.8.3 Configuration
4.8.3.1 Introduction

Before you can run the demonstration programs, you must customise the syst ens file, as
described earlier in this document, and also the distributed configuration filet et di st . cf g. In
addition, if either part of the demonstration is running on a Windows NT system, you will need to
customise the tethuild.cfg and tetclean.cfg files on the master system and
(optionally) the slave system.

In order to do this, you should log in to the master system and change directory to tet-root. Then,
you should work through the instructions presented in the following subsections.

4.8.3.2 Thesyst ens file

The file tet-root/ syst ens contains the mappings that assign system identifiers to host names.
An example systems file is supplied with the demonstration in
tet-root/ sr c/ t et 3/ deno/ syst ens which contains lines similar to the following:

Exanpl e systemfile for denonstration
000 mast er
001 sl ave

You should copy this file to tet-root/ syst ems on the master system. Then, edit the copy,
replacing mast er with the host name of the master system and sl ave with the host name of
the slave system. Y ou should ensure that these host names are in the host database on both the
master and the slave system (oftenin thefile/ et ¢/ host s).

If you have built TETware on the master system to use the XTI network interface, you must add a
third field to the entry for each system. This field should contain the XTI address string of the
Test Case Controller daemon t ccd that is running on that system. The format of XTI address
strings is described in the section entitled *‘ System definitions’ in the TETware Programmers
Guide.

Once you have customised the sy st ens file on the master system, you should copy it to the tet
root directory on the slave system.

18th September 1998 Page 19
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

4.8.3.3 Thetetdi st. cfgfile

Thefile tet-root/ deno/ t et di st . cf g contains variable assignments for dave systems that are
equivalent to those on the master system that may be specified in environment variables. As
supplied with the demonstration, this file contains lines similar to the following:

TET_REMDO1_TET_ROOT=/ hone/ t et
TET_REMDO1_TET_TSROOT=${ TET_ROOT}/ deno

The follow ng variables are referenced only by XTl-based versions of
TETware - you should not define themif you built TETware to use the socket
network interface

TET_XTI _TPI =/ dev/tcp
TET_XTI _MODE=t cp
TET_LOCALHOST=01. 02. 03. 04

H o H R

If the tet root directory on the save system is not / hone/t et, you must change the first
variable to refer to the tet root directory on the slave system.

The last three variables are only required if TETware on the master system has been built to use
the XTI network interface. You must substitute values for these variables which are correct for
your system. Note that the value that you specify for TET _LOCALHOST must be the machine's
external |P address and not the address of the loopback interface. Do not specify a value for
TET_LOCALHOST if you built TETware on the master system to use the socket network
interface.

4.8.3.4 Thetetbuil d.cfgandtetcl ean. cf g files

As distributed these files contain values which are appropriate when you run the demonstration
on two UNIX systems. In order to accommodate different file name suffixes, you must edit these
filesif you run either part of the demonstration on aWindows NT system. Details of the changes
that you must make are presented in comments contained in these files on both the master and the
slave system.

4.8.3.5 Makefiles

You must check the test case makefiles on each system to ensure that they will build the test
cases correctly.

Y ou may need to add the names of libraries to the SYSLI BS variable in order to resolve external
function names used in the TETware Test Case Manager and API. For example, if you have built
TETware to use the socket network interface, you may need to append -l socket and -l nsl to
this variable on some systems.

If you are running either part of the distributed demonstration on a Windows NT system, you will
need to customise the file name suffix variables in the makefiles as well as the SYSLI BS
variable. Details of the changes that you must make are presented in comments contained in the
makefiles.

Page 20 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

4.8.4 Runningthedistributed demonstration

Once you have installed and configured the distributed demonstration to run on your systems, you
are ready to run the demonstration.

You should perform the following operations on the master system to run the demonstration
program:

1. Loginto the master system and change directory to tet-root.
2. Make surethat the setting of your PATH environment variable includes tet-root/ bi n.
3. Setyour TET_ROOT environment variable to refer to tet-root, thus:

TET_ROOT=tet-root
export TET_ROOT

4, Typethefollowing command to run the demonstration program:
tcc -bec deno
Whent cc starts, it will respond with aline similar to the following:
Journal file is: tetroot/ deno/results/0001bec/ | ournal
Then the demonstration test suite will be built, executed and cleaned up.

5. Oncet cc hasfinished execution, you can examine the journa file and verify the results of
the demonstration. Test cases 1 and 3 are expected to pass, test case 2 is expected to fail.

4.8.5 Problem diagnosis

If the demonstration did not run as expected, it is likely that one or more TETware components
will have generated diagnostic messages describing what went wrong. You should check for
diagnostic information in locations listed in the following table:

L ocation of diagnostic information Sour ce of diagnostic message

t cc’sstandard error stream tcc

(appears on the terminal unless redirected) tet syncd
t et xresd

Journal file (on the master system) tcc
Test Case Managers on each system
APIson each system

t ccd log file on each system tccd

(defaultsto/ t np/ t ccdl og) Test Case Managers on each system
APIson each system

18th September 1998 Page 21

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 22 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

5. Usng TETware

5.1 Introduction

This chapter describes how to use TETware. Before you can use TETware, you must install
TETware on al the systems that you want to use to run local, remote or distributed tests, as
described in the TETware Installation Guide.

5.2 TETware concepts
5.2.1 Introduction

This section describes some concepts employed in TETware.

5.2.2 TETware components

The components that make up TETware are described in the chapter entitled ‘‘ TETware
overview’’ elsewhere in this guide. You should read this chapter now if you have not already
done so.

5.2.3 Modes of operation

The Test Case Controller (t cc) operatesin one of several modes as follows:

build mode — in this mode, test cases are built
executemode — in this mode, invocable components are executed
clean mode — inthismode, test cases are cleaned; i.e., the test case directory is

returned to the state that it wasin before the test case was built
and/or executed

One or more modes of operation are specified by command-line options each time that t cc is
invoked.

524 TETware-Lite

5.2.4.1 Local and remote systems

The Lite version of t cc is able to process non-distributed test cases on the local system. It
cannot process distributed test cases or test cases on remote systems.

5.2.4.2 Test casetypes

TETware-Lite is able to process local test cases. It cannot process remote test cases or
distributed test cases.

5.2.5 Distributed TETware

5.2.5.1 Local and remote systems

The distributed version of t cc is able to process non-distributed test cases on both the local
system and on one or more remote systems. In addition, t cc is able to process distributed test
cases where parts of each test case execute on the local (or master) system and/or on one or more
remote (or slave) systems.

18th September 1998 Page 23
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Distributed TETware systems are identified by a three-digit system ID. System ID zero refersto
the local system and other system ID values refer to remote systems. In this context, the local
system is defined as the one on which t cc isinvoked.

Usually, different TETware systems are located on different physical machines. However, there
is no reason why different system IDs should not refer to the same machine.

5.2.5.2 Test casetypes

Distributed TETware is able to process local test cases, remote test cases and distributed test
cases. For a description of what is meant by these different test case types, refer to the chapter
entitled ‘' TETware overview’' elsewherein this guide.

5.2.6 TETwaredirectory layout

The whole of TETware resides in asingle directory hierarchy on each system that isto participate
in local, remote or distributed testing. The top of this hierarchy is known as the tet root
directory. Below tet root there are directories containing TETware executables and
documentation.

In addition, directory hierarchies that contain the test suites that are to be used with TETware
reside below a single directory per test suite. The top of each test suite directory hierarchy is
known as the test suite root directory. By default, the test suite root directory resides below the
tet root directory on each system.

By default, t cc looks for test cases below the test suite root directory. However, it is possible to
specify an alternate execution directory or a runtime directory; if such a directory is specified,
t cc looks for test cases below that directory instead.

It is possible to ask t cc to save files and/or directory subtrees that may be generated during test
case processing. When files are saved in this way, they are copied to the saved files directory.

An example TETware directory hierarchy is presented in the appendix entitled ‘‘ TETware
directory structure’’ at the end of this guide.

5.2.7 Environment variables

The following environment variables are used to control the operation of t cc. These variables
are used by both TETware-Lite and Distributed TETware. When Distributed TETware is used,
these variables control the operation of t cc on the local system (that is. the system on which
t cc isrun). Configuration variables which perform similar functions for remote systems to those
performed by the environment variables described here may be specified in the distributed
configuration file t et di st . cf g. The meanings of these distributed configuration variables is
described further in the section entitled ** Configuration variables used for distributed testing’’
elsawhere in this chapter.

TET_ROOT Specifies the location of the tet root directory. This environment variable
must always be set whent cc isrun.

TET_EXECUTE If this variable is set, it specifies the location of the alternate execution
directory.

TET _TMP_DI R If thisvariableis set, it specifiesthe location of t cc’stemporary directory.

Page 24 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

TET_SUI TE_ROOT |If this variable is set, it specifies an alternate location below which the test
suite root is located.

TET_RUN If this variable is set, it specifies the location of a runtime directory. t cc
copies the entire test suite directory hierarchy to a location below the
runtime directory and processes the test suite in that location. This
variable is useful when the test suite directory hierarchy resides on a read-
only file system or NFS-mounted from a central server whose file system
should not be modified by the system under test.

5.2.8 Configuration variables

You may specify sets of configuration variables for each of t cc’s modes of operation. Each
variable specification takes the following form:

variable=value

Some configuration variables alter the behaviour of TETware, whereas others are specific to the
test suite being processed and may be accessed by test cases and by build and clean tools.

Configuration variables may be specified in configuration files or by means of at cc command-
line option. A configuration variable specified on thet cc command line takes precedence over a
variable of the same name that is specified in a configuration file.

Configuration variables that alter the behaviour of TETware are described further in the section
entitled ‘* Configuration files'’ later in this chapter.

5.2.9 Test purposeresults

Each non-distributed test purpose, and each part of a distributed test purpose, is expected to
register exactly one test purpose result code. A result code is anumeric value whose meaning is
defined in aresult code table. Each result code has an action associated with it which indicates
what action the Test Case Manager (TCM) should take when a test purpose reports that result
code. Possible values for this action are Cont i nue which means that the TCM should continue
to process the next test purpose (if any), or Abor t which indicates that the TCM should abort the
current test case.

The following result codes are defined in TETware:

Result code Meaning Action
0 PASS Conti nue
1 FAI L Cont i nue
2 UNRESOLVED Cont i nue
3 NOTI NUSE Conti nue
4 UNSUPPORTED | Conti nue
5 UNTESTED Cont i nue
6 UNI NI TI ATED | Conti nue
7 NORESULT Cont i nue

A test suite may provide aresults code file defining these and other testsuite-specific result codes.
Thisfileis described further in the section entitled *‘ The results code file'’ later in this chapter.

18th September 1998 Page 25
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

5.3 TETwaredatafiles
5.3.1 Introduction

This section describes the formats and locations of data files used by TETware.

5.3.2 Thescenariofile
5.3.2.1 Description

The scenario file contains one or more test scenarios for atest suite. By default, the name of this
fileist et _scen andislocated in the test suite root directory on the local system. (However, a
different scenario file name may be specified by means of at cc command-line option; for
details, refer to thet cc manual page at the end of this guide.)

A scenario file should contain (at least) a scenario named al | ; by convention, this causes all the
test casesin the test suite to be processed.

Each entry in a scenario file starts with the scenario hame and contains one or more scenario
directives and scenario elements. Each scenario name in the file starts at column 1 and lines
containing scenario directives and elements have a blank in column 1. Blank lines and lines
beginning with # are ignored.

Simple descriptions of these directives and elements are presented in the following sections,
together with some examples. A more complete description of the format of the scenario file and
some more comprehensive examples are presented in the chapter entitled ** The scenario file'” in
the TETware Programmers Guide.

5.3.2.2 Scenario directives

Directives have scope within the scenario. Each directive affects the way in which t cc
processes other directives and elements which appear within the scope of that directive. Note that
some directives may not appear within the scope of other directives.

These directives may appear in scenario files and are processed by t cc asfollows:

i ncl ude: / file-name
The test cases listed (one per line) in the named file are interpolated in the scenario at the
point where this directive appears.

: paral | el [, count]: / file-name
The test cases listed (one per ling) in the named file are processed in pardlel. If the
optional count argument is specified, count copies of each test case listed in the file are
processed in paralldl.

:parallel[, count]:
/ test-case-name

:endparal | el :
The named test-cases are processed in parallel.

The precise behaviour of the : paral | el : directive may be affected by the vaue of the
TET_COMPAT configuration variable. Details of the way in which this directive behaves are
presented in the chapter entitled ** The scenario file'’ in the TETware Programmers Guide.

Page 26 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

. repeat, count: / file-name
In build and clean modes, the test cases listed (one per line) in the named file are processed
once in sequence. In execute mode, the test cases listed in the named file are executed
sequentially count times.

: repeat, count:
| test-case-name

: endr epeat :
In build and clean modes, the named test-cases are processed once in sequence. In execute
mode, the named test-cases are executed sequentially count times.

:timed_I oop, seconds: / file-name
In build and clean modes, the test cases listed (one per line) in the named file are processed
once in sequence. In execute mode, the test cases listed in the named file are executed
sequentially until the specified number of seconds has expired.

:timed_I oop, seconds:
| test-case-name

:endti med_| oop:
In build and clean modes, the named test cases are processed once in sequence. |n execute
mode, the named test cases are executed sequentially until the specified number of seconds
has expired.

: random / file-name
The behaviour of this directive depends on the selected modes of operation and on whether
or not it appears within the scope of alooping directive.

When execute mode is selected:
— If this directive appears within the scope of at |east one looping directive:

« If build mode is selected, each of the test cases listed (one per ling) in the
named file are built once in sequence.

« For each iteration of each of the enclosing looping directives, one of the test
cases listed in the named file is selected at random and executed.

o If clean mode is selected, each of the test cases listed in the named file are
cleaned once in sequence.

— Otherwise:

e One of the test cases listed in the named file is selected at random and
processed according to the selected modes of operation.

When execute mode is not selected:

— Each of the test cases listed in the named file are processed once in sequence
according to the selected modes of operation.

18th September 1998 Page 27
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

: random
[test-case-name

: endrandom
The named test cases are processed in the same way as that described above for the first
format of the: random directive.

These directives are only supported by the Distributed version of t cc and are processed as
follows:

. renot e, nnn,[, nnn,.. .]: / file-name
Each test case listed (one per line) in the named file is processed in sequence. As each test
case is processed this processing takes place on al of the systems nnn,, nnn, etc. at once.

. renot e, nnn[, nnn,,.. J:
| test-case-name

: endr enot e:
Each named test case is processed in sequence. As each test case is processed this
processing takes place on all of the systems nnn,, nnn, etc. at once.

If the list of systems specified with a: r enpt e: directive includes system ID zero, then the
named test cases are processed as distributed test cases; otherwise, test cases are processed as
(non-distributed) remote test cases.

. di stributed, nnn,[, nnn,, ...]: / file-name
Each test case listed (one per line) in the named file is processed in sequence. As each test
case is processed this processing takes place on al of the systems nnn,, nnn, etc. at once.

. di stributed, nnn[, nnn,, .. .J:
| test-case-name

»enddi stri but ed:
Each named test case is processed in sequence. As each test case is processed this
processing takes place on all of the systems nnn,, nnn, etc. at once.

Test cases within the scope of a :distributed: directive are aways processed as
distributed test cases irrespective of whether system ID zero is specified in the list of systems.

Directives may be combined by the ; operator. When directives are combined in this way, the
scope of each directive is the same as if each directive had been specified separately but the
syntax used is the same as that which may be used for asingle directive, asfollows:

. directive [; directive,..]: / file-name
The test cases listed (one per line) in the named file are processed within the scope of
directive,, directive, etc.

Page 28 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

. directive,[; directive,..]:
| test-case-name

. [...enddirective,; Jenddirective,:
The named test cases are processed within the scope of directive,, directive, etc. Note that
when the ; operator is used in this type of construct, enddirective,, enddirective, etc.
must appear in reverse order so that each one matches its corresponding directive,,
directive, etc.

Where afile name name is associated with a scenario directive, this nameisinterpreted relative to
the test suite root directory.

5.3.2.3 Scenario e ements

The following elements may appear in scenario files and are processed by t cc asfollows:

n textll
text is printed to the journal file as a scenario information line.

" scenario-name
The directives and elements which comprise the named scenario are interpolated at the
point where this element appears. A ™ scenario-name may appear in a scenario in any place
that a/ test-case-name or a/ file-name may appear.

/ test-case-name
The named test case is processed according to each of t cc’s selected modes of operation.

. directive: @ test-case-name
The @ test-case-name element may be used in place of a/ file-name which is attached to a
directive®. The single named test case is processed within the scope of the associated
directive without the need for amatching : enddirective: to be specified.

5.3.2.4 Test case names
Test case names are interpreted by t cc on each system as follows:

o In build or clean mode, test case names are interpreted relative to the test suite root
directory.

e In execute mode, test case names are interpreted relative to the alternate execution
directory if one has been specified, otherwise they are interpreted relative to the test suite
root directory.

A test case name may be followed by alist of invocable component numbers enclosed in braces.
If this is done, only the invocable components specified in the list are executed in execute mode.
A list of invocable components consists of one or more comma-separated numbers or ranges of
numbers. A range of numbers consists of two numbers separated by a- character.

5. That is: not separated from the directive by white space.

18th September 1998 Page 29
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

For example, the following line specifies invocable components 1, 3, and 5 through 8 for the
named test case:

/tset/tcl{1, 3,5-8}

5.3.2.5 Simple scenario examples

This section presents some simple test scenario examples. The first two examples may be
processed either by TETware-Lite or by Distributed TETware.

In the following example, the three test cases are processed sequentially on the local system:

al |
/tset/tcl
/tset/tc2
/tset/tc3

In the following example, the three test cases are processed concurrently on the local system:

al |
»parall el
/tset/tcl
/tset/tc2
/tset/tc3
. endparal | el

Since the next two examples specify the processing of remote and distributed test cases, they can
only be processed by Distributed TETware and not by TETware-Lite.

In the following example, instances of each test case are processed concurrently on two remote
systems:

al |
:renote, 001, 002:
/tset/tcl
/tset/tc2
/tset/tc3
:endrenpte

In the following example, four distributed test cases are processed sequentially. Parts of each test
case are executed concurrently on the local system and on two remote systems.

al |
:renot e, 000, 001, 002:
/tset/dtcl
/tset/dtc2
/tset/dtc3
/tset/dtc4
:endrenpte

Page 30 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

5.3.3 Configuration files
5.3.3.1 Introduction

The configuration files hold configuration variable assignments for each of t cc’s modes of
operation. In addition, configuration files may hold configuration variable assignments for use by
test cases and by build and clean tools.

5.3.3.2 Configuration file format

Each line in a configuration file specifies a configuration variable assignment in the following
format:

variable=value

Lines beginning with # and blank lines are ignored.

5.3.3.3 Configuration file names

By default, configuration files for each test suite are located in the test suite root directory on each
system. However, if an alternate execution directory is specified on the local system, the execute
mode configuration file may be located there instead if so desired. The name of the build mode
configuration file is tetbuild.cfg, that of the execute mode configuration file is
t et exec. cf g and that of the clean mode configuration fileist et cl ean. cf g.

The names of these files on the local system may be overridden by t cc command-line options if
desired; for details, refer to thet cc manual page at the end of this guide.

5.3.3.4 Setting configuration variables on local and remote systemswhen using
Distributed TETware

This subsection describes the interaction between variables that are specified in configuration files
on loca and remote systems when Distributed TETware is used. The capabilities described here
are not available when TETware-Liteis used.

Configuration variables may be specified both on the local system and on any remote systems that
are to participate in remote or distributed testing. In this context, the local system is the system
onwhicht cc isrun (whether or not any test cases run on this system), and remote systems are
other systems on which test cases or test case parts are run. When reading the discussion that
follows, you should bear in mind that the local system always has a system ID of zero; other
system IDs always refer to remote systems.

Configuration variable assignments made on the local system are propagated to each of the
remote systems; however, configuration variable assignments made on a remote system normally
have precedence over those that are propagated from the local system.

For example, if the following assignment is made on the local system:
TET_BU LD TOOL=nake

then, the value of TET_BUI LD_TOOL will be set to make on the local system and on all the
remote systems.

If the following assignment is made on one of the remote systems:
TET_BUI LD_TOOL=augnake

18th September 1998 Page 31
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

then the value of TET_BUI LD _TOOL is changed to augnake only on that remote system, and
remains unchanged on all of the other systems.

It is possible to direct a variable assignment made on the local system to a particular system by
prefixing its name with TET_RENMhNn_ where nnn is the ID of the system that is to receive the
variable.

So, if the following assignments are made on the local system:

TET_BUI LD _TOOL=nmke
TET_REMDO2_TET_BUI LD TOOL=augnake

then the value of TET_BUI LD_TOCL on remote system 002 is set to augnmake and the value of
TET_BUI LD _TOOL on the local system and all the other remote systems is set to make.

Furthermore, the value of a TET_REMhinn_ variable assignment made on the local system
overrides any assignment to the corresponding variable that may be made on system nnn. So, in
this case, the value of TET_BUI LD_TOOL on remote system 002 is set to augnake irrespective
of any assignment that might be made on that remote system.

Finaly, if the following assignments are made on the local system:

TET_BUI LD _TOOL=augmake
TET_REMDOO_TET_BUI LD_TOOL=rake

then the value of TET_BUI LD _TOCL on the local system will be set to make and the value of
TET _BUI LD TOOL on al the remote systems will be set to augmake (provided that no
assignment for TET_BUI LD_TOCL is made on any of the remote systems).

5.3.3.5 Configuration variablesused by TETware

This section describes some of the configuration variables that affect t cc’s operation. The list
presented here only includes those variables that it might be sensible for a TETware user to
change. Other TETware configuration variables and testsuite-specific variables may be specified
by the test suite author. Refer to the TETware Programmers Guide for a complete list of
configuration variables and their meanings.

Except where noted, variables affect the operation of both the Distributed TETware and
TETware-Liteversionsof t cc.

When Distributed TETware is used, each of the operation mode-specific sets of configuration
variables that are specified without the TET _RENMhnn__ prefix on the local system is known as the
master configuration for the related mode. Variables in the master configuration for each mode
are merged with system-specific configuration variables® to form the per-system configuration
for that mode. The master configuration variables affect the way that t cc processes test cases on
all participating systems, whereas the per-system configuration variables affect the way that t cc
processes test cases on each system individually.

Some of the variables described below are read from the master configuration and so affectt cc’s
operation on each system in the same way, whereas others are read from the per-system
configurations and so can affect t cc’s operation differently on different systems. The scope of

6. Thatis: variables specified on remote systems, or specified on the local system with a TET_REMnn_ prefix.

Page 32 18th September 1998
The Open Group

TET3-UG-1.2

Test Environment Toolkit
TETware User Guide

each variable described here is indicated at the end of the variable’s description. Variables noted
as being read from the master configuration will be ignored if constrained to a particular system
by use of a TET_REMNn_ prefix or by being specified in a configuration file on a remote

system.
TET_EXEC | N_PLACE

TET_OUTPUT_CAPTURE

TET_API _COVPLI ANT

TET_PASS_TC_NAME

TET_SAVE_FI LES

18th September 1998

Possiblevalues: Tr ue or Fal se; default: Fal se.
Specifies whether or not t cc should execute test cases ‘‘in
place’’. If false, t cc copies test case files to a temporary
directory before executing them. The setting of this variable
is only meaningful in execute mode. In Distributed TETware
the vaue of this variable is read from the master
configuration.

Possible values: Tr ue or Fal se; default: Fal se.
Specifies whether or not t cc should capture standard output
and standard error output from test cases and record it in the
journal. For historical reasons the value of this variable also
provides default values for the TET_API _COMPLI ANT and
TET_PASS TC NAME configuration variables. In
Distributed TETware the value of this variable is read from
the master configuration.

Possible values. Tr ue or Fal se;

default: inverse of the value of TET_OUTPUT_CAPTURE.
Specifies whether or not test cases and tools use a TETware
API. If true, test cases and tools are expected use the API to
print diagnostics and register results. If false, t cc treats the
test case or tool as if it consists of a single invocable
component containing a single test purpose. t cc prints the
messages to the journal file that would be printed by an API-
conforming test case and generates a test purpose result based
on the test case’ s exit status (zero = PASS, non-zero = FAIL).
In Distributed TETware the value of this variable is read
from the master configuration.

Possiblevalues: Tr ue or Fal se;

default: the value of TET _OUTPUT _CAPTURE.

If true, t cc passes the name of the test case to be processed
on the command-line when executing a build or clean tool. If
false, t cc does not pass a test case name to a build or clean
tool. Note that t cc always passes a test case name to a
prebuild, buildfail or exec tool. In Distributed TETware the
value of this variable is read from the per-system
configuration.

This variable specifies a (comma separated) list of file names.
If, after t cc executes atest case, afile matching one of these
names is found below the execution directory hierarchy, that
file is transferred to the saved file directory tree on the same
system. If a directory is found that matches one of the
names, then its contents are transferred recursively. Shell file
name matching syntax may be used in the list of file names.

Page 33
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

In Distributed TETware the value of this variable is read
from the per-system configuration.

TET_TRANSFER_SAVE_FI LES Possiblevalues: Tr ue or Fal se; default: Fal se.
If true, files processed on a remote system in accordance with
the description of TET_SAVE_FI LES above are transferred
to the saved file directory on the local system instead of being
saved on that remote system. The value of this variable has
no effect in TETware-Lite. In Distributed TETware the value
of this variable is read from the per-system configuration.

5.3.3.6 Example configuration file

Hereis an example of a simple build mode configuration file for atest suite that uses make asits
build tool:

exanple build node configuration file

TET_BUI LD_TOOL=nake
TET_BUI LD FI LE=-f makefile
TET_OUTPUT_CAPTURE=TTr ue

5.3.3.7 Distributed configuration file

When Distributed TETware is used, thefilet et di st . cf g in the test suite root directory on the
local system holds configuration variables used for remote and distributed testing. Thisfile is not
used by TETware-Lite.

Distributed configuration variables are used to specify parameters for remote systems that are
equivalent to those parameters on the local system that t cc obtains from environment variables
or deduces from its current working directory. In addition, the distributed configuration file may
include variable assignments relating to the TETware network interface.

These variables are not accessible by test cases or tools using APl configuration variable lookup
functions.

5.3.3.8 Configuration variables used for distributed testing

The following configuration variables are used by the Distributed version of tcc when
processing test cases on remote systems. In each case, nnn is the number of the system to which
the variable relates.

These variables are specified in the distributed configuration file t et di st. cf g on the local
system. The distributed configuration file and the variables described here are not used by
TETware-Lite.

TET_REMhnn_TET_ROOT The values of these variables specify the locations of tet root
directories on remote systems. One of these variable
assignments must be made for each remote system that may
participate in remote or distributed testing. The vaues of
these variables are passed to test cases and tools in the
environment as communication variables on each system.

Page 34 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

TET_REMhnn_TET_TSROOT The values of these variables specify the locations of test
suite root directories on remote systems. One of these
variable assignments must be made for each remote system
that may participate in remote or distributed testing.

TET_REMhnn_TET_SUl TE_ROOT

These variables are not used by TETware but, when
specified, are passed to test cases and tools in the
environment as communication variables on each system.
This is done in order to enable existing ETET test cases
which rely on the presence of a TET_SU TE ROOT
environment variable to be processed on a remote system by
Distributed TETware.

TET_REMhNn_TET_EXECUTE The values of these variables specify the locations of
alternate execution directories on remote systems. The use of
these variables is optional but, if they appear, they perform
the equivalent functions on remote systems to that performed
by the value of the TET_EXECUTE environment variable on
the local system (refer to the section entitled ** Environment
variables’ earlier in this chapter). The vaues of these
variables are passed to test cases and tools in the environment
as communication variables on each system.

TET_REMhNN_TET_RUN The values of these variables specify the locations of runtime
directories on remote systems. The use of these variables is
optional but, if they appear, they perform the equivaent
functions on remote systems to that performed by the value
of the TET_RUN environment variable on the local system
(refer to the section entitled ** Environment variables” earlier
in this chapter). The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMInn_TET _TMP_DIR The vaues of these variables specify the locations of
temporary directories on remote systems which are used
instead of the default location when TET_EXEC | N_PLACE
is false. The use of these variables is optional but, if they
appear, they perform the equivalent functions on remote
systems to that performed by the value of the
TET_TMP_DI R environment variable on the local system
(refer to the section entitled ** Environment variables” earlier
in this chapter).

In addition, the following distributed configuration variables may be specified when the XTI
network interface is used:

TET_XTI _TPI The name of the XTI transport provider identifier on the local
system. If this variable is not specified, its value defaults to
/ dev/tcp.

18th September 1998 Page 35

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

TET_XTI _MODE Possible values: TCP (to indicate TCP/IP) or OSI CO (to
indicate OSI connection-oriented transport).
The value of this variable indicates the underlying transport
provider to be used. This variable must always be specified
when the XTI network interface is used.

TET_LOCALHOST This variable must be specified when the XTI network
interface is used and the underlying transport provider is
TCP/IP. The value of this variable should be the Internet
address of the local system. This address is presented in dot
notation and must be an address that can be used to access the
local system from remote systems (i.e., it should not be the
address of the loopback interface). All four fields in the
address must be specified.

5.3.3.9 Exampledistributed configuration file

Hereis an example distributed configuration file for a distributed test suite whose parts run on the
local system and two remote systems:

exanple distributed configuration file

TET_REMDO1 TET_ROOT=/user 1/t et

TET_REMDO1_TET _TSROOT=/userl/tet/testsuite
TET_REMDO2_TET_ROOT=/user 6/ project/tet3
TET_REMDO2_TET_TSROOT=/ user 6/ project/tet3/testsuite

5.3.4 Theresultscodefile

When a TETware program needs to interpret a test purpose result, it does so by referring to a
table of results codes. Initiadly, this table contains a list of code values which have standard
meanings which may (optionally) be augmented by lists contained in files provided by the test
suite author. Files provided in this way may reside in both the tet root directory and the test
suiteroot directory. Typicaly the file at the tet root level might contain codes for use by all test
suites whereas the file at the test suite root level might contain codes for use with an individual
test suite.

The default name for the file at each level ist et _code but this name may be changed by means
of the TET_RESCODES_FI LE configuration variable’. In Distributed TETware any results
code files should only be provided on the local system.

Each line in aresults code file consists of (blank-separated) fields as follows:

Result code value
Result name
Action indicator

7. Note that although this variable is specified in configuration files which are per operation mode, the variable itself is
interpreted per t cc invocation and not per operation mode. Therefore it is an error for this variable to be specified
with different valuesin different mode-specific configuration files which are read by a particular t cc invocation.

Page 36 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

The result code value is a positive number between 0 and 127. Values between 0 and 31 are
reserved for use by TETware. The result name is a text string enclosed between double quotes
and indicates the name of the result. The text string may contain embedded blanks. The action
indicator informs the TCM what to do when a test purpose returns the corresponding result and
should be one of Cont i nue to cause the TCM to continue processing the next test purpose, or
Abort to causethe TCM to abandon processing the test case.

Blank lines and lines beginning with # are ignored.
Hereis an example of aresult codefile:

exanple result code file

first, the standard codes required by TETware
0 " PASS" Conti nue
1 "FAIL" Conti nue
2 " UNRESOLVED" Conti nue
3 " NOTI NUSE" Conti nue
4 " UNSUPPORTED" Conti nue
5 " UNTESTED" Conti nue
6 "UNI NI TI ATED" Conti nue
7 " NORESULT" Conti nue

then, the codes specific to this test suite
32 " | NSPECT" Conti nue
33 "STOP RUN' Abor t

Whent cc starts up, itsinternal table contains entries for only the standard result codes. Then, if
afileis provided at the tet root level, entriesin that file are added to the table. Finaly, if afileis
provided at the test suiteroot level, entriesin that file are added to the table. Thus, entriesin the
file at the test suite root level have precedence over entries in the file at the tet root level and
entries in both files have precedence over the default entries which initially populate the internal
table. Therefore, it isan error for either of the optional results code files to contain entries for one
of the standard result codes with an incorrect result name.

5.3.5 Thejournal file

At the start of each test run, t cc creates adirectory in the test-suite-root/ r esul t s directory on
the local system, whose name consists of an ascending sequence number followed by one or more
of b, e and c, indicating which operation mode(s) was being used by t cc. By default, the
journal for the test runisplaced in afilecalledj our nal inthisdirectory.

For example, if the 5th t cc run was in build and execute mode, the name of the default journal
filewould be

tet-root/ r esul t s/ 0005be/ j our nal

However, a different journa file name may be specified by means of a t cc command-line
option; for details, refer to thet cc manual page at the end of this guide.

Each line in the journal file consists of three fields separated by | characters. The first field
contains a number which indicates the type of the journal line. The second field contains
information depending on the type of the journa line. The third field generally contains some
kind of message text. Descriptions of journal lines are presented in the appendix entitled
“TETwarejourna lines’ at the end of this guide.

18th September 1998 Page 37
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

5.3.6 Thesyst ens and syst ens. equi v files
Thesefiles are only used by Distributed TETware processes. The are not used by TETware-Lite.

The syst ens file resides in the tet root directory on each system and is used by Distributed
TETware processes to map TETware system |1Ds to some information (such as a host name) that
can be used by the network interface to identify a machine. The format of the syst ens file
varies according to which network interface is used by TETware.

The syst ens. equi v file resides in the t ccd user’s home directory on each system (usually
that of the user t et ona UNIX system). Thisfile may be used by t ccd to determine whether or
not to accept arequest from aremote system. Note that not all TETware network interfaces make
use of thisfile.

Example systens and systens. equi v files are included in the TETware distribution.
Refer to the manual pages at the end of this guide for details of the formats of these files.

5.4 Network security considerations for Distributed TETware

This section describes issues for consideration by users and system administrators when using
Distributed TETware.

Since Distributed TETware is intended for use in a testing environment which is not accessible
from an externa network, network security issues are not really addressed by Distributed
TETware.

t ccd offers services to any network entity that connects to its well-known port and can satisfy its
logon criteria. Some of the services offered by t ccd may present a potential security hazard; in
particular, the ability to execute other processes. Whent ccd is built to use the socket network
interface, users can exercise some control over login requests from another machine by means of
entries in the syst ens. equi v file. However, when t ccd is built to use the XTI network
interface, users cannot control whether or not t ccd accepts logon requests from other machines.

tetsyncd and t et xr esd both offer services to other processes without any authentication,
apart from the server logon procedure which does not perform host name checking. However,
they do not use well-known ports and so are protected to some extent by ‘‘security through
obscurity’’.

Asaresult of al this;

Users are strongly advised against running Distributed TETware on machines
that can be accessed from an external network, unless they are satisfied that
adequate measures are in place to prevent unauthorised accessto networks that
serve those machines.

Page 38 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

6. TETware programs

6.1 Introduction

This chapter describes the function and use of TETware programs. Sections which describe the
Test Case Controller and Test Case Manager are applicable to both TETware-Lite and
Distributed TETware, whereas sections which describe server (or daemon) processes are
applicable only to Distributed TETware.

6.2 TheTest Case Controller t cc
6.2.1 Description

The Test Case Controller (t cc) undertakes test suite scenario processing. t cc processes test
cases in accordance with one or more modes of operation, as described in the section entitled
“*Modes of operation’” earlier in this chapter. The default behaviour of t cc can be modified by
many command-line options, details of which are presented in a manual page at the end of this
guide.

Although the user interfaceto t cc is the same in both Distributed TETware and TETware-Lite,
the operation of t cc is quite different in the two TETware versions. In TETware-Lite there is
only one system (the local system) and t cc itself performs all the actions required to process test
cases. However, in Distributed TETware there may be more than one system (local and/or
remote) and t cc does not perform the actions required to process test cases itself. Instead, it
sends requests to server processes which perform each required action on the appropriate system.
Note that the distributed version of t cc aways runs on the local system; indeed, in TETware
terminology the local system is defined as the system on whicht cc runs.

6.2.2 Required environment variables
Before you invoke t cc, you must ensure that the value of your TET_ROOT environment variable

points to the tet r oot directory on the local system.

6.2.3 Normal scenario processing
6.2.3.1 Description

When t cc is invoked, it processes each test case in the specified scenario. (If no scenario is
specified, then t cc processes each test case in the scenario named al |). Test case processing is
performed for each operational mode currently in force. For example, if t cc isinvoked in build
mode, each test casein the scenario is built or, if t cc isinvoked in build and execute mode, then
each test case in the scenario isfirst built and then executed.

6.2.3.2 Examples
Here are some simple examples of how to uset cc to perform normal scenario processing:
1. Tobuildall test casesin atest suite called myt est sui t e:
tcc -b nytestsuite

or

18th September 1998 Page 39
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

cd tet-root/ nytestsuite
tcc -b

Thejournal is placed in tet-root/ myt est sui t e/ r esul t s/ nnnnb/ j our nal .
2. Tobuild, execute and clean al test casesin atest suitecaled nyt est sui t e:
tcc -bec mytestsuite
or

cd tet-root/ nytestsuite
tcc -bec

Thejournal isplaced in tet-root/ myt est sui t e/ resul t s/ nnnnbec/ j our nal .

3. To execute test cases in a test suite called myt est sui t e that are listed in a scenario
called nyscenari o inthe default scenario file:

tcc -e nytestsuite nyscenario
Thejournal is placed in tet-root/ myt est sui t e/ r esul t s/ nnnne/ j our nal .

4. To build and execute test cases in atest suite called nyt est sui t e that are listed in the
default scenario in afile called myscenfi | e in the current directory, place the journal in
afile called nyj our nal inthe current directory and print atrace of test case building and
execution:

tcc -be -p -s nyscenfile -j nyjournal mytestsuite

6.2.4 Rerun and Resume processing
6.2.4.1 Description

In addition to the normal scenario processing described above, t cc can re-run or resume
processing of a previous test run. When you invoket cc inrerun or resume mode, you specify
the name of the scenario and the journal file from the previous run, and alist of test purpose result
code names or t cc operation modes. Needless to say, the scenario that you specify must be the
same as the one that was used to generate the old journa file. (If the scenario name is not
specified explicitly, t cc re-processesthe scenario named al |).

When you runt cc inrerun mode, t cc re-processes test cases in the scenario whose results in
the old journal file match one of those specified in the result code list. When you runtcc in
resume mode, t cc re-processes al test cases in the scenario starting from the first test case
whose result in the old journal file matches one of those specified in the result code list.

The result code list may consist of one of the following:
i. A (commaseparated) list of result code names.

ii. A (comma separated) list containing one or more of the letters b, e and ¢, representing
build mode, execute mode and clean mode, respectively, in the previous run.

If the list contains result code names, then test purposes which report one of these results are
matched. If thelist containst cc operating modes, then test purposes which did not report PASS
in the named operating mode(s) are matched.

When performing rerun and resume processing in build and clean modes, t cc performs
processing at the test case level in build and clean mode, and at the invocable component level in

Page 40 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

execute mode.

When you runt cc in rerun mode, the old journal file may either be the result of a normal test
run or of a previous rerun. It is not necessary for the selected modes of operation to be the same
as those specified for the previous run. However, you should avoid specifying impossible
operation mode combinations. For example, if you perform atest run which includes clean mode
and then attempt to rerun without specifying build mode or rebuilding the test casesto bererunin
some other way, attempts to re-execute selected test cases are bound to fail.

When you run t cc in resume mode, the old journal file must be the result of a normal test run.
You cannot resume using an old journa file which is the result of a previous resume run. In
addition it is necessary for the selected modes of operation to be the same as those specified for
the test run that generated the old journal file.

6.2.4.2 Examples
Here are some simple examples of how to uset cc to perform rerun and resume processing:

1. Torebuild all test cases in the test suite named nmyt est sui t e that previously failed to
build in the run whose journal file was named ol dj our nal :

tcc -b -r b oldjournal nytestsuite

2. Toresume building of the first test case and execution from the first invocable component
in the test suite named nyt est sui t e which reported FAIL or UNRESOLVED in the
journal file named ol dj our nal :

tcc -be -m FAIL, UNRESOLVED ol dj ournal mytestsuite

6.2.5 Test caselocking

When t cc processes atest case, it prevents possible interference from other instances of t cc by
acquiring one or more exclusive or shared locks. These locks are acquired in the test case source
directory and (optionally) in the test case execution directory.

An exclusive lock is acquired by creating afile called t et _| ock in the directory that is to be
locked. A shared lock is acquired by creating a file with a unique name below a directory called
t et _| ock inthedirectory that isto be locked, creating thet et _| ock directory if necessary as
well. A diagnostic is printed to the journal fileif t cc isunable to acquire the locks that it needs.

Although each instance of t cc is always careful to remove the locksthat it created when they are
no longer required, it is possible that old locks might remain after some system or process
malfunction. Inthe event of this happening it is necessary to remove the old locks by hand.

6.2.6 Saved files processing

Asindicated earlier in the section entitled ** Configuration variables used by TETware'’, t cc can
be instructed to save certain files and/or directories that may be created during test case
execution. This action is controlled by the vaue of the configuration variable
TET_SAVE FI LES and (when Distributed TETware is used) by the vaue of
TET_TRANSFER_SAVE FI LES.

If TET_TRANSFER SAVE_FI LES is false when Distributed TETware is used, files are saved
on the system on which they were created (be it local or remote). However, if
TET_TRANSFER _SAVE FI LES is true, files that are to be saved are transferred from remote
systems to the local system and saved there. The setting of TET_TRANSFER SAVE FI LES

18th September 1998 Page 41
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

has no effect when TETware-Lite is used.

When files are to be saved without transfer on a particular system, t cc creates a saved files
directory in the test-suite-root/ r esul t s directory on that system, whose name consists of an
ascending sequence number followed by one or more of b, e and ¢, indicating which operation
mode(s) was being used by t cc, thus:®

test-suite-root/ r esul t s/ nnnn[bec]

However, when files are to be transferred and saved on the local system by Distributed TETware,
t cc instead creates additional directories named REMOTEnnn below this directory on the local
system, where nnn indicates the system |ID (either local or remote) from which the files are to be
transferred, thus:

test-suite-root/ r esul t s/ nnnn[bec]/ REMOTENnnn

Each directory thus created becomes the top of the saved files directory hierarchy for its
respective system.

The variable TET_SAVE_FI LES may be set to a (comma-separated) list of file names. If, after
t cc executes a test case, a file matching one of these names is found below the execution
directory hierarchy, that file is transferred to the saved file directory hierarchy. Directories are
created as required below the saved files directory so that, after each file has been saved, the
saved file's path name below the top of the saved files directory hierarchy is the same as the
portion of the file's path name below the test case’ s execution directory.

If adirectory isfound that matches one of the names, then its contents are transferred recursively.

When Distributed TETware is used, the processing described above is undertaken on each system
for whichaTET_SAVE_FI LES variable has been specified.

6.2.7 Test session interruption

You can send certain keyboard-generated signals to t cc in order to cause it to interrupt the
processing of an individual test case or of an entire test run.

When t cc receives a SI G NT signal, it aborts processing of the current test case. On a UNIX
system this signal can usually be generated by typing a control-C or DEL character on the
terminal wheret cc is running. On a Win32 system this signal is always generated by typing
control-C.

When t cc receivesa S| GQUI T signal (on a UNIX system) or a SI GBREAK signal (on a Win32
system), it aborts processing of the entire test run. On a UNIX system this signal can usually be
generated by typing a control-\ character on the terminal where t cc is running. On a Win32
system this signal is always generated by typing control-BREAK.

Users should be aware that the act of interrupting a test case can take some time to complete,
particularly when the test case itself does not immediately respond to the termination signal sent
by t cc or if there is a substantial amount of journal file or saved files processing to perform
when the test case terminates.

8. Thisisthe same directory name as that used for the directory on the local system in which the journal fileis placed.

Page 42 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

In addition, users should be aware that the use of test session interruption facilities on a Win32
system can have an adverse effect on the subsequent operation of the system. Refer to the
appendix entitled *‘ Implementation notes for TETware on Win32 systems’’ towards the end of
this guide for further details.

6.3 The Test Case Controller daemont ccd
6.3.1 Description

The Test Case Controller daemon (t ccd) isaserver that performs functions on behalf of the Test
Case Controller when Distributed TETware is used. As with all subsections describing
Distributed TETware servers, this subsection is not applicable to TETware-Lite.

t ccd must be started on each system (both local and remote) on which test cases are to be
processed, beforet cc isinvoked on the local system.

When you install Distributed TETware on a UNIX system, it is recommended that you should ask
your system administrator to arrange for t ccd to be started automatically as part of each
machine's startup procedure. When you install Distributed TETware on a Windows NT system,
you must arrange to start t ccd yourself by running the t ccd bootstrap programt ccdst art .
Details of how to start t ccd are presented in the section entitled *‘* Starting t ccd’ in the
TETware Installation Guide for each type of operating system.

A manual page describing the varioust ccd command-line options is presented at the end of this
guide.

6.3.2 t ccd versions and modes of operation

On a UNIX system it is possible to build several versions of t ccd from the source code; the
version that is built is determined by a decision that must be made at compile time. Two of the
versionsof t ccd are known asthe rc version and the inittab version. Therc versionisintended
to be started by an entry in one of the/ et c/ r ¢ system startup scripts, and the inittab versionis
intended to be started by an entry in the file / et c/ini ttab. The only difference between
these two versions is that the rc version puts itself in the background when invoked, and the
inittab version does not.

A third version of the Test Case Controller daemon may be built on systems that use the socket
network interface, which is suitable for use in conjunction with the i net d super-server which
runs on many UNIX systems. This version is known as the inetd version and is named
i n.t ccd in accordance with established conventions.

The rc and inittab versions of t ccd listen for requests from client processes, much like other
network service daemons. When a request is received, t ccd forks off a child copy of itself to
service the client’s requests and continues to listen for requests as before. The child t ccd
processes requests from the client and terminates automatically when it is no longer required.

The inetd version, i n. t ccd, operates slightly differently. i net d listens for client requests on
behalf of all the serversthat it knows about. When i net d receives arequest on the well-known
tcc port, i net d forks off a copy of itself which immediately executesin.tccd. in.tccd
then processes requests from the client and terminates automatically when it is no longer
required. A consequence of this is that thereisnoi n.t ccd permanently running on a UNIX
system; aninstance of i n. t ccd isonly invoked when actually requested from another system.

18th September 1998 Page 43
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

It is only possible to build a single version of t ccd on a Windows NT system. Of the three
versions of t ccd that may be run on a UNIX system, the version of t ccd that runs on a
Windows NT system most closely resembles the inetd version of t ccd described previously.
On a WindowsNT system, tccd is started on demand by a bootstrap program called
t ccdst art which performsafunction similar to that performed by i net d on aUNIX system.

A conseguence of the way in which t ccd operates is that a machine running t ccd can service
requests from more than one client once, since each client obtains its own copy of t ccd to use.

Since the different versions of the Test Case Controller daemon only differ in their operation on
startup, referencesto t ccd in the rest of this section and throughout this guide may be taken to
apply equally to all versionsof t ccd unless explicitly stated to the contrary.

6.3.3 t ccd user and group ID

By default, when t ccd is executed on a UNIX system, it attempts to change its user and group
IDs to those specified for the user t et in the system password database. Failure to change the
user or group ID istreated asfatal if t ccd isinvoked initially with administrative privilege (i.e.,
with a user or group ID of less than 100). t ccd then changes directory to the home directory of
theusert et and setsits HOVE environment variable to refer to that directory.

A different user name may be specified if t ccd isinvoked with the —u command-line option. If
t ccd isinvoked in this way, it performs al of these operations using the specified user name
instead of theuser t et .

When t ccd is executed on a Windows NT system, it does not attempt to change its user 1D but
instead runs with the ID of the user who starts it. In addition, if the HOVE environment variable
isnot defined, t ccd setsit to the name of the directory inwhicht ccd isinvoked.

6.3.4 tccdlogfile

When t ccd is executed, it connects its standard output and standard error streams to the file
/tnp/tccdl og onaUNIX system orto c: /tnp/tccdl og on a WindowsNT system. In
addition, t ccd connects its standard input to / dev/ nul I on a UNIX system or to nul on a
Windows NT system. If adifferent log file is specified by the -1 command-line option, t ccd
reconnects its standard output and error streams to that file as soon as possible. The result of this
is that test cases and other processes which may be executed by t ccd start execution with their
standard input, standard output and standard error streams connected to these files as well®.

All messages printed by t ccd to the log file include the process ID and atime stamp, so that it is
possible to determine the origin of a message when more than onet ccd executes on the same
machine. If a message cannot be printed to the log file for some reason, t ccd attempts to send
the message to / dev/ consol e (on a UNIX system) or con (on a Windows NT system) as a
last resort.

When the parent t ccd daemon (but not the inetd version of t ccd) starts, it prints a START
message to the log file.

9. If atest case or abuild or clean tool is executed with TET_OUTPUT_CAPTURE set to Tr ue, thent cc arranges for
t ccd to execute the tool with standard output and standard error streams connected to a different file. The contents
of thisfile are copied to the journal file when when the tool finishes execution.

Page 44 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

When t ccd receives the initial logon request from a client, it prints a message to the log file
indicating the origin of the message and which system ID has been assigned to the system.

6.3.5 Terminatingt ccd

Each child t ccd terminates automatically after its client process disconnects from it. The parent
t ccd onaUNIX system may be terminated by sending it a SI GTERMsignal.

6.4 The Test Case M anager

The Test Case Manager (TCM) is not a separate program but is instead part of each TETware
API.

Distinct versions of the C and C++ APIs are provided with TETware-Lite and Distributed
TETware, since the distributed versions provide support for remote and distributed testing,
whereas the Lite versions do not. However, the same versions of the other APIs are provided
with both TETware-Lite and Distributed TETware since these APIs do not provide support for
distributed testing.

The C and C++ TCMs are linked with the compiled user-supplied test code and the C AP library
to form an executable file. When a distributed test case is executed by Distributed TETware, the
TCMs on al the participating systems synchronise with each other at certain times during test
execution, so as to ensure that test case parts running on the various systems keep in step with
each other. Refer to the chapter entitled ‘* Test case synchronisation’’ elsewhere in this guide for
details of test case synchronisation.

The C and C++ APIs send diagnostic output to the journal file as test case manager messages. If
thisis not possible, each APl writes diagnostic output to the TCM’s standard error stream?©.

The Shell, Korn Shell and Perl TCMs are each sourced by the script containing the user-supplied
test code. These TCMs do not support distributed testing.

6.5 The Synchronisation daemont et syncd
6.5.1 Introduction

The Synchronisation daemon t et syncd provides support for distributed test case execution
when Distributed TETware is used. As with all subsections describing Distributed TETware
servers, this subsection is not applicable to TETware-Lite.

6.5.2 Description

t et syncd isaserver that runs on the local system®! and undertakes the processing of automatic
and user synchronisation requests. An automatic synchronisation request is generated by the Test
Case Manager, and a user synchronisation request is made when a test purpose makes calls to the
tet_renmsync() APl library routine.

10. By default the TCM’ s standard error stream is connected to thet ccd log file when Distributed TETware is used.
11. That is: the system on which t cc runs.

18th September 1998 Page 45
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

tetsyncd cannot be started interactively but is started for you when required by t cc.
t et syncd terminates automatically approximately 60 seconds after the last client process has
disconnected from it.

t et syncd sends diagnostic output to its standard error stream. This stream is inherited from
t cc; thus, diagnostics generated by t et syncd appear wherever t cc’s standard error stream is
directed.

6.6 The Execution Resultsdaemont et xr esd
6.6.1 Introduction

The Execution Results daemon t et xr esd provides support for test case execution when
Distributed TETware is used. As with all subsections describing Distributed TETware servers,
this subsection is not applicable to TETware-Lite.

6.6.2 Description

t et xresd is a server that runs on the local system and undertakes the processing of journal
output and test purpose results for API-conforming test cases. In addition, t et xr esd performs
certain administrative functions on the local system on behalf of processes running on remote
systems, mostly related to transfer save files processing.

tet xresd cannot be started interactively but is started for you when required by t cc.
t et xr esd terminates automatically approximately 60 seconds after the last client process has
disconnected from it.

t et xr esd sends diagnostic output to its standard error stream. This stream is inherited from
t cc; thus, diagnostics generated by t et xr esd appear wherever t cc’s standard error stream is
directed.

Page 46 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

7. Test case synchronisation

7.1 Introduction

This chapter describes how systems synchronise with each other when Distributed TETware is
used, and explains how to interpret diagnostic messages which are generated when
synchronisation requests do not complete successfully.

The facilities described in this chapter are not available when TETware-Lite is used.

7.2 Synchronisation request concepts

7.2.1 Request types

There are two types of synchronisation performed by Distributed TETware processes. Automatic
synchronisation requests are generated when Test Case Managers synchronise with each other at
certain pre-defined points during test case execution. User synchronisation requests are generated
when different parts of adistributed test purpose call thet et _rensync() API library routine.

7.2.2 Request parameters

Each synchronisation request is accompanied by a sync point number, a system 1D list, async
vote and an optional timeout. In addition, arequest may include an indication that the requesting
process wishes to send or receive sync message data during the synchronisation operation.

Processes on systems which want to synchronise with each other send requests to the TETware
Synchronisation daemon (t et syncd). t et syncd waits until al systems have submitted their
requests and then notifies each participating process of the result.

The value of the sync vote specified in a synchronisation request can be either yes or no.
t et syncd notifies al participating processes of how each system voted in each request.

If a process specifies a timeout when making a request, then t et syncd starts a per-process
timeout as soon as the request is received. Each per-process timeout is reset to itsinitial value as
each subsequent request is received from other participating systems,; however, if the timeout for
any process expires before all systems have submitted their requests then the synchronisation is
considered to have failed.

It is possible for one system making a synchronisation request to send sync message data with
the request. If the synchronisation is successful, then t et syncd returns this data to other
participating systems which have indicated willingness to receive such data when synchronisation
is complete.

7.2.3 Sync events

t et syncd defines a new sync event when the first system makes a request to synchronise to a
particular sync point with a group of other systems. A sync event is considered to have
completed as soon as one of the following conditions are met:

1. All of the systems that are expected to synchronise have done so.
2. One of the systems that has synchronised times out after having done so.

3. A process that has made a synchronisation request disconnects fromt et syncd before al
the other systems that are expected to synchronise have done so.

18th September 1998 Page 47
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

When the event completes, all processes that have participated in the event are notified of the
result. An event is considered to have succeeded if all systems that are expected to participate in
the event submit requests with a yes vote. If a process on any of the participating systems
submits a no vote, times out or disconnects from t et syncd before the event completes, then
the event is considered to have failed.

7.2.4 Sync states

t et syncd maintains a set of sync states for each sync event. One sync state in this set is
maintained for each system that is expected to participate in async event.

The sync state of asystem isindicated by one of the following mnemonics:
SYNC- YES The system has synchronised with ayes sync vote.
SYNC- NO The system has synchronised with ano vote.

NOT- SYNCED The system has not yet participated in this sync event.

TI MED- OUT The system has synchronised but the associated timeout has expired before the
sync event completed.

DEAD The system has synchronised but the participating process has disconnected from
t et syncd before the sync event completed.

These mnemonics are used in diagnostic messages that relate to synchronisation request failures
and other unexpected synchronisation conditions.

7.2.5 With what to synchronise?

As indicated above, when a TETware process makes a synchronisation request, it specifies a list
of system |IDs with which is wishes to synchronise. This means that any one TETware process
running on a particular system can participate in a sync event on behalf of that system. It is not
possible for a process to use TETware synchronisation facilities to synchronise with a particular
process on a hamed system, or for processes on the same system to use these facilities to
synchronise with each other.*?

7.3 Automatic synchronisation requests

7.3.1 Description

Automatic synchronisation requests are generated by the TETware Test Case Manager, and by
the APl when a remote executed process is started. The list of systems that are expected to
participate in automatic sync events for each distributed test case is defined before the first
request is made. Each automatic synchronisation request is accompanied by a sync 1D which
identifies this list of systems. Processes which make automatic synchronisation requests do not
send or receive sync message data.

12. Note that the term system refersto alogical system ID, not to a physical machine. Therefore, it is possible for two
or more co-operating processes with different system IDs running on the same physical machine to use TETware
synchronisation facilities to synchronise with each other.

Page 48 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

The following subsections describe the circumstances under which automatic synchronisation
requests are made, and the parameters that are used in each type of request.

7.3.2 Test case manager synchronisation

When a distributed test case is executed, the TCMs on each participating system synchronise with
each other during certain stages of test case processing. The sync point number associated with
each request is used to identify which stage is about to begin. The timeout specified with each
request depends on which stage is about to begin.

The following table lists these stages, the sync point numbers that are used to identify them and
the timeouts that are used:

Stagein test case processing Sync point number 3 (‘;::r;o(;JSI)
At TCM startup time 1 60
Before the startup function (if any) is called 2 60
At the start of each invocable component (ICno + 1) 216 60
At the start of each test purpose ((ICno + 1) 021) + (TPno 02) 60
At the end of each test purpose ((ICno + 1) 02%) + (TPno 02) + 1 600
Before the cleanup function (if any) is called ((ICcount + 1) [126) + 2 60

In this table, 1Cno is the number of the invocable component being processed, TPno is the
number of the test purpose being processed and |Ccount is the number of invocable components
in the test case.

Normally, TCMs on each participating system specify a yes sync vote in each request.
However, if a TCM on one system is about to execute atest purpose which has been deleted (by a
previous call to t et _del et e() in that test case), it instead specifies a no sync vote in the
request made at test purpose start. When all the other TCMs see this no vote, they interpret this
to mean that the test purpose is deleted and do not execute it.

In addition, if the consolidated result of atest purpose has an action code of Abort , the TCM on
the master system'* synchronisises to the end of the last test purpose in the test case using a no
vote. This causesall the other TCMsto perform the following actions:

i. Any remaining test purposesin the current invocable component are deleted.

ii. No further invocable components are executed, but test case cleanup processing is
performed.

13. It will be seen that the way that automatic sync point numbers are calculated imposes a limit of (25— 1) test
purposes per invocable component and (2% — 3) invocable components per test case.

14. That is: the first system in the list specified with the associated : r enpt e: or: di stri but ed: directive.

18th September 1998 Page 49
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

7.3.3 Remote executed process synchronisation

When a test case starts a remote process by calling t et _renmexec(), the remote process
synchronises with the test case that calledt et _renexec() . Thisisto ensure that the test case
waits until the remote process has started up before continuing execution. Sync point number 1
and ayes sync vote are used in this request and the timeout is set to 60 seconds.

If the remote system’st ccd is unable to execute the process for some reason, it performs the
initial synchronisation operation on behalf of that remote process but instead specifies ano vote
in the request.

The way that synchronisation with remote executed processes is implemented makes it possible
for atest case to start more than one process on the same remote system.

7.3.4 Error handling

There are two classes of error that can occur during automatic synchronisation requests, as
follows:

— therequest fails as aresult of some problem that occursin the APl orint et syncd; these
are described below as synchronisation request failures

— some problem is detected with one of the other systems which participated (or should have
participated) in the sync event; these are described below as synchronisation errors

If an automatic synchronisation request failure occurs, then the TCM emits a single diagnostic
indicating which automatic synchronisation request was being attempted and the cause of the
failure.

If a problem is detected with one of the other systems involved in a sync event, then the TCM
emits one diagnostic for each affected system. Each diagnostic indicates which automatic
synchronisation request was being attempted and system ID and sync state of the affected system.

7.3.5 Example error messages

In the following examples, suppose that parts of a distributed test case are being executed on
systems 0, 1 and 2.

7.3.5.1 Example 1

Suppose that a test case could not be started on system 1 for some reason. The TCM on (say)
system O will time out waiting for system 1 to synchronise at TCM startup time, and will generate
the following message:

system O, reply code = ER TIMEDQUT: initial sync error, \
sysid = 1, state = NOT- SYNCED

The TCM that started successfully on system 2 will generate the following message:

system 2, reply code = ER SYNCERR initial sync error, \
sysid = 0, state = Tl MED- OQUT

system 2, reply code = ER SYNCERR initial sync error, \
sysid = 1, state = NOT- SYNCED

Page 50 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

7.3.5.2 Example 2

If the TCMs on systems 1 and 2 synchronise to the end of (say) test purpose 4 and the TCM on
system 1 times out before the TCM on system O reaches the same point, the TCM on system 1
will generate the following message:

system 1, reply code = ER TI MEDQUT: Auto Sync error at end of TP 4, \
sysid = 0, state = NOT- SYNCED

and the TCM on system 2 will generate the following message:

system 2, reply code = ER SYNCERR Auto Sync error at end of TP 4, \
sysid = 0, state = NOT- SYNCED

system 2, reply code = ER SYNCERR Auto Sync error at end of TP 4, \
sysid = 1, state = Tl MED- OQUT

At this point, the sync event is considered to have completed.

When the TCM on system 0 finally makes its synchronisation request at the end of test purpose 4,
it will generate the following message:

system 0, reply code = ER DONE: Auto Sync failed at end of TP 4

This indicates that the TCM on system 0 has missed the sync event because the event has already
completed.

7.4 User synchronisation requests

7.4.1 Description

A user synchronisation request is generated when atest purpose in a distributed test case calls the
tet _remsync() API library routine'®. The sync point number, system ID list, vote and
timeout are specified in each call. In addition to these parameters, a process can send, or indicate
willingness to receive, sync message data. When this is done and all participating systems use
the same sync point number, message data sent by the sending system may be returned to the
receiving systems on completion of the event.

t et syncd defines a separate sequence of user sync events for each distinct system ID list
specified int et _renmsync() cals made by test purposes in a particular distributed test case.
Thus, a user sync event will only be successful if the test purposes on al systems that are
expected to participate in the event all specify the same system ID listintheirt et _rensync()
calls.

User sync events have lower precedence than automatic sync events. Therefore, if the test
purpose on one system returns control to the TCM while test purposes on other systems are
waiting on a user sync event that includes that system, the user sync event is considered to have
completed unsuccessfully and participating processes are notified accordingly.

15.The tet _rensync() function replaces the tet _sync() and tet_nsync() functions that have been
implemented in previous DTET and dTET2 releases. In order to provide backward compatibility with existing test
suites, t et _sync() andtet_nsync() arestill supported in TETware but these functions are now marked ‘‘to
be withdrawn’’.

18th September 1998 Page 51
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

7.4.2 Error handling

Synchronisation request failures and synchronisation errors for user synchronisation requests are
defined in the same way as for automatic synchronisation requests. In addition, if one or more of
the participating systems specifiesano vote, this causes afailure indication on all systems.

By default, the APl prints a test case manager message to the journal file when a user
synchronisation request is unsuccessful. Each diagnostic indicates the sync point number of the
request that was unsuccessful and the system I1Ds and sync states of the systems which failed to
synchronise or timed out. The formats of diagnostics printed to the journal file are different from
those generated for unsuccessful automatic synchronisation requests. Examples of the formats
that may be used to report an unsuccessful user synchronisation regquest are presented in the next
section.

However, it is possible for the test suite author to arrange for a different action to be taken when a
user synchronisation request is unsuccessful. When this is done, the default action is not taken
and the API does not generate journal messages of the type described in the next section.

7.4.3 Example error messages

The following subsections contain examples of the error messages that are generated by the API’s
default error handler routine. These messages are not generated when a user-supplied error
handler routine is specified.

In the following examples, suppose that parts of a distributed test case are being executed on
systems 0, 1 and 2. Suppose that sync point number 12 is being used in each case and that the
timeout is set to 30 seconds.

7.4.3.1 Example 1l

Suppose the test purpose on system 0 expects to synchronise with the test purpose on system 1,
but the test purpose on system 1 returns control to the TCM without making a synchronisation
request. The API on system O will generate the following messages:

system 0: sync operation failed, syncptno = 12, \
other systemdid not sync or tinmed out
system 0: system = 1, state = NOT- SYNCED

7.4.3.2 Example 2

Suppose that al the systems expect to synchronise with each other but that system 1 times out
before system O reaches the sync point. The APl on system 1 will generate the following

messages:

system 1: sync operation failed, syncptno = 12, \
request timed out after waittime of 30 seconds

system 1: system= 0, state NOT- SYNCED

system 1: system= 2, state SYNC- YES

and the API on system 2 will generate the following messages:

Page 52 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

system 2: sync operation failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out
system 2: system
system 2: system

NOT- SYNCED
TI VED- QUT

0, state
1, state

At this point the event is to considered to have completed.

When the test purpose on system O finally makes its synchronisation request, the request will fail
because the associated event has already happened. The APl on system O will generate the
following message:

system 0: sync operation failed, syncptno = 12, event already happened

This indicates that the part of the test purpose on system 0 has missed the sync event because the
event has aready completed.

7.4.3.3 Example 3

Suppose that the test case on system 1 terminates unexpectedly before the sync event completes.
The API on system 0 will generate the following messages:

system 0: sync operation failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out
system 0: system= 1, state
system 0: system= 2, state

DEAD
SYNC- YES

and the API on system 2 will generate the following messages:

system 2: sync operation failed, syncptno = 12, \
one or nore of the other systens did not sync \
or timed out

system 2: system= 0, state = SYNC YES
system 2: system= 1, state = DEAD
18th September 1998 Page 53

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 54 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

8. Interacting with test casesin Distributed TETware

8.1 Introduction

When a test case or tool is run under the control of the Lite version of t cc it inherits standard
input, standard output and standard error streams from t cc (provided output capture mode is not
in effect). This means that it is possible to interact with test cases and tools when t cc is run
from aterminal.

By contrast, when atest case or tool is run under the control of the Distributed version of t cc, its
standard input is connected to the null device and its standard output and standard error are
connected to the t ccd log file. This means that it is not possible to interact with test cases or
tools when they are executed by t cc in the normal way. Instead it is necessary to instruct t cc
to execute each test case under the control of atool that enables input and output to be directed
from/to aterminal.

This chapter describes such atool. Thistool is a shell script and its nameistet _start. Its
function is to execute a test case in its own window, so as to enable the user to interact with the
test case in the normal way. Althought et _start is primarily designed as an exec toal, it is
possible to use it as afront end to other tools aswell.

Information about the way in which t cc processes an exec tool is presented in the section
entitled ** Execute mode processing’’ in the TETware Programmers Guide.

8.2 System requirements
8.2.1 UNIX systems

On aUNIX system, t et _st art runsthe test case in a new xt er mwindow. This means that
an xt er mclient (or equivalent) must be available on each machine where test cases are to be run
under control of t et _start. By default the window is displayed on the machine’'s graphics
display (if it has one). However, it is not necessary for the machine to have a graphics display
since tet _start can be instructed to use any available X-terminal or workstation that is
running an X server.

8.2.2 Win32 systems

On a Win32 system, tet_start runs the test case in a window created by the st art

command that is part of the MKS Toolkit. This means that the MKS Toolkit must be installed on
each machine where test cases are to be run under control of t et _start. OnaWin32 system,
tet _start awaysdisplaysthe window on the system’s monitor.

8.3 Usingtet start

You can tell t cc to execute each test case under the control of t et _start by setting the
TET_EXEC_TOOL variable in the execute mode configuration. For example:

TET_EXEC TOOL=tet-root/ bi n/tet start
(You don't need to use the full path name if your search PATH includes tet-root/ bi n.)

Then, when you uset cc to process a scenario in execute mode, t et _st art runs each test case
in the scenario in its own window. The window’s title includes the name of the test case being
executed and the system number. Any output generated by the test case is displayed in the

18th September 1998 Page 55
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

window and characters typed in the window are made available to the test case. When the test
caseexits, t et _start printsthe test case’s exit status followed by a prompt. When you type a
RETURN, t et st art terminates, the window closes and control isreturnedtot cc.

Youcanuset et _st art to execute another exec tool. This capability can be useful if you want
to use a debugger to operate on a remote or distributed test case. You can use the
TET_EXEC FI LE configuration variable to specify the other exec tool. For example:

TET_EXEC_TOOL=tet-root/ bi n/tet _start
TET_EXEC_FI LE=other-exec-tool

If you need to pass arguments to the other exec tool, you can specify these on the end of the
assignment to TET_EXEC FI LE. For example:

TET_EXEC_TOOL=tet-root/ bi n/tet _start
TET_EXEC_FI LE=other-exec-tool args ...

Further information about the way that tcc processes the TET EXEC TOOL and
TET_EXEC FI LE configuration variables is presented in the sections entitled ‘‘ Execute mode
processing’’ and ‘‘Configuration variables which modify TETware's operation’’, both in the
TETware Programmers Guide.

8.4 Customisingt et start
8.4.1 Introduction

Y ou can use certain configuration variables to pass additional informationtot et _start. You
can define these variables in the configuration for the current mode of operation. For example, if
you need to define any of these variableswhen you uset et _st art asan exec tool, you should
define the variables in the execute mode configuration.

If you are using Distributed TETware to process remote or distributed test cases on several
systems, it may be necessary to specify different values of these variables in the configurations
for the different systems. Thisis particularly likely if the machines on which the systems reside
are of different types. There is a complex relationship between variables defined on the local
system and variables defined on remote systems. This relationship is described in the section
entitled “* Setting configuration variables on local and remote systems when using Distributed
TETware’’ elsewhere in this guide. Further details are presented in the section entitled
‘*Configuration variable processing in Distributed TETware’ in the TETware Programmers
Guide.

The variables that may be used to customise tet start are described in the following
subsections.

8.4.2 UNIX systems

8.4.2.1 Specifying which xt er mcommand to use

On a UNIX system, t et _start uses xt er mto create the new window. t et _start looks
for xt er min alist of standard places, followed by directories specified in the PATH environment
variable. Whent et st art isused on aremote system it inherits PATH fromt ccd. On most
systems it is unlikely that this value of PATH will include the directory which contains xt er m
so searching a list of standard places increases the chance that t et _st art will be able to find
Xt er munaided.

Page 56 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

If necessary, you can use the TET XTERM configuration variable to change the name of the
xt er mprogram. Some reasons why you might need to do this include:

— when you need to specify the location of xt er mexplicitly;

— when xterm is caled something else on your system (for example: ai xterm
col or _xt erm hpt er metc.)

— when you want to pass additional argumentsto xt er m

For example, to instruct xt er mto use the 8x13 font instead of the default, you might make the
following assignment:

TET_XTERM=/ usr/ X11R6/ bi n/ xterm -font 8x13

As a more complicated example, consider a distributed test case running on severa systems.
Suppose that remote system 1 is running a version of SVR4 where xt er mneeds to access shared
libraries which cannot be found using the default library search path. In this case you might
make the following assignment in the execute mode configuration on remote system 1.

TET_XTERMELD LI BRARY_PATH=: /usr/ X/ I'ib /usr/ X/ bin/xterm

Or you could make the following assignment in the execute mode configuration file on the local
16.
system™:

TET_REMDO1_TET_XTERMELD LI BRARY PATH=: /usr/ X/ lib /usr/X bin/xterm

8.4.2.2 Directing the new window to a particular display

By default, xt er mconnects to the X server specified by the DI SPLAY environment variable.
tet start checksto seeif thereisa DI SPLAY variable in its environment and, if there is not,
it supplies a default value of DI SPLAY=uni x: 0. 0. This value instructs xt er mto connect to
the X server running on adirectly connected monitor.

You can use the TET_XTERM DI SPLAY configuration variable to supply an explicit value for
the DI SPLAY environment variable that is inherited by the xt er mcommand.

For example, if you are running parts of a distributed test case on severa systems and you want
all the windows to appear on your workstation's monitor, you might make the following
assignment in the execute mode configuration file on the local system:

TET_XTERM DI SPLAY=frodo: 0.0
(assuming that your workstation iscalled f r odo).

It should be noted that a value of TET_XTERM DI SPLAY is aways required for each remote
system on whicht et _st art isto be run if that system does not have an X server running on a
directly connected monitor.

16. That is: the system on which t cc runs.

18th September 1998 Page 57
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

8.4.3 Win32 systems

8.4.3.1 Specifying thelocation of thest art command

OnaWin32 system,t et _st art usesthe MKSst art command to create the new window. If
the ROOTDI R environment variable is set, t et _st art looks for the st art command in the
$ROOTDI R/ nksnt directory; otherwise in the c: / mksnt directory. If the command cannot
be found using this path name, it is searched for using the PATH environment variable.'’

If necessary, you can use the TET_START configuration variable to specify an explicit location
of the MKS st art command.

8.5 Application notes
8.5.1 General

1. You must not enable output capture mode if you want test case output to appear in the
window that is created by tet _start. That is if you specify a vaue for
TET_OUTPUT_CAPTURE in the configuration for the current mode of operation, be sure
tosetitto Fal se.

2. If you use a debugger to operate on part of distributed test case and you set a breakpoint in
atest purpose function or a startup or cleanup function, you should be aware of the impact
this can have on the timeouts associated with automatic sync points. In particular, if you
leave a test case part waiting at a break point for any length of time it is likely that the
automatic sync point at the end of the corresponding function on the other system(s) will
time out.

Information about automatic sync points and the timeouts associated them is presented in
the chapter entitled ** Test case synchronisation’” elsewherein this guide.

3. InDistributed TETware, diagnostic output fromt et _st art itself and the commands that
it executes usually appearsinthet ccd log file on each system.

4. Theexit statusof t et _st art istaken from the exit status of xt er m(on a UNIX system)
or start (on a Win32 system). Usually this is zero, irrespective of the executed test
case’ s exit status. It should be noted that when an exec tool is used, the exit status reported
by t cc onthe TC End line in the journa is the exit status of the exec tool and not of the
test case.

8.5.2 UNIX systems

1. If you resize awindow, all processes running in the window receive a SI GA NCH signal.
The TCM catches all the signals it can and so it terminates when it receives this signal. In
order to overcome thisit is necessary to tell the TCM to leave the SI GW NCH signal alone
by using the TET_SI G_LEAVE configuration variable.

17. It is possible that a Windows 95 command of the same name might be found when PATH is used; see ‘* Application
notes'’ later in this chapter.

Page 58 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

For example, if SI GW NCH has the value 28 on your system, you should make the
following assignment in the execute mode configuration:

TET_SI G LEAVE=28

Further information about this configuration variable is presented in sections entitled
““Insulating from the test environment’” in each of the chapters in the TETware
Programmers Guide which describes an API.

8.5.3 Win32 systems

1. If you use the TET_START configuration variable to specify an aternative name for the
start command, you should use/ (forward slash) as the directory separator character in
the path name. The results are undefined if the value of TET _START contains a \
(backslash) character.

2. Most of the TETware TCMs do not trap keyboard signals on Win32 systems. So, if you
type a control-C or control-BREAK in awindow in which atest caseisrunning, it islikely
that the test case will terminate without generating a result. Refer to the appendix entitled
“‘Implementation notes for TETware on Win32 systems'’ in this guide for further details.

3. Users of Windows 95 systems should be aware that if t et _st art cannot find the MKS
start command and the TET_START configuration variable is not set, it might try and
use the Windows95 start command instead. To avoid this possibility it is
recommended that TET _START should always be set on a Windows 95 system.

18th September 1998 Page 59
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 60 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

APPENDICES

18th September 1998 Page 61
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 62 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

A. TheTETware end-user licence

+++++++++++++HH+ TET END USER LICENCE ++++++++++++ -+ +++++++

BY OPENING THE PACKAGE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT.
IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL
THE PRODUCT AND RETURN IT TO THE PLACE OF PURCHASE FOR A FULL REFUND.

TETWARE RELEASE 3.3 END USER LICENCE
REDISTRIBUTION NOT PERMITTED

This Agreement has two parts, applicable to the distributions as follows:
A. Freebinary evaluation copies — valid for 90 days, full functionality — no warranty.
B. Freebinary restricted versions — no warranty, limited functionality.

C. Licenced versions — full functionality, warranty fitness as described in documentation, includes
source, binary and annual support.

PART | (A & B above) - TERMS APPLICABLE WHEN LICENCE FEESNOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE).

GRANT.
X/Open grants you a non-exclusive licence to use the Software free of charge if

a. you are astudent, faculty member or staff member of an educational institution (K-12, junior college,
college or library) or an employee of an organisation which meets X/Open'’s criteria for a charitable
non-profit organisation; or

b. your use of the Software is for the purpose of evaluating whether to purchase an ongoing licence to
the Software.

The evaluation period for use by or on behalf of a commercial entity is limited to 90 days; evaluation use
by others is not subject to this 90 day limit. Government agencies (other than public libraries) are not
considered educational or charitable non-profit organisations for purposes of this Agreement. If you are
using the Software free of charge, you are not entitled to hard-copy documentation, support or telephone
assistance. If you fit within the description above, you may use the Software for any purpose and without
fee.

DISCLAIMER OF WARRANTY.
Free of charge Software isprovided onan ‘*AS IS’ basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
X/OPEN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

18th September 1998 Page 63
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

PART Il (C above) - TERMS APPLICABLE WHEN LICENCE FEES PAID.

GRANT.

Subject to payment of applicable licence fees, X/Open grants to you a non-exclusive licence to use the
Software and accompanying documentation (** Documentation’’) as described below.

Copyright 0 1996,1997 X/Open Company Ltd.
Copyright 0 1998 The Open Group

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated
as directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted. Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open.
Distribution of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is permitted subject to the
following conditions:

— this copyright notice isincluded unchanged with any binary distribution;
— the company distributing binary versions notifies X/Open;

— the company distributing binary versions holds an annual TET support agreement in effect with
X/Open for the period the product is being sold, or a one off binary distribution fee equal to four years
annual support is paid.

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

Portions of thiswork contain code and documentation derived from other versions of the Test Environment
Toolkit, which contain the following copyright notices:

Copyright 0 1990,1992 Open Software Foundation

Copyright 0 1990,1992 Unix International

Copyright [0 1990,1992 X/Open Company Ltd.

Copyright [0 1991 Hewlett-Packard Co.

Copyright O 1993 Information-Technology Promotion Agency, Japan
Copyright 00 1993 SunSoft, Inc.

Copyright [0 1993 UNIX System Laboratories, Inc., asubsidiary of Novell, Inc.
Copyright 0 1994,1995 Uni Soft Ltd.

The unmodified source code of those works is freely available from ft p. xopen. or g. The modified
code contained in TETware restricts the usage of that code as per this licence.

L e e S

Page 64 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

B. TETwaredirectory structure

The following diagram illustrates the directory structure used by TETware. Each directory level
is represented by a level of indentation. Directory names are followed by a/ character. Some
directories and files shown here are part of the TETware distribution, whereas others are part of
the user-supplied test suites or are created in the course of TETware' s operation.

The suffixes shown in this diagram are the ones that are used on UNIX systems. On Win32
systems, object files (. o files) have the suffix . obj , archive library files (. a files) have the
suffix . | i b and executable files have the suffix . exe. Other suffixes shown here are the same
on both systems.

The structure shown here is the complete one used when a source code distribution of Distributed
TETware is built to support all of the available options. Therefore not al of the directories and
files shown here are present in TETware-Lite or if abinary distribution isinstalled.

tet-root/
bi n/
tcc
tccdorin.tccdo
tccdstarto
tet syncdo
t et xresdo
other TETware executables

contri b/

directories containing user-contributed software
doc/

TETware documentation
i nc/

tet 3/

TETware API header files

directories containing compatibility-mode links to API header files§
lib/

ksh/

t et api . ksh
tcm ksh

perl/

api . pl*
tcm pl*

0 Not present in TETware-Lite.

§ Only on UNIX systems where TETware has been installed with an option which provides source code compatibility
with for test suites written for use with previous TET versions.

* Only on systems which support Perl.

18th September 1998 Page 65
The Open Group

Test Environment Toolkit
TETware User Guide

t et 3/

Ctcm ot
Ctcnchil d. ot
Cthrtcm ott
Cthrtcnchil d. ott
i bapi.a

i bthrapi.at
tcmo
tcecnchild. o
tcnrem od
thrtcm ot
thrtcnchil d. ot

xpg3sh/

tetapi.sh
tcm sh

TET3-UG-1.2

directories containing compatibility-mode links to API object and library files§

src/
defi nes/

platform-specific makefile definition files

ksh/

Korn Shell API source tree
perl/

Perl APl sourcetree
tet 3/

TETware C sourcetree
xpg3sh/

Shell API sourcetree

systensd
systens. equi vo

test-suite-root/

tet code
tet_scen
tetbuild. cfg
tetclean.cfg
tetdist.cfg
tetexec.cfg
resul ts/

nnnn[bec]/
REMOTENNn/ 0

T Only on systems which support C++.
T Only on systems which support threads.

Page 66

The Open Group

18th September 1998

TET3-UG-1.2 Test Environment Toolkit

TETware User Guide
transfer savefiles
j our nal
other resultsfiles
tet _tnp_dir/
nnnnnx/
test case files and directories
18th September 1998 Page 67

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 68 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

C. TETwarejournal lines

This appendix describes the various journal lines that may appear in a TETware journa file.

Test Case Controller Start
0| version time date| who

This message is generated by t cc at the beginning of each TCC execution. The
parameters include the version of t cc used, the time at which TCC execution started
and the current date. The message area contains information about who ran the test
and liststhet cc command-line that was used.

Local System Information
5| sysname nodename release version machine| text

This message follows the Test Case Controller Start message. On a UNIX system
the parameters are obtained from the information returned by the unane() system
cal. On aWin32 system the parameters identify the name of the operating system,
the computer name, the operating system’s major and minor version numbers and the
processor type. In Distributed TETware this information relates to the local system.

Test Case Start
10| activity testcase time| IClist
A test case start message is generated by t cc for each test case executed in a
scenario. The parameters are the sequence number of this TCC activity, the path
name of the test case and the time the test was started. If the corresponding scenario

line contains a list of invocable components to be executed, then that IC list is
included in the text area of the message.

Test Case Manager Start
15| activity version ICcount| text

The TCM writes this message during its initialisation. The parameters include the
sequence number of this TCC activity, the version of the TCM being used and the
number of invocable components to be executed.

L ocal System Configuration Start
20| pathname mode| text

Configuration start messages are placed in the journa by t cc at test session startup
for each of the selected modes of operation. Parameters are the path name of the
configuration file being referenced and the mode to which this configuration
information applies.

Remote System Configuration Start
20| nnn mode| text

Where nnn describes the remote system ID instead of the path name of the
configuration file.

18th September 1998 Page 69
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Configuration Variable Setting
30] | variable=value

A configuration variable setting line is written to the journal by t cc for each
variable set for the current mode. The message area indicates the name of the
configuration variable and the value to which it was set.

Configuration End
40| | text

A configuration end message is placed in the journal by t cc to indicate the end of
configuration options for a particular mode.

Test Case Controller Message
50] | text

t cc generates messages when it encounters execution problems. The message area
gives an indication of the nature of the problem.

Scenario I nformation
70] | text

t cc generates a scenario information line when it encounters a journal message in
the scenario file being processed. The text of the message is included in the message
area.

Test CaseEnd
80| activity status time| text

A test case end message is generated by tcc after each test case completes
execution. The parameters are the TCC activity number, the time the execution
completed and an indication of the TCM’s completion status.

User Abort
90| time| text

t cc generates an operator abort message when its execution is interrupted by the
user.

Captured Output
100] activity| text

t cc generates a captured message for each line of output captured when the output
capture mode is enabled. The parameter isthe TCC activity counter.

Build Start
110] activity testcase time| text

A build start message is generated by t cc prior to build tool execution. The
parameters are the TCC activity counter, the path name of the test case being built
and the time the build started.

Page 70 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

Build End
130] activity status time| text

A build end message is generated by t cc upon completion of build tool execution.
It contains the TCC activity number, an indication of the completion status of the
build tool and the time of that completion.

Test Purpose Start
200| activity TPnumber time| text

The TCM generates a test purpose start message for each test purpose executed. The
message contains the TCC activity number, the test purpose number and the time
execution started.

Test Purpose Result
220] activity TPnumber result time| result-name

The TCM generates a result message for each test purpose executed. Parameters for
this message are the TCC activity number, the test purpose number, the result code
and the time execution completed.

Clean Start
300| activity testcase time| text

t cc writes a clean start message to the journal before invoking the clean tool for a
given test case.

Clean End
320| activity status time| text

After a clean operation on a test case is complete, t cc records the TCC activity
number, the completion status and the time at which the operation was completed.

Invocable Component Start
400| activity ICnumber TPcount time| text

The TCM generates an invocable component start message for each invocable
component that is executed during a test case run. This message contains the TCC
activity counter, the invocable component number, number of test purposes to be
executed and the time invocable component execution started.

I nvocable Component End
410| activity ICnumber TPcount time| text

The TCM generates an invocable component end message for each invocable
component that is completed. The message contains the TCC activity counter, the
invocable component number, the number of test purposes actually executed and the
time of the invocable component completion.

Test Case Manager Message

510] activity| text

If the TCM or API encounters a problem, a TCM message will be written to the
journal. The parameter indicates the TCC activity counter and the message area
contains a brief description of the problem.

18th September 1998 Page 71
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Test Case Information
520] activity TPnumber context block sequence| text
When atest case outputs information to the execution resultsfile it is recorded as test
case information. The message specified by the test case is in the text area of this
line.
Parallel Start
600]| count| text
The scenariofilepar al | el directive start marker.

Parallel End
620] | text
The scenariofilepar al | el directive end marker.

Implied Sequential Start
630] | text
Marks the start of an Implied Sequential directive generated by t cc when in ETET
compatibility mode.
Implied Sequential End
640] | text
Marks the end of an Implied Sequential directive generated by t cc when in ETET
compatibility mode.
Repeat Start
700]| count| text

The scenario filer epeat directive start marker, where count is the number of times
the test cases within the scope of ther epeat directive areto be repeated.

Repeat End
720]| | text
The scenariofiler epeat directive end marker.

Timed Loop Start
730]| seconds| text

The scenario file ti med_| oop directive start marker. Execution of test cases
within the scope of this directive is repeated until the specified number of seconds
have el apsed.

Timed Loop End
740]| | text
The scenariofilet i med_| oop directive end marker.

Page 72 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

Random Start
750] | text
The scenario filer andomdirective start marker.

Random End
760| | text
The scenario filer andomdirective end marker.

Remote Start
800[nnn,, nnn,, .. .| text

The scenario file r enot e directive start marker. nnn,, nnn, etc. are the system IDs
specified with this directive.

Remote End

820| | text
The scenario filer enpt e directive end marker.

Distributed Start
830[nnn,, nnn,, .. .| text

The scenario file di stri but ed directive start marker. nnn;, nnn, etc. are the
system | Ds specified with this directive.

Distributed End

840| | text
The scenario filedi st ri but ed directive end marker.

Test Case Controller End
900| time| text

When t cc finishes processing the scenario, it generates a TCC end message. This
message indicates the time execution completed.

18th September 1998 Page 73
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 74 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

D. TETware demonstration journal file

D.1 Introduction

Instructions on how to run the Distributed TETware demonstration test suite are presented in one
of the sections in the chapter entitled ** Running the TETware demonstrations’’ elsewhere in this
guide. This appendix contains an example journal file that might be generated when this test
suite is built, executed and cleaned by t cc on a pair of UNIX systems.

D.2 Examplejournal file

0] 3.0b 20: 09: 33 19961128| User: tet (105) TCC Start, \
Conmand |ine: tcc -bec denp

20|/ home/tet/tet3/deno/tetbuild.cfg 0] Config Start

30| | TET_BU LD_TOOL=reke

30| | TET_BUI LD_FI LE=-f nekefile

30| | TET_QUTPUT_CAPTURE=TT ue

30| | TET_API _COWPLI ANT=Fal se

30| | TET_PASS_TC_NAME=Tr ue

30| | TET_VERSI ON=3. 0Ob

40| | Config End

20|/ honme/tet/tet 3/ denp/tetexec.cfg 1| Config Start

30| | TET_QUTPUT_CAPTURE=Fal se

30| | TET_EXEC | N_PLACE=Fal se

30| | TET_API _COWPLI ANT=Tr ue

30| | TET_PASS_TC NAME=Fal se

30| | TET_VERSI ON=3. Ob

40| | Config End

20|/ home/tet/tet 3/ deno/tetcl ean.cfg 2| Config Start

30| | TET_CLEAN_TOOL=rm

30| | TET_CLEAN_FI LE=-f

30| | TET_QUTPUT_CAPTURE=TT ue

30| | TET_API _COWPLI ANT=Fal se

30| | TET_PASS_TC_NAME=Tr ue

30| | TET_VERSI ON=3. 0Ob

40| | Config End

20|/ honme/tet/tet3/deno/tetdist.cfg 3| Config Start

30| | TET_REMDOO_TET_ROOT=/ hone/ tet/tet3

30| | TET_REMDOO_TET_SUI TE_ROOT=/ hone/tet/tet3

30| | TET_REMDOO_TET_TSROOT=/ hone/tet/t et 3/ denmo

30| | TET_REMDOO_TET _TMP_DI R=/ hone/tet/tet3/denmo/tet _tnp_dir

30| | TET_REMDO1_TET_ROOT=/ hone/ t et

30| | TET_REMDO1_TET_TSROOT=/ hone/t et/ deno

30| | TET_REMDO1_TET_TMP_DI R=/ hone/tet/denmp/tet _tnp_dir

40| | Config End

20| renmote_001 O| Config Start

30| | TET_BU LD_TOOL=reke

30| | TET_BUI LD_FI LE=-f nekefile

30| | TET_QUTPUT_CAPTURE=TT ue

30| | TET_API _COWPLI ANT=Fal se

30| | TET_PASS_TC_NAME=Tr ue

30| | TET_VERSI ON=3. Ob

40| | Config End

18th September 1998 Page 75
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

20| renote_001 1| Config Start

30| | TET_QUTPUT _CAPTURE=Fal se

30| | TET_EXEC | N_PLACE=Fal se

30| | TET_API _COVPLI ANT=Tr ue

30| | TET_PASS_TC_NAME=Fal se

30| | TET_VERSI ON=3. 0b

40| | Config End

20| renote_001 2| Config Start

30| | TET_CLEAN _TOOL=rm

30| | TET_CLEAN FI LE=-f

30| | TET_QUTPUT_CAPTURE=Tr ue

30| | TET_API _COVPLI ANT=Fal se

30| | TET_PASS _TC NAME=Tr ue

30| | TET_VERSI ON=3. 0b

40| | Config End

70| | "starting scenario"

800| 000, 001| Renpte Start, scenario ref 2-0
110/ 0 /ts/tcl 20:09:34|Build Start, scenario ref 3-0

100[0] cc -1../../inc/tet3 -Xa -0 tcl tcl.c ../../lib/tet3/tcmo \
..l..[lib/ltet3/libapi.a \
100] 0| -l socket -1 nsl

130/ 0 0 20:09:55|Build End, scenario ref 3-0
110|121 /ts/tcl 20:09:34|Build Start, scenario ref 3-1

100l 1] «cc -1../../inc/tet3 -Xa -0 tcl tcl.c ../../lib/tet3/tcmo \
..l..[lib/ltet3/libapi.a \
100] 1| -l socket -1 nsl

130|1 0 20:09:55|Build End, scenario ref 3-1
10| 2 /ts/tcl 20:09: 55| TC Start, scenario ref 3-0
15/2 3.0b 1| TCM St art

400/ 2 1 1 20:09:58|1C start

200/ 2 1 20:09:58| TP Start

520/ 2 1 00104958 1 1| This is the first test case (tcl)
520/ 2 1 00004957 1 1| This is the first test case (tcl)
22012 1 0 20:09: 59| PASS

410[2 1 1 20:09:59|IC End

80| 2 0 20:09: 59| TC End, scenario ref 3-0

300| 3 /ts/tcl 20:10: 00/ Clean Start, scenario ref 3-0
320/ 3 0 20:10: 02| A ean End, scenario ref 3-0

300|4 /ts/tcl 20:10:00/ Cean Start, scenario ref 3-1
320/ 4 0 20:10: 02| d ean End, scenario ref 3-1

1105 /ts/tc2 20:10:02|Build Start, scenario ref 4-0

100[5] «cc -l../../linc/tet3 -Xa -0 tc2 tc2.c ../../lib/tet3/tcmo \
... [lib/ltet3/libapi.a \
100] 5| -1 socket -1 nsl

130|5 0 20:10:17|Build End, scenario ref 4-0
110|6 /ts/tc2 20:10:02|Build Start, scenario ref 4-1

100/ 6] <cc -1../../inc/tet3 -Xa -0 tc2 tc2.c ../../lib/tet3/tcmo \
..l..[lib/tet3/libapi.a \
100] 6| -1 socket -1 nsl

130/ 6 0 20:10:17|Build End, scenario ref 4-1

10| 7 /ts/tc2 20:10:17| TC Start, scenario ref 4-0

15/ 7 3.0b 1| TCM St art

400/ 7 1 1 20:10:20|I1C Start

2007 1 20:10:20| TP Start

520/ 7 1 00105006 1 1| This is the second test case (tc2, slave)

Page 76 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit

TETware User Guide
520| 7 1 00005005 1 1| This is the second test case (tc2, naster).
520/ 7 1 00005005 1 2
520| 7 1 00005005 1 3| The naster part of this test purpose reports PASS
520| 7 1 00005005 1 4| but the slave part of this test purpose reports FAIL
520| 7 1 00005005 1 5|so the consolidated result of the test purpose is FAIL.
520/ 7 1 00005005 1 6
520/ 7 1 00005005 1 7| The lines in this block of text are printed by a single
520| 7 1 00005005 1 8|call to tet _ninfoline() in the master part of the test
520| 7 1 00005005 1 9| purpose so output fromthe slave part of the test purpose
520| 7 1 00005005 1 10|won’t be mixed up with these |ines.
220|7 1 1 20:10: 20| FAIL
410/ 7 1 1 20:10:20|1C End

80| 7 0 20:10: 22| TC End, scenario ref 4-0

300| 8 /ts/tc2 20:10: 24| Clean Start, scenario ref 4-0
320/ 8 0 20: 10: 25| A ean End, scenario ref 4-0

300]9 /ts/tc2 20:10: 24| Clean Start, scenario ref 4-1
320|9 0 20:10: 25| d ean End, scenario ref 4-1
70| | "next is the |ast test case"

110/ 10 /ts/tc3 20:10:25|Build Start, scenario ref 6-0

100/ 10| cc -1../../inc/tet3 -Xa -0 tc3 tc3.c ../../lib/tet3/tcmo \
..l..[lib/ltet3/libapi.a \
100] 10| -l socket -1 nsl

130/ 10 0 20:10:41|Build End, scenario ref 6-0
110|211 /ts/tc3 20:10: 25| Build Start, scenario ref 6-1

100 11| cc -1../../inc/tet3 -Xa -o tc3 tc3.c ../../lib/tet3/tcmo \
..l..[lib/ltet3/libapi.a \
100| 11| -1 socket -Insl

130/ 11 O 20:10: 41| Build End, scenario ref 6-1

10| 12 /ts/tc3 20:10: 42| TC Start, scenario ref 6-0

15|12 3.0b 2| TCM Start

400/ 12 1 1 20:10:50]1C start
20012 1 20:10:50| TP Start
520| 12 1 00005056 1 1| This is tpl in the third test case (tc3, master)
520| 12 1 00005056 1 2|sync with slave (sysid: 1)
520| 12 1 00105063 1 1| This is tpl in the third test case (tc3, slave)
520| 12 1 00105063 1 2| sync with master (sysid: 0)
22012 1 0 20: 10: 50| PASS
410112 1 1 20:10:50]1C End
400[12 2 1 20:10:50]1C Start
200| 12 2 20:10:50| TP Start
520| 12 2 00005056 1 1| This is tp2 in the third test case (tc3, master)
520| 12 2 00005056 1 2| send nessage "test data" to slave (sysid: 1)
520| 12 2 00105063 1 1| This is tp2 in the third test case (tc3, slave)
520| 12 2 00105063 1 2|sync with master (sysid: 0) and receive data
520| 12 2 00105063 1 3|received nessage "test data" from naster

220] 12 2 0 20: 10: 50| PASS

410112 2 1 20:10:50]1C End

80| 12 0 20: 10: 51| TC End, scenario ref 6-0

300| 13 /ts/tc3 20:10: 52| C ean Start, scenario ref 6-0

320/ 13 0 20:10: 54| d ean End, scenario ref 6-0

300| 14 /ts/tc3 20:10:52| A ean Start, scenario ref 6-1

320/ 14 0 20:10: 54| ean End, scenario ref 6-1

820| | Renot e End, scenario ref 2-0

70| | "done"

900| 20: 10: 54| TCC End

18th September 1998 Page 77
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 78 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

E. Server reply codes

E.1 Introduction

When a TETware client process makes arequest of a server, a server reply code is returned to the
client which indicates the success or failure of the request. Many of these reply codes are
interpreted by the client and so are never visible to the user. However, some reply codes may be
printed in TETware diagnostic messages which appear in the journal file on the master system or
inthet ccd log file on one of the dave systems.

In addition, when an API function call is unsuccessful, the APl places a value in the global
variable tet _errno which indicates the reason for the failure. The symbolic names
corresponding to the values which may appear in tet_errno are defined in
tet-root/ i nc/ t et 3/t et _api . h and are formed by prepending the string TET _ to each of the
names listed here. The meaning of each API error code thus defined is the same as that of the
corresponding server reply code described here.

A client-server architecture is not used in TETware-Lite. In situations where the Distributed
version of t cc sends an action function request to t ccd, the Lite version of t cc performs the
action itself. However, the control logic in both versions of t cc isthe same. Therefore an action
function invoked within the Lite version of t cc returns the same reply code to the control logic
as when that action function is invoked remotely int ccd as a result of a request sent from the
Distributed version of t cc. Thusit is possible for certain diagnostic messages generated by the
Lite version of t cc to include a server reply code even though the associated processing does not
involve interaction with a server.

E.2 List of server reply codes

Thefollowing isalist of possible server reply codes and their meanings:

ER K No error.
The request completed successfully.
ER 2BI G Argument list too long.

The request could not be processed because the size of an argument list
presented to one of the exec or spawn system calls was greater than the
maximum permitted by the system.

ER_ABORT Abort test case.
The action associated with the consolidated result of a distributed test
purpose indicated that the test case should be aborted.

ER_CONTEXT Request out of context.
A request arrived before a pre-requisite message had been received by the
server.

ER_DONE Event aready happened.
A synchronisation request arrived after the related sync event had
completed, or IC or TP start or end requests arrived in the wrong order, or a
CONFIG request violated the configuration variable exchange protocol.

18th September 1998 Page 79
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

ER_DUPS

ER_ERR

ER_FI D

ER_FORK

ER_| NPROGRESS

ER_| NTERN

ER_| NVAL

ER_LOGON

ER_MAG C

ER_NOENT

Page 80

Duplicate system IDsin list.
Thelist of system IDs specified in the request contained duplicate entries.

Genera error code.

Diagnostics which include this reply code are always preceded by another
message describing the error in more detail. If the error actually occurred on
a dave system, it is likely that the more detailed message will appear in the
tccd log file on the slave system rather than in the journa file on the
master system.

Bad fileID.
An invalid file ID was specified in a file transfer request. This usually
indicates an internal program error of some kind.

Can't fork.

tccd was unable to fork while processing an OP_EXEC request. A
message describing the reason for the failure is printed in thet ccd log file
on the affected system.

Event in progress.
An attempt was made to modify the system ID list associated with an event
after the event had started, or IC or TP start or end requests arrived in the
wrong order, or a CONFIG request violated the configuration variable
exchange protocaol.

Internal server error.
A server request processing function neglected to supply a message reply
code. Thisusually indicates an internal program error of some kind.

Invalid request parameter.

The value of one of the request parameters was not valid for this request
type. This error may be raised both in the client’s server function interface
code and in the server’ s request processing code.

Logon protocol error.

A client issued a server request before having first logged on to the server, or
attempted to log on to a server more than once. This error may be raised
both in the client’s server function interface code and in the server’s request
processing code. This usually indicates an internal program error of some
kind.

Bad magic number.

An interprocess message header contained an invalid magic number. This
can occur if the client and server data streams become out of sync or when
the client and server are incompatible (e.g., because they are derived from
different TETware releases).

No such file or directory.
A file specified in an OP_EXEC request could not be found, or a saved files
directory could not be accessed.

18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

ER_PERM No permission.
A request was received from a client that was not authorised to send it, or
the server did not have the permissions necessary to perform the requested
action.

ER PID Invalid process ID.
The process ID specified in an OP_WAI T or OP_KI LL request did not refer
to a process started by the requesting system.

ER_RCVERR Message receive error.
A server could not process a request because an I/O error occurred while the
message was being received.

ER REQ Invalid request.
A request was attempted that was not valid for this server type. This error
may be raised baoth in the client’s server function interface code and in the
server’s request processing code. This usually indicates an internal program
error of some kind.

ER_SI GNUM Invalid signal number.
The signal number specified in an OP_KI LL request was not valid on the
target system.

ER SNI D Bad sync ID.
A request to t et syncd specified an invalid sync identifier. This usually
indicates an internal program error of some kind.

ER_SYNCERR Synchronisation was unsuccessful.
A sync event completed unsuccessfully because one or more of the
participants did not synchronise, submitted a no sync vote, timed out or
terminated unexpectedly.

ER _SYSI D Bad system ID.
A client running on a system which is not participating in a distributed test
purpose tried to participate in an event relating to that test purpose, or no
process from a system that was supposed to be participating in an event was
logged on to the server.

ER _TI MEDOUT Request timed out.
The timeout specified with the request expired before the request could
complete.

ER TRACE Tracing not configured.
An OP_TRACE reguest was sent to a server which had been compiled with
tracing disabled.

ER VAIT No un-waited-for children to report.
An OP_WAI T reguest with a zero timeout found that the specified process
had not yet exited.

ER_XRI D Bad execution resultsfile ID.
A reguesttot et xr esd specified an invalid execution results file identifier.
This usually indicates an internal program error of some kind.

18th September 1998 Page 81

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 82 18th September 1998
The Open Group

Test Environment Toolkit
TETware User Guide

TET3-UG-1.2

F. Mnemonicsused in TETwar e diagnostics

F.1 Introduction

This appendix describes some of the mnemonics that may be used in diagnostic and trace
messages generated by TETware programs. Some mnemonics are used both in Distributed
TETware and TETware-Lite, whereas others are only used in Distributed TETware.

F.2 Processtypes
Each type of processis assigned a process type identifier.

The following table lists TETware process types and their meanings:

Processtype | Program name Description

MIcC tcc Master test case controller
MICM test-case-name Master test case manager
STAND programname | Stand-alone programs
STCC tccd Test case controller daemon
STCM test-case-name Slave test case manager
SYNCD tet syncd Synchronisation daemon
XRESD tet xresd Execution results daemon

F.3 Process states

The client and server interface code in Distributed TETware maintains a process state for each
connection to another process. The meanings of many of the states depend on whether the
connected processisaclient or a server.

The following table lists TETware process states and their meanings:

Process Connected to Connected Description
process state
al clients any server CONNECT Connecting to server
al clients any server DEAD Server connection has closed
al servers any client DEAD Client has disconnected
al clients any server | DLE Awaiting reply from server
al servers any client | DLE Awaiting request from client
al clients any server PROCESS Performing normal processing
al servers any client PROCESS Processing arequest from client
all processes | any process RCVNVBG Recelving a message
al processes | any process SNDVBG Sending a message
tetsyncd | anyclient WAI TSYNC Waiting for a sync event to complete

18th September 1998

Page 83

The Open Group

Test Environment Toolkit
TETware User Guide

F.4 Server request codes

Each request sent by a client to a server process includes a request code. Some requests are

TET3-UG-1.2

implemented in all TETware servers, whereas others are specific to a particular server.

The following table lists TETware server request codes and their meanings:

Request code Processed by Description
OP_ACCESS tccd Check accessibility of afile
OP_ASYNC tet syncd Auto sync request
OP_CFNAME tccd Register configuration file name
OP_CHDI R tccd Change directory
OP_CODESF t et xresd Send results code file name
OP_CONFI G tccd Assign configuration variables
OP_EXEC tccd Execute a process
OP_FCLGCsE tccd, tetxresd | Closeatextfile
OP_FOPEN tccd, tetxresd | Openatextfile
OP_CETS t et xresd Read strings from atext file
OP_1 CEND t et xresd Signal 1C end
OP_I| CSTART tet xresd Signal IC start
OP_KI LL tccd Send signal to process
OP_LOCKFI LE tccd Createalock file
OP_LOGOFF al servers Log off server
OP_LOGON al servers Log on to server
OP_MKALLDIRS | tccd Make directories recursively
OP_MKDI R tccd Make a directory
OP_MKSDI R tccd Make save files directory
OP_MKTMPDI R tccd Make atemporary subdirectory
OP_NULL al servers Discard data successfully
OP_PUTENV tcced Put strings in the environment
OP_PUTS tccd Write strings to atext file
OP_RCFNANME t et xresd Return configuration file name
OP_RCOPY tccd Copy savefileslocally
OP_RCVCONF tccd Receive configuration information
OP_RESULT tet xresd Send atest purpose result
OP_RMALLDIRS | tccd Remove directories recursively
OP_RMDI R tccd Remove a directory
OP_RXFI LE tccd Remote file transfer
OP_SETCONF tccd Set configuration mode
OP_SHARELOCK | tccd Create a shared lock
OP_ SNDCONF tcced Send configuration information
OP_SNGET t et syncd Get sync ID for an auto sync session
OP_SNRM tetsyncd Remove an auto sync session
OP_SNSYS tet syncd Send auto sync system name list
OP_SYSI D tccd Assign system ID
OP_SYSNAME tccd Send system name list
OP_TFCLOSE tet xresd Close atransfer file
OP_TFOPEN t et xresd Open atransfer file
OP_TFWRI TE t et xr esd Write to atransfer file
OP_TI ME tccd Return the system time

Page 84 18th September 1998

The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide
Request code Processed by Description
OP_TPEND t et xresd Signal TPend
OP_TPSTART tet xresd Signal TP start
OP_TRACE al servers Send trace flags
OP_TSFI LES tccd Transfer savefiles
OP_TSI NFO tccd Send transport-specific information
OP_UNLI NK tccd Unlink afile
OP_USYNC tet syncd User sync request
OP_WAIT tccd Wait for a process
OP_XRES tet xresd Write data to an execution results file
OP_XRCLOSE tet xresd Close an execution resultsfile
OP_XROPEN t et xresd Open an execution results file and
return an xres 1D
OP_XRSEND tet xresd Associate xres ID with thislogon
OP_XRSYS tet xresd Send system name list

F.5 Server reply codes

Each reply sent by a server to a client process includes areply code. This code indicates whether
or not the corresponding request was successful.

A list of server reply codes and their meaningsis presented in the appendix entitled ** Server reply
codes’ elsewherein this guide.

F.6 Sync states

t et syncd maintains a set of sync states for each sync event. One state in this set is maintained
for each system that is expected to participate in the event.

A list of sync states and their meanings is presented in the chapter entitled ‘‘Test case
synchronisation’” elsawherein this guide.

F.7 Execution result states

t et Xxr esd maintains a set of process states for each execution results file. One state in this set
is maintained for each system that is expected to contribute to the consolidated result of a
distributed test purpose.

The following table lists execution results states and their meanings:

Execution results Descrintion

state P
DEAD The TCM on this system has disconnected fromt et xr esd
NOTREPORTED The system has not submitted aresult for the current test purpose
REPORTED The system has submitted a result for the current test purpose

18th September 1998 Page 85

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 86 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

G. Trace and debugging facilities

G.1 Introduction

Each TETware program contains certain facilities which may be used by an experienced software
engineer to trace its operation and for debugging purposes.

When tracing facilities are enabled, messages describing the processing being undertaken are
printed to the standard error stream. Although an explanation of the meanings of these messages
is beyond the scope of a User Guide, the information in this appendix is presented in the belief
that it may be of some use to experienced TETware users.

G.2 Caveats

Trace messages are intended to be interpreted by an experienced software engineer who is
familiar with the internal operation of TETware processes. In most cases, they need to be
interpreted in conjunction with the TETware source code.

Some of the tracing facilities generate huge volumes of output, so you should ensure that you are
prepared to handle the output before you enable tracing. In most cases, it is best to enable only
those messages that you actually need to diagnose a particular problem. Whenever possible, you
should invoke tracing while processing only a small scenario containing a few simple test
purposes, rather than attempting to trace the processing of afully-featured test suite.

G.3 Description

In each TETware process there are several trace flags that can be used to control the emission of
debug output. Each trace flag has a value associated with it; generally speaking, the higher the
value, the greater the volume of output produced.

The following table lists these flags and the trace message types controlled by them. The flags
marked with at are not present in TETware-Lite.

Trace flag name Trace messagetype

tet _Tbuf memory allocation

tet Texec operation of thet cc execution engine
tet Tiof message i/0 operations

tet Tl oopt start and end of the client and server loops
tet _Tscen operation of thet cc scenario parser
tet_Tservt generic server operation

tet _Tsyncdt t et syncd functions

tet _Ttcc miscellaneoust cc functions

tet Ttccdt t ccd functions

tet_Ttcm TCM functions

tet _Ttrace trace subsystem operation

tet Txresdt t et xr esd functions

In addition, when thet et _Tt r ace flag has a non-zero value, atime-stamp is included in each
message generated by the trace subsystem.

Trace flags can be set from the command line (for t cc, t ccd, t et syncd, t et xr esd and
stand-alone programs) and can also be passed to servers in an OP_TRACE message. TCM

18th September 1998 Page 87
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

processes may receive trace flags from tcc and tccd in the TET Tl ARGS environment
variable.

At present, trace flags are propagated as follows:

e t cC passestraceflagstot et syncd andt et xr esd on the command ling, tot ccd inan
OP_TRACE message, and to TCM processesin TET_TI ARGS.

o t ccd passestrace flagsto TCM processesin TET Tl ARGS.
e TCM processes passtrace flagstot ccd in an OP_TRACE message.
e OnaWindows NT system, t ccdst art passestraceflagstot ccd on the command line.

Each process maintains two copies of each trace flag; one (the global value) is passed to other
processes as required, while the other (the local value) is made available in the flag variables
described above. It isthereforethe local value that controls the emission of debug information.

Each global value has a set of bits associated with it which determines to which other processesiit
will be propagated. If a process receives a trace flag (together with its associated set of bits) and
one of the bits matches the process type of the receiving process, then the process copies the
global valueintoitslocal value.

When atrace flag appears on the command line, its format is as follows:
command - T[X..., Jyn ...

More that one —T option may appear on a command line. The meanings of —T suboptions are as
follows:

X..., This part is optional but, if it appears, it is a comma-terminated process indicator list
indicating to which process the flag should be propagated.

The following processindicators are understood:

tcc

tccd

master TCM/API®
slave TCM/API®

t et xr esd

tet syncd
stand-alone programs?°

4 <XOoO0O0n

18. A TCM isamaster TCM if it is either managing a non-distributed test case or managing the part of a distributed
test case that is running on the first (or only) system that is specified in the test case’'s system list.

19. A TCM isadave TCM if it is managing part of a distributed test case that is running on the second or subsequent
system that is specified in the test case's system list.

20. For the purposes of this description a stand-alone program is one that is not one of the components of the TETware
architecture. For example, the TCC daemon bootstrap program (t ccdst ar t) which is used on the Windows NT
system comes into this category.

Page 88 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

y Indicates which trace flag should be set. Thisis asingle trace flag indicator, or al | to
indicate that all flags should be set.

The following trace flag indicators are understood:

tet _Tbuf
tet _Ttcm
tet Tserv
tet Texec
tet Tio
tet _TI oop
tet _Ttcc
tet Tscen
tet Ttccd
tet _Ttrace
tet Txresd
tet _Tsyncd

<X TwoT 3T TQOD®OOT

n The value to which the flag should be set. If no value is specified, it defaultsto O.

Function tracing is performed by callsto the TRACENn() , TDUMP() and BUFCHK() macros.

G.4 Examples

Here are some examples of how the user can set trace flags from thet cc command line;

tcc -Tp4d ... Trace certain operations that are performed by t cc’s scenario parser by
setting thet et _Tscen flagto 4.

tcc -TS,s4 ... Set the global t et Tt ccd flag to 4 and passit to t ccd, which copies
the global flag to itslocal flag.

tcc -TXY,i6 ... Set the global tet_Tio flag to 6 and pass it to tetsyncd and
t et xr esd, each of which copy it to their local flag.

tcc -Ts2 ... Set both the local and global t et _Tser v flags to 2; the globa flag is
passed to all processes, each of which copiesit to itslocal flag.

tcc -Tall 10 ... Setboththe global and local versions of each flag to 10. Each global flag

is passed to all processes, each of which copiesit to itslocal flag.

Trace options may aso be passed on the command line when t ccd is started on a particular
system; however, when this is done, trace flags are only propagated to processes that are started
by t ccd on that system.

On a Windows NT system, trace options may be specified for t ccd by including them on the
tccdst art command line.

18th September 1998 Page 89
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 90 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

H. Implementation notesfor TETware on Win32
systems

H.1 Introduction

TETware has been implemented on the Windows NT and Windows 95 operating systems, as well
as on the UNIX systems on which previous TET versions have been implemented. In this
appendix and throughout this document, the Windows NT and Windows 95 operating systems are
referred to collectively as Win32 systems. The individual system names are only used when it is
necessary to distinguish between them.

This appendix contains details of some features which are specific to the Win32 implementation
of TETware and discusses some of the ways in which the implementation of TETware for Win32
differs from the UNIX implementation.

H.2 Supported TETwareversions

TETware-Lite is supported on both Windows NT and Windows 95. Distributed TETware is
supported only on Windows NT.

H.3 File naming conventions
H.3.1 Directory separator character

On a UNIX system, the / character is used as the directory separator character whereas, on a
Win32 system, either the/ or the\ character may be used as the directory separator character.

While TETware will interpret file names correctly which use either character, it is recommended
that you only use / as a directory separator character. This is particularly important when
specifying a file name in a configuration file on a Win32 system which might be interpreted on a
UNIX system when aremote or distributed test case is to be processed.

H.3.2 Full path names

When you specify afull path name on a Win32 system, you can specify it either as/ path/ file or
asXx: / path/ file.

If you do not include a drive specifier?! in the path name, the current (or default) drive will be
used. Thiswill work as expected provided you do not specify file names on more than one drive
in connection with a particular test suite. If you specify file names on more than one drive in
connection with a particular test suite, al full path names specified for that test suite must include
adrive specifier.

21. That is: theinitial x: sequence.

18th September 1998 Page 91
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

H.3.3 Relative path names

When you specify arelative path name on a Win32 system, you can specify it either as path/ file
or asx: path/ file?

Y ou should not specify a relative path name that includes a drive specifier, since unpredictable
results can occur when a TETware process attempts to use such a path name after changing its
current working directory. For the same reason you should not specify a simple file name as
x: file.

H.3.4 Test case names

The format of atest case name in a scenario file is defined by the syntax of the scenario language.
This syntax is not modified by the file naming conventions of the host operating system.

Thusa/ must always be used as the directory separator character when a test case hame appears
in a scenario file. \ is not accepted as a directory separator character in a test case hame on
Win32 systems.

H.4 Executablefiles

On a Win32 system the execute bit in a file's permission is not significant when determining
whether or not a file is executable. Instead the system determines how to execute a file from the
file name suffix. The spawn and exec family of routines in the Microsoft C runtime support
library understand certain suffixes as indicating executable files and will invoke the appropriate
command interpreter when called upon to executea. cird or a. bat file.

In addition to the suffixes recognised by the C runtime support library, the TETware test case and
tool execution subsystem recognises a file with a . ksh suffix as a Korn Shell script and afile
with a. pl suffix asa Perl script. The execution subsystem will invoke sh. exe or per| . exe
as appropriate when called upon to execute one of these files. These interpreters are located using
the PATH environment variable, so script execution will be unsuccessful if the search path does
not include the location of the interpreter that is required to execute the script.

The way in which file names are interpreted on a Win32 system affects the way in which you
should specify a test case name in a scenario file, or atool name using one of the tool-specific
configuration variables, as follows:

e To specify atest case or tool whichisa.com . exe,.cnd or . bat file, you may either
include or exclude the file's suffix.

« When you specify a Shell (xpg3sh) or Korn Shell (ksh) API test case to be executed, you
must either arrange for the file name to have a. ksh suffix or set the TET _EXEC TOCL
configuration variableto sh.

o Likewise, the file name of a Perl test case must either havea. pl suffix or you must set the
TET_EXEC _TOOL configuration variableto per | .

« If you specify atest case without a suffix in a scenario file and you use a command such as
make to build and/or clean the test case, you must arrange for the build and clean tools to

22. Note that the second form does not have a/ character after the drive specifier.

Page 92 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

append the correct suffix to the test case name before passing it to the make command.

« If you specify atool which is a shell script, you may either name it with a. ksh suffix, or
you may specify sh as the tool and the script as the tool’ s instruction file. For example, if
you specify a build tool which is a shell script, you can make one of the following
assignments; either:

TET_BUI LD_TOOL=mybuildtool. ksh
or:

TET_BUI LD_TOOL=sh
TET_BUI LD_FI LE=mybuildtool

When the name of the build tool does not contain a directory separator character, TETware
locates the build tool using the PATH environment variable. When a build file is specified,
it should either be specified relative to the test case source directory or should be specified
as an absolute path name, so as to enable it to be accessed when the build tool is executed.

The same considerations apply to the way in which you make assignments to the clean tool
and its optional instruction file, and the optional prebuild, build fail and exec tools and their
optional instruction files when any of these tools are shell scripts.

o Likewise, if you specify atool which is a Perl script, you may either name it with a.. pl
suffix or you may specify per | asthetool and the script as the tool’ s instruction file.

Whether or not you decide to specify suffixes or use tools to add them depends on the type of
testing that you want to perform. Some issues to consider are as follows:

« If you are developing tests which will only run on Win32 systems, it is probably most
simple to use suffixes throughout.

o If you are porting tests from a UNIX system to a Win32 system and need to maintain a
common source base, it is probably best not to use suffixes. Instead you should use a build
or clean tool to append a suitable suffix to the test case name at the start of processing, and
an exec tool to perform the correct type of test case execution. Note that this will require
some care if you are processing a scenario which contains a combination of executable and
interpreted test cases.

« If you are processing remote or distributed test cases on a combination of UNIX and Win32
systems, you must either arrange for the names of the test cases to be the same on al
systems or use tools to perform the regquired name trandations on Win32 systems.

An example of a possible solution to this problem is contained in the Distributed C API
demonstration test suite, which isincluded with the TETware distribution.

It should be noted that the #! convention that may be used to select the interpreter for script files
on many UNIX systems is not understood by the C runtime support library on a Win32 system.
It is particularly important to remember this point when porting a TETware test suite from a
UNIX system to a Win32 system.

18th September 1998 Page 93
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

H.5 Application types

Each TETware program which runs on a Win32 system is compiled as a console application.
Test cases compiled as Win32 GUI applications are not supported by TETware.

H.6 Signal handling

H.6.1 Keyboard signals

On aUNIX system it is possible to instruct t cc to abort atest case or atest run by generating an
interrupt or a quit signal from the keyboard. On a Win32 system these instructions may be sent
from the keyboard to t cc by using control-C and control-BREAK. These keystrokes are
mapped by the C runtime support library on to SI G NT and SI GBREAK signals, respectively,
which cause the appropriate action to be taken when caught by t cc.

It should be noted that the Microsoft documentation for the si gnal () function states that
SI G NT is not supported for any Win32 application which runs on Windows95 or
Windows NT. It would appear that the same caveat appliesto SI GBREAK aswell. Thereforethe
reliable operation of these functions cannot be guaranteed and it is possible that unpredictable
behaviour may occur when atest case or test run isinterrupted by control-C or control-BREAK.

H.6.2 TCM signal trapping
The C, C++ and Perl TCMs do not attempt to trap unexpected signals on Win32 systems.

H.7 Context numbers
H.7.1 Introduction

When a Test Case Information line is printed in the journal, one of the subfields in the second
field contains a context number. The TET specification requires this context number to be unique
during the lifetime of each test purpose. Traditionally the context number has been derived from
the process I D of each process which make up atest purpose.

It is possible for a test purpose to launch one or more child processes and the purpose of the
context number is to distinguish between journal output generated by the different processes. In
particular, the context number is used when t cc reorders the journal lines at the end of each test
case invocation.

When a C language test purpose generates a child process on a UNIX system (whether by calling
tet fork() ortet_spawn()), the APl calstet setcontext () in order to set the
context number in the child processto the new processID.

H.7.2 Generating unique context numbers

The use of the process ID to generate a context number in a child process poses a problem on
Win32 systems.

Process numbers are allocated rather more frequently on Win32 systems than they are on UNIX
systems. Indeed, it is quite possible for the operating system to re-allocate a process ID as soon
as the previous process which used the ID has terminated. So, if atest purpose spawns a child
process, waits for the process to terminate and then spawns another child process, it islikely that
the two child processes will be allocated the same process ID. When this occursit is impossible
to use a context number based on process ID to distinguish between the journal outputs that have

Page 94 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

been generated by the two child processes.

In order to overcome this problem, the Win32 version of the child process controller does not
makeacall tot et _set cont ext () but instead generates a context number that is based on the
system time (in 100ths of a second) as well as on the processID. The algorithm used makes it
very unlikely that two child processes will use the same context number, although that possibility
cannot be ruled out completely. In any event, the context number in the child process is
guaranteed to be different from the context number in the parent process.

H.7.3 Number of digitsin a context number

On many UNIX systems, a process ID can be expressed in five digits. Indeed, the API ensures
that the context number contains at least five digits of processID. However, on a Windows 95
system the process ID is actually an address in high memory, so it is likely that more than five
digits will be required to express this quantity.

The TET specification states that a numeric field in a journal file may contain up to ten digits.
When a context number is generated by the C API, the first three digits contain the system ID of
the originating system and the remaining digits contain the processID (or, in the case of a child
process on a Win32 system, the value calculated as described previously). On a Win32 system
the API truncates the process ID part of the context number to seven digits in order to ensure that
the maximum number of digits allowed by the specification is not exceeded.

Report writer authors are reminded that they should allow for the possibility that the context
number read from the journal on a Win32 system might contain more digits than the five or eight
that have traditionally been generated by TET implementations running on UNIX systems.

H.8 Test casetermination

When t cc needs to terminate the execution of atest case or tool, it does so by means of a cal to
the Ter mi nat ePr ocess() function which is part of the Win32 API. This function is also
caledbythetet kill () andtet _renkill () API functions to terminate a process which
isrunning on aWin32 system.

However, it is understood that the operation of Ter mi nat ePr ocess() can be unpredictable
and may leave the system in a strange state, possibly causing the system to malfunction at some
later time. Therefore, test case authors are discouraged from using tet kill () and
tet _renkill () toterminate a process which is running on a Win32 system. For the same
reason the use of a timeout specified by t cc -t to force termination of a test case or tool is
discouraged.

H.9 API considerations

H.9.1 Unimplemented interfaces

Some of the interfacesin the C and C++ APIs are not implemented on Win32 systems. Details
are presented under the *‘ Portability’’ heading in the descriptions of each of the API functionsin
the TETware Programmers Guide.

In particular, tet fork() is not implemented on Win32 systems. This is because the
Microsoft C runtime support library does not provide the f or k() function that is required for
the implementation of tet_fork(). Therefore, when porting a test case which uses
tet fork() fromaUNIX system to a Win32 system, it is necessary to re-design the test case
touset et _spawn() andtet wait () instead.

18th September 1998 Page 95
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

H.9.2 Useof theDDLL version of the C runtime support library

You should link a test case with the thread-safe versions of the TETware C TCM and C API
library if any of the following are true:

— you link the test case with the DLL, multi-threaded C runtime support library;

— you link the test case with any other library (either static or DLL) that has been built to use
the DLL, multi-threaded C runtime support library.

Y ou should do this even if you do not intend to use threads in your test case.

Thisis because:
o The standard TCM/API usesthe static, single-threaded C runtime support library.
o Thethread-safe TCM/API usesthe DLL, multi-threaded C runtime support library.

¢ It isunwiseto mix static and DLL versions of the same library in asingle process.

The same considerations apply if you are using the TETware C++ TCM/API.

Note that the use of the static multi-threaded C runtime support library is not supported in
TETware.

H.10 TheTCC daemont ccd
H.10.1 Startingt ccd

It is not possible to start t ccd directly from the command line on a Windows NT system.
Instead, t ccd must be started on demand by a bootstrap program calledt ccdst art .

H.10.2 User ID

t ccd aways runs with the user ID of the user who invokesthet ccdst ar t bootstrap program.
The default user ID of t et and the ability to change this using the —u command-line option are
not supported on a Windows NT system.

H.10.3 File creation mask setting

The —mcommand-line option is not supported on a Windows NT system.

H.11 The TCC daemon bootstrap programt ccdst art

On a WindowsNT system, tccd is started on demand by a bootstrap program called
tccdst art. This program listens for service requests at the port indicated in the tcc service
specification and starts an instance of t ccd each time that a connection is received. The PATH
environment variable is used to locate t ccd so you should ensure that your search PATH
includes $TET_ROOT/ bi n.

You can use certain command-line options to modify the behaviour of t ccdst art and the
instances of t ccd that are launched as connections are received. Refer to the t ccdst art
manual page at the back of this guide for details of the syntax for this command.

Page 96 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

You should invoke t ccdstart once on each WindowsNT system on which Distributed
TETware is installed, in a new Korn Shell window. When invoked, t ccdstart prints a
message on the standard output similar to the following:

tccdstart: 15 Cct 10: 35:20: accepting connections

Each time a connection is received on the listen port, t ccdst art prints a message similar to
the following:

tccdstart: 15 Cct 10: 35:23: connection received from hosthame
To stop t ccdstart you should type a control-C in the window in which t ccdstart is
running. When you do this, t ccdst art prints amessage similar to the following:

tccdstart: 15 Cct 10: 37:40: going down on signal 2

For the reasons indicated in the section entitled ‘‘Keyboard signals’ above, it is possible for a
race condition to occur in the Winsock library when t ccdst art isinterrupted by a control-C.
When this occurs it is possible for the shutdown message to be accompanied by another error
message related to theaccept () function which can safely be ignored.

18th September 1998 Page 97
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 98 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit

TETware User Guide

|. Hintsand tipsfor usersof previousTET

implementations

.1 Introduction

The following sections contain information which may be helpful to users experienced with
previous TET implementations but not yet familiar with TETware.

|.2 TETwarefor TET 1.10and ETET users

1

Two versions of TETware are available; namely, TETware-Lite and Distributed TETware.
Of the two, TETware-Lite is the version which most closely resembles TET 1.10 and
ETET.

The build and installation procedure is completely different for TETware. Be sure to
follow the instructions contained in the TETware Installation Guide.

TET 1.10 test case binaries and associated scenario and configuration files may be run
under the control of both TETware versions of t cc, (as non-distributed test cases) without
modiification.?

ETET binaries and scenario files may be run under the control of both TETware versions of
t cc, (as non-distributed test cases) without maodification. It may be necessary to include
an assignment for the TET_COMPAT variable in each mode-specific configuration file?* in
order to cause certain ETET-specific syntax in a scenario file to be interpreted correctly.

TET users will benefit from additional scenario directives which are provided to support
repeated and parallel test case execution. Both TET and ETET users will benefit from
additional directives which are provided to support processing of distributed and non-
distributed test cases on remote systems when Distributed TETware is used.

TET users will benefit from additional configuration variables which provide better control
over the way in which t cc interacts with test cases and tools.

The Cand C++ APIs in Distributed TETware provide additional functions to alow
synchronisation between parts of a distributed test case, supply information about local and
remote system designations and control execution of processes on remote systems.

In Distributed TETware there is an additional configuration file—t et di st. cf g —which
must be supplied on the local system when remote or distributed testing is to be performed.

Test cases built using the Cand C++ APIs in Distributed TETware must be run under
control of the Distributed version of t cc. They cannot be run stand-alone or under the
control of the TETware-Litet cc. However, test cases built using the C and C++ APIsin
TETware-Lite may be run either stand-alone or under the control of either typeof t cc.

23. However, you should be aware of the disposition of uncaptured test case and tool output when Distributed TETware
is used; thisis described in a subsequent note.

24. Thesefiles are: the build mode, execute mode and clean mode configuration files.

18th September 1998 Page 99

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

10. Thereisno support for distributed testing when the Shell, Korn Shell or Perl APIs are used.
However, (non-distributed) test cases which use these APIs may be run stand-alone or
under control of either type of t cc. In addition, such test cases can be run on remote
systems under control of the Distributed t cc.

11. When atest caseis built using the C and C++ APIsin Distributed TETware, it is best not to
call exi t () directly. Instead, each API provides afunctiont et _exi t () which hasthe
same effect; for details, refer to the section entitled ‘* Executed process functions”’ in the
TETware Programmers Guide. In TETware-Lite acall totet _exit() is functionaly
equivalent to callingexi t () .

12. When TETware-Lite is used, uncaptured test case or tool output appears on the terminal
wheret cc isinvoked, asisthe casein TET 1.10 and ETET. However, when Distributed
TETware is used, test cases and tools on all systems run detached from the terminal where
t cc isinvoked. Instead, uncaptured output appears in the t ccd log file on each system
where test cases are processed.

13. Since TETware is intended to be used as a replacement for other TET versions, TETware
should not be installed with the same value of tet-root as that used by an existing TET or
ETET distribution; otherwise, some existing files will be overwritten.

|.3 TETwarefor dTET2 users

1. Two versions of TETware are available; namely, TETware-Lite and Distributed TETware.
Of the two, Distributed TETware is the version which most closely resembles dTET2.

2. The build and installation procedure for TETware is similar to that used in dTET2.
However, the make definition file def i nes. nk is located directly below tet-root/ sr ¢
rather than at a lower level directory as was previously the case, and the configuration
script dt et cf g hasbeen renamedt et conf i g and moved to tet-root/ sr c.

3. The distinction between master and slave systems has (for the most part) gone. Instead, a
system is identified either as the local system (that is, the system on which t cc is run), or
as aremote system.

4. When Distributed TETware is used, t ccd must always be run on the local system (as well
as on any remote systems) when a scenario contains test cases or test case parts which are
to be processed on the local system. Since TETware-Lite cannot process remote or
distributed test cases, t ccd is ot required when TETware-Lite is used.

5. It may be necessary to include an assignment for the TET COWVPAT variable in each
mode-specific configuration file?® in order to cause certain dTET2-specific syntax in a
scenario file to be interpreted correctly.

6. Thedi stri but ed scenario directive enables a distributed test case to be run entirely on
remote systems.

7. The API functions tet _sync() and tet_nsync() have been replaced by a new
function called t et _r emsync() .%® This function provides the test suite author access to

25. Thesefiles are: the build mode, execute mode and clean mode configuration files.

26. Although tet _sync() and tet_msync() will continue to be supported so as to provide backwards
compatibility with existing dTET2 test suites, these interfaces are now marked ‘‘to be withdrawn'’ and test suite
authors are encouraged touset et _renmsync() in new test cases.

Page 100 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit

10.

11.

TETware User Guide

all the capabilities of the TETware synchronisation subsystem and is more suitable for use
with the symmetrical system model implemented in TETware.

There are additional configuration variables which provide better control over the way in
whicht cc interacts with test cases and tools.

t ccd onthe local system receives all of t cc’s environment variables soon after t cc logs
ontoit. Therefore, environment variablesthat are in force whent ccd starts up (including
variables specified with —e command-line options) may be overwritten by whatever
variables happen to be present in the environment inherited by t cc.

The dTET2 trace subsystem is now used throughout TETware instead of just in the
client/server code.

Since TETware is intended to be used as a replacement for other TET versions, TETware
should not be installed with the same value of tet-root as that used by an existing dTET2
distribution; otherwise, some existing files will be overwritten.

18th September 1998 Page 101

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 102 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit

TETware User Guide
J. TETware manual pages
This appendix contains manual pages for TETware programs.
18th September 1998 Page 103

The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 104 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit

tee(l)

NAM

TETware User Guide

tee(l)

E
tcc — TETware test case controller

SYNOPSIS

tcc —{bec} [options] [test-suite [scenario]]
tcc —{bec} —m codelist [options] old-journal-file [test-suite [scenario]]
tcc —{bec} —r codelist [options] old-journal-file [test-suite [scenario]]

tcc -V

DESCRIPTION

18th

tce isthe TETware test case controller. It provides support for the building, execution and clean-up
of test scenarios.

When TETware-Lite is built, scenarios may only contain test cases which are to be executed on the
local system and tcc performs all the actions required to process such test cases itself. When
Distributed TETware is built, scenarios can contain local, remote and distributed test cases. The
distributed version of tcc does not perform the actions required to process test cases itself but instead
sends requests to the test case controller daemon tccd which runs on the local system and also on
each participating remote system (see the tccd(1) manual page for details).

Apart from the scenario directives which relate to the processing of remote and distributed test cases,
the user interface to tcc is the same irrespective of whether TETware-Lite or Distributed TETware is
being used.

When tcc is invoked with the -V option, all other command-line arguments are ignored. tcc does
not process test cases but instead prints version information on the standard error stream and exits.

tee has three modes of operation, namely build, execute and clean, which may be invoked singly or
in any combination. These modes are specified by the —b, —e and —c command-line options, at least
one of which must appear. The other options modify the behaviour of tcc in one or more of these
operational modes. Each mode (with optionally modified behaviour) is applied to the test cases and
invocable components selected for processing.

By default, tcc builds, executes or cleans test cases in the named scenario contained in the scenario
filetet_scen, which islocated in the test suite root directory for test-suite (see DIRECTORIES below).
If no scenario is specified, the default scenario named all is used. If no test-suite is specified, tcc
attempts to deduce a default test suite name using the following rules:

1. If the TET_SUITE_ROOT environment variable is set and the current directory lies
under the directory hierarchy specified by this variable, then the test suite is the component
of the current directory’ s path name which liesimmediately below $TET_SUITE_ROOT.
For example, if $TET_SUITE_ROOT is /usr/tet3 and the current directory is
lusr /tet3/suitel/r esults, then the name of the default test suite is suitel.

2. 1f the TET_SUITE_ROOT environment variable is not set and the current directory lies
under the directory hierarchy specified by the TET_ROOT environment variable, then the
test suite is the component of the current directory’s path name which lies immediately
below $TET_ROOT.

September 1998 Page 105
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

3. If the current directory lies outside of the directory hierarchy specified by the
TET_SUITE_ROOT environment variable (if set) or the TET_ROOT environment
variable (if TET_SUITE_ROOT is not set), then no default test suite name can be
deduced.

DIRECTORIES
By default, tcc interprets test case names relative to the test suiteroot directory. The location of this
directory is determined as follows on the local system:

1. If the TET_SUITE_ROOT environment variable is set, the test suite root directory is
determined by the test suite name, relativeto $STET_SUITE_ROOT.

2. 1f the TET_SUITE_ROOT environment variable is not set, the test suiteroot directory
is determined by the test suite name, relativeto $STET_ROOT.

3. If the TET_RUN environment variable is set, then the directory subtree below the test
suite root (determined as described above) is copied to the location below $TET_RUN
and this location becomes the new test suite root directory.

However, an dternate execution directory on the loca system may be specified by the
TET_EXECUTE environment variable or by a command-line option (see OPTIONS below). If an
aternate execution directory is specified, tcc interprets test case names relative to this directory when
operating in execute mode.

By default, tcc creates adirectory called tet_tmp_dir below the test suite root directory. However, a
different temporary directory name on the local system may be specified by the TET_TMP_DIR
environment variable. Each invocation of tcc creates a unique subdirectory below the temporary
directory on startup and removes it and its contents on normal completion.

CONFIGURATION FILES
During execution, tcc reads configuration variables from certain configuration files on both the loca
and the remote systems (if any). By default, the name of the build mode configuration file is
tetbuild.cfg, that of the execute mode configuration file is tetexec.cfg and that of the clean mode
configuration fileistetclean.cfg. The build and clean mode configuration files reside in the test suite
root directory on each system. The execute mode configuration file resides in the alternate execution
directory if one has been specified, otherwise in the test suite root directory.

The Distributed version of tcc reads distributed configuration variables are read from the file named
tetdist.cfg in the test suite root directory on the local system. This file must at least contain
definitions for the tet root and test suite root directories for any remote systems that are specified in
the scenario being processed.

JOURNAL FILE
By default, tcc creates a sequentially numbered directory below the results directory in the test suite
root directory for the named test-suite on the local system, and places the journal file and saved
intermediate result files there. On startup, tcc writes the name of the journal file being used to the
standard output.

RESULT CODES
tcc uses a table of result codes to interpret the results generated by API-conforming test cases. A
default table containing standard codes is built in to tce. It is possible to specify additional codes in
user-supplied result codes files located below the tet root and test suite root directories on the local
system. These files are optional but, if they exist, the codes specified in them are added to the table
of standard codes. The default name for each of these filesistet_code but this name can be changed
by means of the TET_RESCODES_FILE configuration variable.

Page 106 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

OPTIONS
The following options alter the default behaviour described above:

—a directory
Use directory as the alternate execution directory instead of the one specified by the
TET_EXECUTE environment variable (if any).

—f file Usefile asthe clean mode configuration file instead of the default.
—-g file Usefile asthe build mode configuration file instead of the default.

=l Enable interactive journal trace. Journa lines which indicate the start and end of
processing of each test case in each of the chosen modes of operation are written to the
standard error stream as well as being written to the journa file.

—i directory
Place the default journal file and saved intermediate results files in directory instead of in
the default location.

-j file Usefileasthejournal fileinstead of the default.

-l scenario-line
Process scenario-line as if it appeared in a scenario file below a scenario named all. More
than one —I option may be specified; the scenario-lines are processed in the order in which
they appear on the command line. scenario-line must be presented as a single argument so
it must be quoted if it contains embedded spaces. If a scenario file is specified by a -s
option, any scenario-lines are processed before that scenario fileisread. If no —soptionis
specified, the default scenario filetet_scen is not read when -l is used.

-n string
Do not process test case names that contain string. More than one —n option may appear.
-p Enable progress reporting. As each build, execute or clean operation is started, a line
indicating the time, mode and scenario line being processed is printed on the standard
output.

—s file Usefile asthe scenario file instead of the default.

-t timeout
Terminate the build, execute or clean of an individua test case if processing would
continue for more than timeout seconds.

-V variable=value
The specified configuration variable is set to value, overriding any assignment in the
configuration file for the current mode. It is probably best to surround value with single
quotesiif it contains characters which have specia meaning to the Shell. More than one -v

option may appear.
-x file Usefile as the execute mode configuration file instead of the default.
-y string
Only process test case names that contain string. More than one -y option may appear.

The —n option has higher precedence than the —y option; thus, atest case is not processed if
its name is matched by strings specified with both the —n and the -y options.

18th September 1998 Page 107
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

RERUN AND RESUME OPTIONS
The following options are mutually exclusive:

-m code-list

Causes tce to resume the previous run of the specified scenario in the named test-suite
whose results are in old-journal-file. code-list specifies the point in the previous run from
which processing is to be resumed and may consist of a comma-separated list of result
codes, or of one or more of the letters b, e and ¢ to specify failures in particular processing
modes. If code-list consists of result codes, then processing resumes at the first invocable
component whose result in the previous run matched one of those in the list. If code-list
specifies processing modes, then processing resumes at the first test case which failed to
build or clean or the first invocable component which, when executed, did not report PASS
in the previous run.

For example:
tcc-b-mb

Resume building from the first test case that failed to build.
tcc —e -m FAIL ,UNRESOLVED

Resume execution from the first invocable component that reported FAIL or
UNRESOLVED.

tcc-bec-mb,e

Resume building, execution and cleaning from the first test case which failed to build or
from the first invocable component that did not report PASS.

—-r code-list

Page 108

Causes tce to re-run individual test cases and invocable components from the specified
scenario in the named test-suite whose results are in old-journal-file. code-list specifies the
elements that are to be re-run and may consist of a comma-separated list of result codes, or
of one or more of the letters b, e and c to specify failures in particular processing modes. If
code-list consists of result codes, then test cases and invocable components are re-run if the
corresponding result in the previous run matched one of the result codes in the list. If
code-list specifies processing modes, then a test case is re-run if it failed to build or clean
and an invocable component is re-run if it did not report PASS when it was executed in the
previous run.

For example:
tcc-b-rb

Re-build test cases that previoudly failed to build.
tcc —e -r FAIL,UNRESOLVED

Re-execute al invocable components that previously reported FAIL or UNRESOLVED.
tcc—bec—r b,e

Re-build, execute and clean all test cases that previously failed to build or execute, and all
invocable components that did not previously report PASS when executed.

18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

FILES

test-suite-root/tet_scen
Default scenario file. In Distributed TETware, only required on the local system.

test-suite-root/tetbuild.cfg
Default build mode configuration file.

alt-exec-dir /tetexec.cfg
Optional default execute mode configuration file when an aternate execution directory has
been specified.

test-suite-root/tetexec.cfg
Default execute mode configuration file when alt-exec-dir /tetexec.cfg does not exist or an
alternate execution directory has not been specified.

test-suite-root/tetclean.cfg
Default clean mode configuration file.

test-suite-root/tetdist.cfg
The distributed configuration file. Not used by TETware-Lite. In Distributed TETware,
only required on the local system.

$TET_ROOT/tet_code
test-suite-root/tet_code
Default result codefiles. In Distributed TETware, only accessed on the local system.

test-suite-root/tet_tmp_dir
Default temporary directory hierarchy.

test-suite-root/r esults/nnnn{ bec}
Default results and saved files directory.

results-dir/REMOTENNN
In Distributed TETware on the local system, the saved files directory for system nnn.

results-dir /journal
Default journal file. In Distributed TETware, only created on the local system.

18th September 1998 Page 109
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

teed(1) teed(1)

NAME
tced — Distributed TETware test case controller daemon

SYNOPSIS
When the socket network interface is used:

tccd [—e name=value] [logfile] [-m umask] [—-p port] [-u user]
in.tccd [-e name=value] [~ logfile] [-m umask] [-u user]
When the XTI network interface is used:
tccd —p addr [-M mode] [P tpi] [-e name=value] [~ logfile] [-m umask] [-u user]

DESCRIPTION
tced isthe Distributed TETware Test Case Controller daemon. 1t is used by the Test Case Controller
and by Test Case Managers to execute various functions on the local system, and also on remote
systemsthat are participating in remote and distributed test cases.

When tced starts up on a UNIX system, it attempts to change its user ID to that of the user tet,
although failure to do this is only treated as fatal if tced is invoked initially with administrative
privilege (i.e., with a user or group ID of less than 100). tccd changes directory to the home
directory specified for the user tet in the system password database and sets its HOM E environment
variable to refer to that directory.

When tced starts up on a Windows NT system, it does not attempt to change its user 1D and executes
in the directory in which is is invoked. If there is no HOME variable in tced’s environment on
startup, teed setsits HOME environment variable to refer to that directory.

When the socket network interface is used on a UNIX system, tced listens for service requests at the
port indicated in the tcc service specification; usualy in the /etc/services file. When a connection
request is received, tced forks a copy of itself, alocates an ephemera port for the connection and
processes the request in the child process.

When tced is invoked on a Windows NT system, it does not itself listen for service requests or
accept connections. Instead this function is performed by the TCC daemon bootstrap program
tccdstart (see the tcedstart(1) manual page for details).

The socket version of tced refuses to process requests for service originating from systems other than
those listed in the systems.equiv file.

When the XTI network interface is used on a UNIX system, tced listens for service requests at the
address specified by the —p command-line option. When a connection request is received, tced forks
a copy of itself, accepts the connection and processes the request in the child process. The XTI
version of tced only runs on UNIX systems and does not use the systems.equiv file to determine
whether or not to accept connections.

By default, tccd writes diagnostic information to the file /tmp/tccdlog on a UNIX system, or to
c:/tmp/tcedlog on aWindows NT system.

The following options are understood for all network interfaces:

—-e name=value
Merge the environment variable assignment specified by name=value into the
environment to be used by tccd and its children. More than one —e option may appear.
Note that when the Test Case Controller logs on to tccd on the local system, it sends a
copy of its environment to tccd after logging on. Thus it is possible for an environment
variable assignment made with —e to be overwritten by an instruction from tcc when an
instance of tced runs with asystem ID of zero.

Page 110 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

-1 logfile Send diagnostic output to logfile instead of to the default. However, certain diagnostics
may still appear in /tmp/tcedlog or c:/tmpltccdlog if they are generated before logfile
can be opened.

-m umask Set the value of the file creation mask for tced and its children to the (octal) value
specified by umask instead of the default value of 022. Only the low 6 bits of the file
creation mask can be set in this way. This option is not supported on a Windows NT
system.

—u user Run with the user ID for the named user instead of that specified for the user tet.
Change directory to the home directory specified for user in the system password
database. This option isnot supported on a Windows NT system.

The following option is understood when the socket network interface is used on a UNIX system:

—-p port Listen for service requests on the named port instead of the one indicated in the tcc
service specification.

The following options are understood when the XTI network interface is used:

-M mode Specifies the underlying transport provider to use. mode should be TCP to use XTI over
TCP/IP (the default) or OSICO to use XTIl over OSl connection-oriented transport.
Each mode is only available if it was enabled by defining the corresponding symbol at
the time tced was built.

P tpi Use tpi asthe transport provider identifier instead of the default /devi/tcp.

—-p addr Listen for incoming connections on the address specified by the XTI address string addr,
which consists of a transport- and machine-dependent sequence of 2-digit hexadecimal
values.

On a UNIX system, tced is normally started at system boot time as a result of an entry in one of the
[etc/rc files or, if it was compiled with the symbol INITTAB defined, from an entry in the file
/etc/inittab. Either version of tccd may be started interactively from a Shell command line if so
desired; however, the INITTAB version of tccd does not background itself and so should be put in
the background by invoking it with & .

teed cannot be started directly from the command line on a Windows NT system; instead, it must be
started on demand by the TCC daemon bootstrap program tccdstart (see the tcedstart(1) manual
page for details).

in.tccd is a version of tced suitable for use on UNIX systems in conjunction with the inetd super-
server and may be started on demand as a result of an entry in the file /etc/inetd.conf. in.tccd only
works with the socket network interface and may not be started interactively from a Shell command
line.

FILES

$HOME/systems.equiv
List of hosthames of client systems permitted to use tccd when the socket network
interface is used.

/tmp/tcedlog (UNIX) or c:/tmp/tcedlog (Windows NT)
Default diagnostic output file for tccd and its children.

/dev/console (UNIX) or con (Windows NT)
Used as a last resort to print diagnostics when the log file cannot be opened and the
standard error stream is closed.

18th September 1998 Page 111
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

/devitcp Default transport provider identifier on a UNIX system when the XTI network interface
isused.

Page 112 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

tccdstart(1) tccdstart(1)

NAME
tcedstart — teed bootstrap program for Windows NT systems

SYNOPSIS
tccdstart [—e name=value] [-I lodfile] [-p port]

DESCRIPTION
tcedstart is used to start instances of tccd on demand when Distributed TETware is instaled on a
Windows NT system.

tecdstart listens for service requests at the port indicated in the tcc service specification. When a
connection request is received, tccdstart allocates an epherimal port for the connection and spawns
an instance of tced, passing the connected port to the new process. The PATH environment variable
is used to locate tced so it is necessary to include $TET_ROOT/bin in this variable when tccdstart
isto be invoked.

teedstart does not run in the background. It should be invoked in its own console window.
The following options are understood:

—-e name=value

-l lodfile
These options and their arguments are passed to each invocation of tccd. See the
tced(1) manual page for details.

-p port Listen for service requests on the named port instead of the one indicated in the tcc
service specification.

18th September 1998 Page 113
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

systems(4) systems(4)

NAME
systems — map logical system ID to system host name

DESCRIPTION
The file $TET_ROOT/systems is used by Distributed TETware processes to determine how to
connect to another TETware system. Information contained in this file may be accessed by test cases
by means of thetet_getsysbyid() API function. Thisfileisnot used in TETware-Lite.

Each entry in the file consists of a number of fields. Fields are separated by white space. Blank lines
and lines beginning with # are ignored by routines that search this file. The first field in each entry
always specifies the logical system ID which is a number that is used to identify a TETware system.
System ID 0O denotes the system on which tcc runs (the local system); other positive values denote
remote systems.

A systems file should exist in the STET_ROOQOT directory on all the systems that are to run local,
remote or distributed test case.

It is possible for several logical system IDs to refer to the same physical machine. Needless to say,
chaos will break out if entries for the same logical system ID in systems files on different systems
point to different physical machines.

When the socket network interface is used, each entry in the systemsfile contains fields as follows:

Logica system ID
System host name
tced port number (optional)

The system host name may be either a host name that can be looked up in the host database, or an
Internet address in dot notation. When an entry contains the optional port number field, TETware
processes use the specified port number when connecting to tced on the system specified by the host
name field. If the port number field is omitted, processes use the well-known port number taken
from the tcc service specification when connecting to tccd on the system specified by the host name
field.

When the XTI network interface is used, each entry in the systems file contains fields as follows:

Logica system ID
System host name
XTI address string

At present, the contents of the system host name field is not used by XTI transport-specific routines.
The XTI address string consists of a sequence of hexadecimal 2-digit values which define an address
that may be used by the underlying transport provider. The contents of this field are transport
provider-dependent, and may aso depend on the network transport implementation, word size and
byte order of the machine on which the file resides. Therefore, it islikely that the value of this field
in an entry for a particular machine will be different on machines which have different architectures
or network transport implementations.

Page 114 18th September 1998
The Open Group

TET3-UG-1.2 Test Environment Toolkit
TETware User Guide

systems.equiv(4) systems.equiv(4)

NAME
systems.equiv — permit or deny tccd access from remote systems

DESCRIPTION
The file systems.equiv is used by tccd to decide whether or not to accept service requests from
remote systems.

When tced is started on a UNIX system, it looks for the systems.equiv file in the home directory for
the user tet, or in the home directory for the named user if tced isinvoked with the —u user option.

When tced is started on a Windows NT system, it looks for the systems.equiv file in the directory
specified by the value of the HOM E environment variable or, if no HOME variable is present, in the
current working directory.

Each line in the systems.equiv file consists of a single field that contains the host name of a system
from which requests are to be accepted, or an Internet address in dot notation if there is no entry for
the system in the hosts database. If the field contains a host name, it must be the primary host name
for that system in the hosts database in order for requests to be accepted; host aliases or nicknamesin
the hosts database are not recognised if they appear in the systems.equiv file.

Blank lines and lines beginning with # are ignored by routines that search thisfile.

CAVEATS
The systems.equiv file is only consulted when the socket network interface is used. It has no effect

when the XTI network interface is used.

18th September 1998 Page 115
The Open Group

Test Environment Toolkit TET3-UG-1.2
TETware User Guide

Page 116 18th September 1998
The Open Group

