

© June 2003 The Open Group. All rights reserved. http://tetworks.opengroup.org

TETware RT
TETware Realtime (TETware RT) is an extension to TETware, which enables
TETware to control the execution of tests on Embedded POSIX Realtime Systems
that cannot support TETware directly.

TETware is designed to operate on systems that support at least the
functionality described in POSIX 1003.1 (1990). The POSIX standard for
Embedded Realtime Systems (POSIX 1003.13) defines four profiles for realtime
systems, three of which do not include all the functionality described in P1003.1.
Therefore, TETware cannot be used to execute test cases directly on these
systems.

POSIX 1003.13 Profiles

The POSIX 1003.13 Profiles 51 to 54 provide four levels of functionality to which
realtime environments can conform. The profiles are based on a study of
existing commercial practice, though most vendors have products that fall in a
continuum covering the range of functionality that the profiles describe in
snapshots.

All Profiles include some or all of POSIX .1, .1b and .1c, and some parts of
POSIX .2 and .2a for the development platform (which is likely to be on a host
system for Profiles 51-53).

The only one of these profiles that TETware can be used to support tests on is
Profile 54.

To support testing under Profiles 51 to 53 The Open Group has developed
TETware RT.

Process

Single Multi

No 51 53

File System

Yes 52 54

Embedded Realtime
System Testing

Embedded Realtime Systems
run in a variety of hardware
and operating environments.
POSIX 1003.13 defines four
different profiles for realtime
applications. Some of these
need not support a file-
system or multiple processes.

A testing strategy for systems
conforming to the .13 Profiles
needs to reflect real products.
TETware cannot be used in
the more restrictive profiles,
since it makes certain
assumptions about its
operating environment that
are not valid in these profiles.
Modifications have been made
to TETware in order to enable
it to control the execution of
tests on embedded Realtime
Systems. This enhanced
product is called TETware RT.

© June 2003 The Open Group. All rights reserved.

System Architecture

In a ‘‘normal’’ non-distributed testing setup, both TETware, and the test cases
that it processes, run on the same system. The whole process is driven by a
list of test cases contained in the scenario file. A Test Case Manager (TCM)
module is linked into each test case executable. The TCM calls each Test
Purpose (TP) function in turn. Each TP completes whatever processing is
necessary to perform the test, and then calls an API function to record a
result. When all the TP functions have been called, the Test Case Manager
exits. Finally, TETware gathers the results of each TP, writes them to the
journal and moves on to the next test case (Figure 1).

Figure 1: TETware non-distributed testing

When testing embedded realtime systems, this model needs to be modified.
This is mainly for the following reasons:

• TETware cannot run on the realtime system. All the control operations
must be performed on a host system.

• Operating system facilities on the realtime system may be limited. If a
test case malfunctions on the realtime system, it may be necessary to
reset the system in order to regain control.

The required modification is accomplished by using TETware’s exec tool
facility to run the TETware RT Test Manager on the host system (that is: the
system on which TETware runs). The Test Manager acts as an agent for the
test case that is running on the realtime system (Figure 2).

TCM
TP functions
API library

Scenario File

TETware

Journal

http://tetworks.opengroup.org

The RT Test Manager

TETware executes a new instance of
the Test Manager each time it
executes a test case. The Test
Manager performs the following
operations:

1. Read information from the test
manifest, including information
about the arrangement of
Invocable Components (ICs)
and Test Purpose (TP) functions
in the test case.

2. Use the dynamic test case
interface to adapt itself to the
IC/TP arrangement described in
the test manifest.

3. Load the test case onto to
realtime system and execute it.

4. Open a communication channel
to the test case on the realtime
system.

5. Instruct the TCM on the
realtime system to invoke the
test case’s startup function,
Test Purpose functions and
cleanup function.

6. For each of these functions,
enter a service loop,
responding to requests from
the TCM/API on the realtime
system. The loop is terminated
when the function returns to
the realtime system’s TCM, or
when a timeout expires.

7. Deliver a Test Purpose
function’s result to the journal.

8. If the Test Purpose timed out:
Reset the realtime system.

Thus the Test Manager provides the
interface between TETware running
on the host system, and the test
case running on the realtime
system. From TETware’s point of
view the Test Manager looks like an
API-conforming test case.

The RT TCM and API

Each test case that is to run on the
realtime system is linked with the
TETware RT versions of the C TCM
and API library. As in TETware, both
single-threaded and thread-safe
versions of these components are
supplied. A substantial subset of the
API functions implemented in
TETware-Lite is available in the
TETware RT version of the API
library.

Although the supported API
functions are the same, in many
cases the implementations are quite
different. For example, functions
that write information to the
execution results file in TETware
instead send the information to the
Test Manager in TETware RT. When
the Test Manager receives this
information, it writes the
information to the execution results
file on the host system.

Scenario File

TETware

Journal

RT TCM
TP functions

RT API

TCM
RT Test Manager

API library

realtime system host system

Figure 2: TETware RT

© June 2003 The Open Group. All rights reserved. http://tetworks.opengroup.org

Manufacturer-specific
Subsystems

An interface has been defined which
enables TETware RT components to
send requests to other hardware
and software subsystems. The
implementation of the underlying
functionality is specific to the
hardware and/or software involved,
and is implemented by (or on behalf
of) the suppliers of these
components.

The subsystems are described in
more detail below. For additional
information please refer to the
TETware Realtime and Embedded
Systems Extension; Installation,
User, Demonstration and
Programmers Guide, available from
the TETworks website.

Functions that are implemented on
the host system are used by the
Test Manager, and functions that
are implemented on the realtime
system are used by the TETware RT
version of the Test Case Manager
and API library.

Communication Subsystem

Provides two-way communication
between the Test Manager on the
host system and the TETware RT
TCM/API on the realtime system.

This subsystem consists of two
parts; one part on the host system
and the other on the realtime
system. Each part is responsible for
establishing a communication
channel to the other part, and for
exchanging fixed length message
packets over the channel. Typically
this subsystem is implemented
using TCP/IP (if the realtime system
supports it) or a connection
between serial ports on each
system.

Exec Subsystem

Loads a test case executable on to
the realtime system and executes
it; and, provides a profile-
independent mechanism for test
case termination on the realtime
system.

This subsystem consists of two
parts; one part on the host system
and the other on the realtime
system.

For more information

Please contact the TETware team:

Tonya Henderson
Americas and Pacific Rim
+1 415 374 8285

t.henderson@opengroup.org

The part on the host system is
responsible for copying a program
image file onto the realtime system
and executing it. The part on the
realtime system is used to
terminate a running program, as if
exit() has been called by the
program.

Reset Subsystem

Resets the realtime system.

This subsystem consists of a single
part on the host system. It is
responsible for initializing the
realtime system to a known state.

The following operations are
defined: Soft reset; Hard reset.

Normally the Test Manager requests
a soft reset if a test purpose times
out, or if it is necessary to interrupt
the currently running test purpose
for some reason. If the soft reset
operation fails, the Test Manager
requests a hard reset. This process
is analogous to sending a SIGTERM
signal to a process running on a
UNIX system, followed up by a
SIGKILL signal if the process has
not terminated within a reasonable
time. If only one type of reset is
possible for a particular realtime
system, then it should be
performed in response to both
types of reset request.

Alan Haffenden
Europe, Middle East & Africa
+44 (0) 118 902 3061

a.haffenden@opengroup.org

